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The ground field k is assumed to be an algebraically closed field.

1. AFFINE ALGEBRAIC GEOMETRY

Definition 1.1. Let fi,..., f, € k[x1,...,2,]. Define

Vifi,.. o, fr) ={z €k | fi(x)=---= fr(z) =0}.
It can be shown that V(fi,...,fr) = V(I) where I is the ideal generated by the
polynomials f; and
V(I)={z k| f(x) =0Vfel}
Any set of the form V(fi,..., fn) is called an algebraic set or an affine algebraic
variety. Conversely, by Hilbert’s basis theorem any ideal of k[z1,...,z,] is finitely

generated and hence for any ideal I we can find f1,..., f, € I such that V(I) =
V(fi,..., fr). Also for a subset X C k™ we put

I(X)=A{fe€kzy,....,z,] | f(x) =0, Vz € X}.

Theorem 1.2 (Hilbert’s Nullstellensatz (weak formulation)). If I C k[x1,...,xy,]
and I # k[x1,...,x,], then V(I) # (.



Proposition 1.3 (Zariski Topology). One can define a topology on K™ where closed
sets are algebraic, i.e. of the form V(I). The Zariski topology is Noetherian (every
increasing chain of open subsets stabilizes), compact, and not Hausdorff.

An open subset of an affine variety is sometimes called a quasi-affine variety.
Definition 1.4. The radical of an ideal I C k[x1,...,z,] is defined as follows:
rad(I) = {f € k[z1,...,z,] | f¥ €I for some N € N}.
Then, rad([) is an ideal and rad(rad(l)) = rad([).
Th?o)rem 1.5 (Hilbert’s Nullstellensatz). Let I C k[z1,...,zy,]. Then I(V(I)) =
rad(]).

Theorem 1.6 (Galois Correspondence). Let P, Q be partially ordered sets, f : P —
Q,g: Q — P be order-reversing maps. Suppose fog,go f >id. Then f and g give
a 1-1 correspondence between g(Q) and f(P).

In our case, P = all ideals of k[z1,...,x,]|, @ = all subsets of k™, f(I) = V(1)
and g(X) = I(X).

Definition 1.7 (Irreducible algebraic set). An algebraic set is irreducible if it cannot
be written as the union of two distinct non-empty closed subsets.

Proposition 1.8. W = V(1) is irreducible if and only if I is a prime ideal in
k[x1,..., 2]

Proposition 1.9. Fvery closed set V can be decomposed uniquely into a finite union
of irreducible closed sets.

Equivalently, every radical ideal can be uniquely represented as an intersection of
prime ideals.

Definition 1.10. Let V = V/(I) where I = rad(/) is a radical ideal. Define the
coordinate ring k[V] as follows:

k[V] =k[z1,...,z,]/1.

If V' is irreducible then [ is prime and k[V] is an integral domain. In this case we
denote the field of fractions of k[V] by k(V'), and call it the field of rational functions
onV.

Definition 1.11 (Dimension). Let V' be an irreducible variety. The dimension of
V, dim(V) is equal to the transcendence degree of k(V') over k. The dimension of a
non-irreducible variety is the maximum of dimensions of its irreducible components.

Proposition 1.12 (Basic facts about dimension). A hypersurface V(f) has dimen-
sion n — 1. If V is an irreducible algebraic set, Z C V,Z # V, then dim(Z) <
dim(V).

Definition 1.13 (Krull dimension). Let A be a commutative ring. Let

PGPS - GP,GA,
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be a sequence of prime ideals. We say that this sequence has length n. The Krull
dimension of A is the supremum of lengths of sequences of prime ideals in A. The
rings we deal with all have finite length, although in general it is possible for a
Noetherian domain to have infinite Krull dimension.

We stated but did not prove the following theorem which relates the notion of
Krull dimension with transcendence degree of the field of rational functions (see
[Milne, Chapter 9], more specifically Corollary 5.9). The proof is based on the
so-called Krull’s Hauptidealsatz.

Theorem 1.14. Let V' be an irreducible affine algebraic variety of dimension d.
Then the coordinate ring k[V| has Krull dimension d.

Corollary 1.15. Let V' be an irreducible affine algebraic variety. Then dimension
of V is equal to the length d of a maximal chain

DA£VoC--CVy=V

of closed irreducible subvarieties of V.

2. SHEAVES

Definition 2.1 (Sheaf of algebras). Let X be a topological space. Suppose the
following conditions hold:
e For U C X open, F(U) is a k-algebra.
e If U C V then we have a k-algebra homomorphism of} : F(V) — F(U),
such that for W Cc U C V,

ol oall =aff.

e F(0) =0 and of, = id.
e For U = UV open, if agi(f) = 0 for all ¢ for some f € F(U), then f = 0.
e For U = UV, open, f; € F(V;), if a“zmvj(fi) = a‘%m Y7 for all i,7, then
3f € F(U) such that ag"(f) = f; for all 7.
Then (X, F) is called a sheaf of algebras.

Let X C k" be an affine variety. Let h € k[X]. Define the basic open set
D(h) = X\ V(h).
The open sets D(h) are basis for the Zariski topology.
Definition 2.2. Given g, h € k[X],
9(p)

h(p)

defines a function D(h) — k. For a point p € X, a function f defined on neigh-
borhood of p, is called regular at p if in some neighborhood of p, it coincides with
g/h for some g, h € k[X]| with h(p) # 0. A function f is said to be regular on an
open subset U if it is regular at every p € U. A function which is regular on some
non-empty open subset of X is called a rational function on X.
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The collection of regular functions is a k-algebra. The collection of rational
functions on X is a field extension of k.

We denote the algebra of regular functions on an open set U C X by O(U). This
defines a sheaf of algebras on X which is denoted by Ox called the sheaf of reqular
functions on X or structure sheaf of X.

For each p € X, the local ring of X at p is the germ of regular functions at p,
that is the collection of (f,U) where p € U and f is regular on U. We consider
(f,U) and (g, V) the same if f = g on UNV. The following is the basic result about
regular functions (see [Milne] or [Hartshorne]).

Theorem 2.3. Let X be an irreducible affine variety.
(a) O(X) 2 Kk[X]
(b) For each p € X let my, C k[X] be the ideal of functions vanishing at p. Then
p — my, gives a one-to-one correspondence between the points of X and the
mazximal ideals of k[X].
(c) For each p € X, Opx = Kk[X]n,, the localization of the ring k[X] at the
mazimal ideal m,.

(d) The collection of rational functions on X is isomorphic to the quotient field
k(X) of k[ X].

Definition 2.4 (Morphisms of sheaves). ¢ : (X, Fx) — (Y, Fy) is a morphism if
it is a continuous map from X to Y such that VU C Y and f € Fy(U), fo ¢ €
Fx (o~ ().

Definition 2.5 (Coordinate free definition of an affine algebraic variety). A sheaf
(X, F) is an affine algebraic variety if it isomorphic to the sheaf of regular functions
O(Y) on an algebraic set Y.

Definition 2.6 (Morphism of algebraic varieties). ¢ : X — Y is a morphism of
algebraic varieties X and Y if it gives a morphism of the corresponding sheaves of
regular functions Ox and Oy.

Theorem 2.7. Let X C k" andY C k™ be affine algebraic varieties. Letp: X —'Y
be continuous in the Zariski topology. Then the following are equivalent:

e ¢ is a morphism

o &= (¢1,...,0m) , Yi,¢; is a requalr function

o Vf €K[Y], fo o€ K[X]
¢ is called a dominant map if ¢(X) is dense in Y.

Theorem 2.8. There is an equivalence of categories between the category of affine
algebraic varieties and morphisms and “reduced” finitely generated k-algebras and
k-algebra homomorphisms (reduced means without nilpotent element).

3. PROJECTIVE VARIETIES

Definition 3.1 (Projective Variety). Let I C k[zo,...x,] be a homogenous ideal.

Take Vorr(I) = {(ag,...,an) | f(ao,...,a,) = 0Vf € I} C A" and look at its

image inside P". We define V(I) to be that image, and call it a projective variety.
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Theorem 3.2. V and I are inverse bijections between proper homogenous radical
ideals in K[xo, ..., x,] and projective varieties in P™.

Definition 3.3. Let X C P" be a projective variety with homogeneous ideal I C
k[zg,...,z,]. We call the quotient ring k[xo, ..., zy]/I the homogeneous coordinate
ring of the projective variety X. Since the ideal I is homogeneous, the grading of
polynomials by degree induces a grading on k[X].

Proposition 3.4. The following hold for homogenous ideals I, J:
IcJ=V(J)cV{)

V(0) =P"

V() =0< (zg,...,z,) Crad(])
VIJ)=V{INJ)=V({I)UV(J)

V(L) =niV(L)

I homogenous implies rad(I) is homogenous

Thus, V(I) form closed sets for a topology which we call the Zariski topology on P™.
The topology induced on a projective variety X C P™ is called the Zariski topology
on X.

Definition 3.5 (Quasi-projective variety). An open subset of a projective variety
is called a quasi-projective variety. Affine, quasi-affine and projective varieties are
all quasi-projective.

Define Uy = {(xzo : -+ : an)|zo, # 0} C P which is an open set, and define
H,, =P"\ Uy. Then we have the following theorem:

Theorem 3.6. Uy is homeomorphic to A™ with respect to their Zariski topologies.

From here, we can define regular functions, regular maps, local ring of a point and
rational function analogously to the affine case. MreLet X,Y be quasi-projective
varieties. A map ¢ : X — Y is regular if ¢ is continuous, and for any open subset
UCY and any f € O(U), fop € O(p~1(U)).

The following are the basic facts about regular functions on projective varieties.
For proofs see [Milne] and [Hartshorne].

Theorem 3.7. Let X be a projective variety with homogeneous coordinate ring
k[X].
(a) O(X) =Kk, i.e. the only globally regular functions on X are constant func-

tions.

Part (a) is related to Liouville’s theorem in complex analysis that the only
bounded entire functions on C are constant.

Theorem 3.8. There is an equivalence of categories given by X — k(X), ¢ — ¢*
which is arrow-reversing between quasi-projective varieties and rational maps on
finitely generated field extensions of k.

Some examples considered:
e Veronese Map



e Segre Map
e Grassmannian

Definition 3.9 (Birational isomorphism). Let ¢ : X — Y be a rational map such
that ¢ : U C X — Y is regular on U, then if ¢! map exists and is rational, then
we say X is birationally isomorphic to Y (or simply X is birational to Y).

Theorem 3.10. Let X,Y be quasi-projective varieties. Then there is a bijection
between dominant rational maps ¢ : X --+ Y and k-algebra homomorphisms ¢* :
k(Y) — k(X).

4. DEGREE AND HILBERT FUNCTIONS

Let X C P" be a projective variety. Let dim(X) = n.
A linear function ¢ on A"*! defines a hyperplane V (£) in P".

Theorem 4.1 (Degree of a projective variety). Let X C P" be an irreducible projec-
tive subvariety of dimension n. Let Hy, ..., Hy, be general hyperplanes in P". Then
the number of intersections

|HiN---NH,NX]|

is finite and independent of the choice of the H;. More precisely, there exists a non-
empty Zariski open subset U of the product of dual vector spaces (K"T1)* x ... x
(K"t1)* such that, if H; = V(¢;) denote the hyperplane defined by {; then for any
(l1,...,4,) € U the number of points in HyN---N H, N X is finite and independent
of the choice of the (¢1,...,4,) € U.

Definition 4.2 (Degree of a projective variety). For general hyperplanes Hy, ..., H, C
P", the number |H; N---N H, N X]| is called the degree of X.

Few examples considered: the degree of the image of the Veronese map (also
called the rational normal curve), the degree of a hypersurface.

Definition 4.3 (Hilbert Function). We define the Hilbert function Hx : N — N
defined on the natural numbers as follows:
Hyx(m) = dimgk[X],,

where k[X],, denotes the homogenous elements of degree m in the graded ring
k[X],,. More generally, if M = @,,>0M,, is a graded k[zo, ..., z,]-module then the
Hilbert function Hy; is defined by Hps(m) = dimy M.

Theorem 4.4 (Hilbert-Serre). Let M be a graded k[zo, . . . , z,]-module, M = ,,,~¢ M.
Suppose M is finitely generated. Then there exists a (unique) polynomial Pyr(m)
with rational coefficients such that for any sufficiently large integer m > 0 we have

Hy(m) = Py (m).
The polynomial Py is called the Hilbert polynomial of the module M.
Definition 4.5 (Hilbert polynomial of a projective variety). Let X C P" be a
projective subvariety. The Hilbert polynomial Px of X is the Hilbert polynomial of

its homogeneous coordinate ring k[ X] regarded as a k[zo, .. ., x,]-module.
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Theorem 4.6 (Hilbert’s theorem on degree of a projective variety). Let X C P" be
a projective subvariety of dimension n. Then:

(a) the Hilbert polynomial Px(m) is a polynomial of degree n.
(b) The leading coefficient of Px is equal to degree of X divided by n!.

5. BERNSTEIN-KUSHNIRENKO THEOREM

Theorem 5.1 (Kushnirenko). Let A C Z" be a finite set. Define Ly = {f|f =
Yoaca Cat®} C Clay,...,x,). Then the following is true: If f1,..., fn are general
elements in L 4 then

N =z e ()" filzr) == falx) =0}
1s independent of choice of f; and
N = nlvol(A)

where A = conv(A).

Let A = {aj,...,a,} C Z" be a finite set of integral points. Consider the
morphism ® 4 : (k*)” — P"~! given by

Dp(z) = (™ 0--o 02?7

where we use shorthand notation z® = z{*---z% for z = (x1,...,2,) and o =

(a1,...,a,). Let Y4 denote the closure of the image of the map ®4. Then the
Bernstein-Kushnirenko theorem alternatively can be stated as:

Theorem 5.2 (Alternative statement of Kushnirenko theorem). Suppose ® 4 is an
embedding (which means that the differences of elements of A generates 7). Then
the degree of Y4 is nlvol(A) where A = conv(A).
One shows that if Ay, Ay C R™ are convex bodies (i.e. convex compact subsets)
then
A1+ Ay = {a+b|a€ Al,be AQ}
is also a convex body. Ay + A is called the Minkowski sum of the convex bodies Aq

and As. Similarly one can multiply a convex body with a positive real number, i.e.
if c>0and A C R" then

cA ={ca|aec A}

is a convex body.

Theorem 5.3 (Minkowski). Let Aq,..., A, C R"™ be a finite collection of convex
bodies, then the function

fler, ... ep) =vol(c1 Ay + - 4+ ¢ Ay)
is a homogeneous polynomial of degree n in the c;.

Given a homogeneous polynomial F' of degree n on a vector space one can uniquely
find an n-linear function B on the vector space such that F(z) = B(z,...,x) for
7



any vector x. The n-linear function B is called the polarization of F. For example
if F'is homogeneous of degree 2 then

Fle+y) - Fz) - F(y)
5 :
This comes from the kindergarten identity zy = ((z + y)? — 2% — y?)/2.

From the above it follows that one can uniquely define a function V on the n-
tuples of convex bodies in R™ with the following properties:

(i) For any convex bodies Aq,..., A, CR" V(Ay,...,A,) > 0.

(ii) V is symmetric, i.e. does not change under permuting the arguments.

(iii) V is multi-linear, i.e. it is linear in each argument. Linearity in the first
argument means the following: let ¢,¢’ > 0 and Ay, A, Ag, ..., A, C R" be
convex bodies, then

V(CAl + C/All, AQ, ey An) = CV(Al, AQ, ey An) + C/V(A,l, Ag, S ,An)

(iv) Finally, if A C R" is a convex body then

V(A,...,A) = vol(A).

B(:‘Uay) =

Definition 5.4. The above n-linear map V is called the mized volume of convex
bodies.

Theorem 5.5 (Bernstein-Kushnirenko). Let Ai,..., A, be finite subsets of Z".

Let Lya,,...,La, be the corresponding subspaces of Laurent polynomials. Then if
fi,-.., fn are general Laurent polynomials with f; € La, then the number of solu-
tions

{z e (C)" | filz) == fu(z) = 0}

is independent of the choice of f; and is equal to n!V (Ay, ..., A,) where A; denotes
the convex hull of the finite set A;, and V is the mized volume of convex bodies.

6. DEGREE AS VOLUME

In this section we assume familiarity with manifolds and differential forms. Let
us take the ground field to be k = C, the field of complex numbers. Consider the
projective space P*. It is the quotient of A"™! by the action of C*. Alternatively
we can consider P" as the quotient of the (2n + 1)-sphere by the action of the circle
S1. The sphere has a natural metric induced by its embedding in the affine space
A"\ {0} which is equipped with Euclidean metric. The action of S! preserves
the natural metric on (2n 4 1)-sphere and hence the projective space P™ inherits a
metric.

Definition 6.1 (Fubini-Study metric). The above (Riemannian) metric on the pro-
jective space P™ is called the Fubini-Study metric. It gives a volume form (alterna-
tively measure) on P which sometimes is called the symplective volume on P".

Theorem 6.2 (Ké&hler form). (a) There exists a closed 2-form w on the projec-
tive space P" such that w" is the Fubini-Study volume form.
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(b) The Poincare dual of the De Rham cohomology class represented by w is
the class of hyperplanes in P™ (all hyperplanes in P™ are homologous and
represent a class in Ho(P™, 7).

From the Poincare duality one shows the following;:

Corollary 6.3 (Degree as volume). Let X C P" be a projective subvariety of di-
mension d. Then the volume of X with respect to the Fubinu-Study metric, i.e.

vol(X):/de

Remark 6.4. The Bernstein-Kushnirenko theorem on the number of solutions of a
general system of Laurent polynomials can be proved using Theorem [6.3] The proof
relies on the notion of a moment map from symplectic geometry and Hamiltonian
group actions.

coincides with degree of X.

Remark 6.5. Theorem [6.3]is related to the well-known Crofton formula in integral
geometry which relates the length of a plane curve with the average number of
intersections points of the curve with lines in the plane. We can parametrize a
general line ¢ in R? by the direction ¢ it points and its distance p from the origin.

Theorem 6.6 (Crofton formula). Let v be a curve in the real plane R? with fi-
nite length. For each directed line ¢ = {(¢,p) let ny(¢p,p) denote the number of
intersections of v and £. Then the length of v is equal to:

i//nw(qﬁ,p)dcﬁdp'

Note that we are over real numbers and also in general the curve « is not nec-
essarily algebraic, thus n,(¢,0) is not the same for a general line line ¢. See:
http://merganser.math.gvsu.edu/david /reed03 /projects/weyhaupt/project.html

7. NON-SINGULAR VARIETIES

For each polynomial F(z1,...,z,) € k[z1,...,2,] and p € A" let differential dF),
denote the linear function

for v = (v1,...,v,) € A™
Let X = V(I) be an affine variety with ideal I.

Definition 7.1 (Tangent space). The tangent space 7T, X at a point p € X is the
linear space

T,X = {v | dFy(v) =0 VF € I}.
It can be verified that if {f1,..., f} is a set of generators for I then
T,X ={v|dfi,(v) =...=df,(v) = 0}.
Thus dimy(7,X) > n —r.



Definition 7.2 (Non-singular point). Let X C A" be an affine variety of dimension
d. A point p € X is non-singular if dimension of the tangent space T}, X, as a vector
space over k, is d. Equivalently, if {f1,..., fr} is a set of generators for I, p € X is
non-singular if and only if the r x n matrix of partial derivatives [0f;/0x;(p)] has
rank n — d.

For a quasi-projective variety X C P™ and p € X we take an affine open subset
U containing p. Then we say p is a non-singular point of X if and only if it is a
non-singular point of U.

Let X = V(I) C k™ and assume that the origin O lies on X. Let I, be the
ideal generated by the linear terms f, of f € I. By definition, Tpo X = V(Iy).
Let Ay = Kk[z1,...,2,]/1p, and let m be the maximal ideal of O in k[X], thus
m= (T1,...,Tp).

Theorem 7.3 (Intrinsic definition of tangent space). There are canonical isomor-
phisms
Homkflinear(m/m% k) = Homkfalgebra(Ab k) =T,X.

Thus, for any p € X with maximal ideal m, € k[X], the dual vector space
T,X can be identified with the quotient m, /mg (regarded as a vector space over
k = k[X]/m,).

Lemma 7.4 (Nakayama’s lemma). Let A be a local ring with mazimal ideal m, and
let M be a finitely generated A-module. (a) If M = wmM then M = {0}. (b) If N s
a submodule of M such that M = N +mM, then M = N.

Corollary 7.5. The elements a1, ...,a, of m generate m as an ideal if and only if
their residues modulo m? generate m/m? as a vector space over k. In particular, the
minimum number of generators for the mazimal ideal is equal to the dimension of
the vector space m/m?.

Definition 7.6 (Regular local ring). A local ring A is regular if the maximal ideal
m of A can be generated by d elements where d is the Krull dimension of A.

Corollary 7.7. Let X be a variety of dimension d. A point p € X is non-singular if
and only if the local ring O, x is regular, i.e. if m; can be generated by d elements.
In particular, if X is a curve, a point p € X is non-singular if and only if m, is
principal.

Theorem 7.8. Let X be a quasi-projective variety. Then the set of non-singular
points of X is a non-empty Zariski open subset of X.

There is a weaker notion than non-singularity called normality.

Definition 7.9 (Normal variety). Let X be a variety. X is called normal at a point
p € X if the local ring O, x is integrally closed. The variety X is normal if it is
normal at every point.

e One shows that an affine variety X is normal if its coordinate ring k[X] is
integrally closed.
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e Given a variety X there exists a unique normal variety X together with a
morphism ¢ : X — X which is a birational isomorphism. If X is an affine
variety then X is the variety associated to the integral closure of k[X].

e If X is a curve then X is a non-singular curve.

8. ETALE MAPS AND INVERSE FUNCTION THEOREM

Theorem 8.1 (Inverse function theorem from calculus). Let F' = (Fy,...,Fy) :
U — R” be a differentiable map where U C R™ is an open subset. Take p € U and
assume that the matriz of partial derivatives [0F;/0x;(p)] is invertible. Then there
exists open neighborhoods p € V. and F(p) € W such that F : V. — W s bijective
and F~Y: W — V is also differentiable. (Same statement holds over C.)

Let X € A" and Y C A™ be affine varieties and ¢ : X — Y a morphism,
¢ = (f1,-..,0m) where ¢; are polynomials in k[xi,...,x,]. For any p € X (not
necessarily non-singular) the differential d¢,, is the linear map given by the matrix
of partial derivatives [0¢;/0z;]. One shows that d¢ maps T, X to Ty,)Y. By con-
sidering affine charts in projective varieties, we can define differential of a morphism
between quasi-projective varieties.

The Inverse Function Theorem does not hold in the category of algebraic varieties
and morphisms.

Example 8.2. Consider the map ¢(z) = 22. Then for x # 0 we have d¢(x) # 0 but
¢ is not invertible, as a morphism, in a neighborhood of = because ¢! (z) = /2 is
not a morphism (algebraic map).

Definition 8.3 (Etale morphism). A morphism ¢ : X — Y is étale at a non-singular
p € X if the differential d¢ : T, X — Ty(,)Y is an isomorphism of vector spaces.

Let p be a nonsingular point on a variety V' of dimension d . A local system of

parame-ters at p is a family {fi,..., fa} C Op x of germs of regular functions at p
generating the maximal ideal m,. Equivalent conditions: the images of fi,..., f; in
mp/mlz) generate it as a k-vector space, or dfi,,...,dfq4, is a basis for dual space to
T,X.

Definition 8.4 (Etale neighborhood). Let X be a non-singular variety and let
p € X. An étale neighborhood of p is a pair (¢, 7 : U — X) with 7 an étale map
from a non-singular variety U to X and ¢ a point of U such that 7(q) = p.

Proposition 8.5. Let X be a non-singular variety of dimension d and let p € X.
There is an open Zariski neighborhood U of p and a map w : U — A% realizing (p,U)
as an étale neighborhood of (0,...,0) € A?,

Note the analogy of the above proposition with the definition of a differentiable
manifold: every point p on a non-singular variety of dimension d has an open neigh-
borhood that is also a "neighborhood” of the origin in A%. There is a ”topology”
on algebraic varieties for which the ”open neighborhoods” are étale neighborhoods.
Relative to this ”"topology”, any two non-singular varieties are locally isomorphic
(this is not true for the Zariski topology). The "topology” is called the étale topology.
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Grothendieck introduced étale topology to construct his étale cohomology which
plays a crucial role in the proof of celebrated Weil conjectures on the number of
points on varieties over finite fields.

The proposition below is easy corollary of definition.

Proposition 8.6 (Inverse function theorem for étale topology). If a morphism of
non-singular algebraic varieties ¢ : X — Y is étale at p € X, then there exists a
commutative diagram

Uy ——X

o b
étale
Up(p) ~Y

with Uy, an open neighborhood U of p, Uy, an étale neighborhood of ¢é(p) and ¢' an
isomorphism.

One can say that the notions of étale map/neighborhood/topology are designed
so that the inverse function theorem (as in the above proposition) holds.

9. BLow-UP

Construction of blow up of affine space A™ at the origin. The strict transform.
Theorem of resolution of singularities.

The blowup of the affine space A" is the variety X C A" xP"~! defined as follows.
Every point in the projective space P! can be represented by a line ¢ in A" passing
through the origin. Then

X ={(p,[f]) € A" x P! | p e}

Let us use coordinates (x1,...,x,) for points in A™ and homogeneous coordinates
(y1:---: yp) for points in P"~1. One verifies that X can be defined by equations
xzy; = x5y for all 7, 7.

We explained geometrically that, when the ground field is k = R, the blowup of
A? at the origin looks like the Mdbius strip.

Let ¢ : X — A™ be the morphism which is the restriction of the projection on the
first factor A" x P*"~! — A™. It is not hard to see that for any p # O, the inverse
image ¢~ !(p) consists of a single point. On the other hand, ¢$~!(O) is a projective
space P"~!. Thus X looks like A” where a copy of P"~! is attached at the origin.
More strongly, ¢ gives an isomorphism between X \ ¢~1(0) and A"\ {O}.

Definition 9.1. Let Y C A" be a subvariety passing through the origin. Then the
strict transform Y of Y is the closure of ¢~ 1 (Y \ {O}) in X. The idea is that if Y’
is singular at O then Y is either non-singular or has milder singularities.

We discussed the example of singular curve y? = 2?(z — 1) in A? and its strict
transform after blowing up A2 at the origin.

We also discussed briefly the famous theorem of resolution of singularities. It was
proved by Hironaka for chark = 0. It is unsolved for chark = p but widely believed
to be true.

12



10. NON-SINGULAR CURVES

Definition 10.1 (Valuation). Let K be a field and T a totally ordered abelian
group. A wvaluation of K with values in I" is a map v : K \ {0} — I" such that for all
x,y € K, x,y # 0 we have:

(1) vl(zy) = v(x) + v(y)
(ii) v(z +y) = min(v(z), v(y))
A valuation is discrete if its value group I is Z.

Example 10.2. e Let K = Q and p a prime number. For 0 # x € Q let
vp(z) = number of times z is divisible by p. Then v, is a valuation with
values in Z.

e Let K = C(t) be the field of rational polynomials in one variable t. Let
a € C. Define v,(f) = order of zero or pole of f at a. Then v, is a valuation
on C(t) with values in Z.

More generally, if X is any curve over a field k and a € X a non-singular point
we can define a valuation v, on the field of rational functions K = k(X). We will
deal with such valuations below.

Definition 10.3 (Valuation ring). If v is valuation then the set R = {z € K |
v(z) > 0} U {0} is a subring of K called valuation ring of v. The ring R is a local
ring with unique maximal ideal m = {z € K | v(z) > 0} U {0}. The valuation ring
of a discrete valuation is called a discrete valuation ring.

Theorem 10.4 (Characterization of discrete valuation rings). Let A be a Noetherian
local domain of Krull dimension 1, with mazximal ideal m. Then the following are
equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.
(iii) A is a regular local ring.
(iv) m is a principal ideal.

We discussed example of the curve y? = z2(x + 1) to intuitively justify why the
above equivalent conditions fail at the singular point O = (0, 0).

Definition 10.5 (Dedekind domain). A Dedekind domain is an integrally closed
Noetherian domain of dimension 1 (i.e. every non-zero prime ideal is maximal). By
above theorem a local Dedeking domain is just a discrete valuation ring. One shows
that a domain is a Dedkind domain if and only if its localization at every maximal
ideal is a discrete valuation ring.

Dedekind domains are named after famous German mathematician Richard Dedekind
who proved unique factorization for ideals in a Dedkind domain. Dedkind is also
credited for introducing the fundamental notion of an ideal in a ring. The main ex-
amples of Dedkind domain are ring of integers in a number field and the coordinate
ring of an affine algebraic variety.
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Theorem 10.6. Any discrete valuation ring of K is isomorphic to the local ring of
a point on some non-singular affine curve.

Definition 10.7. Let K be a function field of dimension 1, i.e. the field of rational
functions on some algebraic curve. We denote the collection of all discrete valuation
rings of K by Ck.

Ck can be given a topology and structure of sheaf O(Ck) of functions: the
topology on C is the topology in which closed sets are finite sets (open sets are
complement of finite sets). Given an open set U C C the ring of regular functions
O(U) by definition is the ring:

ow)= ()&

ReU

Definition 10.8 (Abstract non-singular curve). Any open subset of Cx with the
induced sheaf of regular functions is called an abstract non-singular curve. One can
define morphism/isomorphism between abstract non-singular curves and ordinary
curves in the usual way.

We used notions of a discrete valuation ring, Dedkind domain and abstract non-
singular curve C'x to show:

Theorem 10.9. FEvery non-singular quasi-projective curve is isomorphic to an ab-
stract non-singular curve.

The following theorem is an important property of morphisms between curves.
It fails for higher dimensional varieties. It corresponds to the so-called Riemann
extension theorem for holomorphic functions (in theory of complex functions).

Theorem 10.10 (Extension of morphisms). Let X be an abstract non-singular
curve (or an ordinary non-singular curve), let p € X and let ¢ : X \ {p} = Y be
a morphism where Y 1is a projective variety. Then there exists a unique morphism
¢: X =Y extending ¢.

Finally we have:

Theorem 10.11. The abstract non-singular curve Cg is isomorphic to a non-
stngular projective curve.

Corollary 10.12. (i) Every abstract non-singular curve is isomorphic to a quasi-
projective curve. Every non-singular quasi-projective curve is isomorphic to
an open subset of a non-singular projective curve.

(ii) Fwvery curve is birationally equivalent to a non-singular projective curve.

Corollary 10.13. The following three categories are equivalent:

(i) non-singular projective curves and dominant morphisms.
(ii) quasi-projective curves and dominant rational maps.
(iii) function fields of dimension 1 over k and k-homomorphisms.

Note that the above does not hold for higher dimensional varieties.
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11. DIVISORS, LINE BUNDLES AND RIEMANN-ROCH THEOREM

Definition 11.1 (Weil divisor). Let X be a variety. A prime divisor on X is a
closed irreducible hypersurface. A Weil divisor on X is a finite formal combination
>; niY; where the Y; are prime divisors and n; € Z. We denote the (free abelian)
group of all Weil divisors on X by Div(X).

We would like to associate to each non-zero rational function f € k(X) a divisor.
For this we need to make sense of order of zero/pole of f on a prime divisor Y. For
this we need the following.

Definition 11.2 (Regular in codimension 1). A variety X is called regular in codi-
mension 1 (or non-singular in codimension 1) if for any closed irreducible hyper-
surface Y C X the local ring Oy x is a regular local ring (and hence a discrete
valuation ring because it has dimension 1).

Note that if X is a curve, the above condition is equivalent to X be non-singular.
One shows that every non-singular variety is regular in codimension 1 but the con-
verse is not true.

We will assume that X is regular in codimension 1. Take 0 # f € k(X) and let
Y be a prime divisor. Since Oy x is a discrete valuation ring it corresponds to a
valuation vy. One shows that given f there are only finitely many prime divisors Y’
such that vy (f) # 0.

Definition 11.3 (Divisor of a rational function). Define the divisor of f by
(f) =D ovr(H)Y,
Y

where the sum is over all the prime divisors of X. By the comment before the
definition the sum is finite. A divisor is called principal if it is the divisor of a
rational function.

One can show the following.

Theorem 11.4. Let X be a non-singular projective curve. Let 0 # f € k(X). Then

va(f) =0.

peX

That is, the sum of zeros and poles of a rational function on a projective non-singular
curve s 0.

For X = P! the above is a standard statement in complex function theory.

The degree of a divisor D = ), n;p; on a curve is by definition the sum ), n;.
By the above theorem the degree of a divisor class on a non-singular projective
algebraic curve is well-defined (i.e. is independent of the choice of a representative).

From properties of valuations one verifies that

(f9) = (f) + (9)-

Hence the set of principal divisors is a subgroup which we denote by Prin(X).
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Definition 11.5 (Divisor class group). The divisor class group of a variety X is
the quotient Div(X)/Prin(X).

Example 11.6. The divisor class group of P” is Z. When k = C there is a natural
isomorphism between Div(P") and the homology group Ha,—o(P",Z). This is a
general phenomenon and usually the divisor class group of a non-singular projective
variety of (complex) dimension n is isomorphic to (2n — 2)-th homology group.

A (Weil) divisor D on a variety X is called locally principal if for every p € X
there is a neighborhood U containing p and a rational function f such that part of
D which lies in U coincides with the principal divisor (f) on U.

Definition 11.7 (Cartier divisor). A Cartier divisoris a collection of data {(Uj, fi)}
where the U; are an open cover of X and for each i, f; is a regular function on U;.
Moreover, for any i,j we require that f;/f; is a regular nowhere zero function on
U,nU -

e A Cartier divisor gives rise to a locally principal divisor.

e The collection of Cartier divisors form an abelian group which we denote by
CDiv(X). The principal divisors form a subgroup of CDiv(X).

e When X is smooth the notions of Cartier divisor and Weil divisor are the
same, but in general one can have a Weil divisor which is not locally principal
and hence does not correspond to a Cartier divisor.

Definition 11.8 (Invertible sheaf). A sheaf of O(X)-modules on a variety X which
is locally isomorphic to O(X) is called an invertible sheaf. The collection of invertible

sheaves is a group with respect to tensor product of modules called the Picard group
of X.

The invertible sheaves correspond exactly to line bundles. More precisely, if X
is a non-singular variety over k = C, an invertible sheaf on X corresponds to the
sheaf of sections of a line bundle over X regarded as complex manifold.

Theorem 11.9. (a) Each Cartier divisor D gives rise to an invertible sheaf
Lp.
(b) D — Lp induces an isomorphism between CDiv(X)/Prin(X) and the Picard
group Pic(X).

When X is non-singular, the Picard group and divisor class group are the same.
Let X be a non-singular projective curve. Then every principal divisor has degree
0. Let CDiv’(X) denote the subgroup of Cartier divisors of degree 0 and define
Pic’(X) to be CDivY(X)/Prin(X).

Definition 11.10 (Jacobian variety). The group Pic(X) can be given structure of
a variety and Pic?(X) can be regarded as the connected component of Pic(X). The
irreducible variety Pic®(X) is usually called the Jacobian variety of the curve X.

Example 11.11 (Elliptic curves). Let X be an elliptic curve, that is a non-singular
projective cubic curve (in P?). Then the Jacobian variety of X is isomorphic to X
itself. That is, every divisor on X is equivalent to a divisor of the form p — O where
O is the unique point on X at infinity.
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Remark 11.12. e The Jacobian of a variety is example of a projective al-
gebraic group. It is an interesting (but not difficult) theorem which states
that a projective algebraic group is abelian. Projective algebraic groups are
called abelian varieties. They are named after Abel and Jacobi because of
their fundamental work on complex functions and the so-called Abel-Jacobi
theorem. (The abelian groups are named after Abel because of his funda-
mental work on insolvability of the quintic equation, I do not know if it is a
coincidence that abelian varieties are abelian groups!)

e Let X be a non-singular projective curve over C (i.e. a Riemann surface).
One can show that the dimension of the Jacobian variety of X is equal to
the number g of handles of X regarded as a real 2-dimensional surface.

A Weil divisor D = ). n;Y; is called effective written D > 0 if all the n; > 0. A
Cartier divisor D = {(U;, fi)} is effective if for every i, f; is a regular function on
U;.

Let D be a Cartier divisor with corresponding invertible sheaf £p. Suppose Lp
has a global section, i.e. Lp(X) # {0}. Then the space of global sections Lp(X)
can be identified with the vectors space of rational functions

L(D) ={f e k(X) | (f) + D >0} U{0}.

In other words, if the Cartier divisor D is given by the data {(U;, f;)} then f € L(D)
if and only if for every i, ff; is regular on U;. If D is a Weil divisor D = ), n;Y;,
then f € L(D) if and only if all the coefficients of (f)+ D are non-negative. That is,
for every i, the order of zero/pole of f on the irreducible hypersurface Y; is greater
than or equal to —n;.

Theorem 11.13. If X is a projective variety then L(D) is a finite dimensional
vector space over k.

We denote the dimension of L(D)by ¢(D).

Let X be a non-singular projective curve. The celebrated Riemann-Roch theorem
gives important information about the dimensions of the spaces L(D). It has been
generalized to singular curves, as well as higher dimensional varieties. The higher
dimensional version (for non-singular varieties) is usually referred to as Hirzbruch-
Riemann-Roch.

Theorem 11.14 (Riemann-Roch). Let X be a non-singular projective curve. Let
K be the canonical divisor of X (that is the divisor corresponding to the line bundle
of 1-forms on X ). Then:

(D) — UK —D)=deg(D)+1—g.

Here g is the genus of the curve X (when k = C, topologically X is a compact
orientable surface and g is just its number of handles).
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