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Generating functions 

l  Consider a probability distribution of a non-negative, 
integer random variable pk 
§  E.g., the distribution of the node degree in a network 
§  The (probability) generating function for the probability 

distribution pk is: 

§  Hence, if we know g(z) we can recover the probability 
distribution:  

l  The probability distribution and the generating function 
are two different representations of the same quantity 
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Examples 

l  Consider a variable that only takes 4 values (e.g., 1, 2, 3, 4) 
§  pk = 0 for k=0 or k>4 
§  Let us further assume that p1=0.4, p2=0.3, p3=0.1 and p4=0.2 
§  Then: 
 

l  Now let us assume that k follows a Poisson distribution:  

§  Then the corresponding probability generating function is: 
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g(z) = 0.4z+ 0.3z2 + 0.1z3 + 0.2z4
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−c ck

k!
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k!k=0
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Examples 

l  Suppose k follows an exponential distribution: 

§  Then the generating function is: 

§  The above function converges iff 

§  Given that we are only interested in the range 0≤z≤1, this holds 
true   
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Power-law distributions 

l  As we have seen many real networks exhibit power-law 
degree distribution  
§  To reiterate, in its pure form we have: 

§  The normalization constant is: 
ü Where ζ(α) is the Riemman zeta function 

§  Then the probability generating function is: 

ü Where Liα is the polylogarithm of z  

6 

pk =Ck
−α, α > 0 k > 0 and p0 = 0

C k−α
k=1

∞

∑ =1⇒C = 1
ζ (α)

g(z) = 1
ζ (α)

k−αzk
k=1

∞

∑ =
Liα (z)
ζ (α)

∂Liα (z)
∂z

=
∂
∂z

k−αzk
k=1

∞

∑ = k−(α−1)zk−1
k=1

∞

∑ =
Liα−1(z)

z



Power-law distribution 

l  Real networks, as we have seen, do not follow power-law 
over all the values of k 
§  Power-law is generally followed at the tail of the distribution after 

a cut-off value kmin 
§  In this case the more accurate generating function is: 

§  Qn(z) is a polynomial in z of degree n 
§  C is the normalizing constant 
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Normalization and moments 

l  If we set z=1 at the generating function we get: 

§  If the underlying probability distribution is normalized to unity, 
g(1)=1  
ü This is not always the case – recall the distribution of small 

components for a random graph 

l  The derivative of the generating function is:  
§  Evaluating at z=1 we get: 
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Normalization and moments 

l  The previous result can be generalized in higher moments 
of the probability distribution: 

l  This is convenient since many times we first calculate the 
generating function and hence, we can compute 
interesting quantities directly from g(z) 
§  Possible even in cases we do not have a closed form for g(z) 
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Powers of generating functions 

l  A very important property of generating functions is 
related with their powers 

l  In particular let us assume g(z) that represents the 
probability distribution of k (e.g., degree) 
§  If we draw m numbers – independently - from this distribution, 

the generating function of this sum is the m-th power of g(z)! 
§  This is a very important property that we is extensively used in 

derivations for the configuration model and beyond 
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Powers of generating functions 

l  Given that the m numbers are drawn independently from 
the distribution, the probability that they take a particular 
set of values {ki} is: 
§  Hence the probability πs that they will sum up to s, is given if we 

consider all the possible combinations of ki values that sum up 
to s: 

§  Substituting to the generation function h(z) for πs: 
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13.1.4 POWERS OF GENERATING FUNCTIONS  

Perhaps the most useful property of generating functions—and the one that makes them important 
for the study of networks—is the following. Suppose we are given a distribution pk with generating 
function g(z). And suppose we have m integers ki, i = 1 . . . m, which are independent random 
numbers drawn from this distribution. For instance, they could be the degrees of m randomly 
chosen vertices in a network with degree distribution pk. Then the probability distribution of the 
sum  of those m integers has generating function [g(z)]m. This is a very powerful result and it 
is worth taking a moment to see how it arises and what it means. 

Given that our integers are independently drawn from the distribution pk, the probability that 
they take a particular set of values {ki} is simply  and the probability ʌs that the values drawn 
add up to a specific sum s is the sum of these probabilities over all sets {ki} that add up to s:

 

(13.27) 
  

where į(a, b) is the Kronecker delta. Then the generating function h(z) for the distribution ʌs is

 

(13.28) 
  

Thus, for example, if we know the degree distribution of a network, it is a straightforward matter 
to calculate the probability distribution of the sum of the degrees of m randomly chosen vertices 
from that network. This will turn out to be important in the developments that follow. 

 

 

 

 



Configuration model 

l  In the configuration model we provide a given degree 
sequence 
§  This sequence has the exact degree of every node in the 

network 
ü The number of edges in the network is fixed à Generalization of 

G(n,m) 

l  Each vertex i can be thought as having ki “stubs” of edges 
§  We choose at each step two stubs uniformly at random from the 

still available ones and connect them with an edge 
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Figure 13.1: The configuration model. Each vertex is given a number of “stubs” of edges equal 
to its desired degree. Then pairs of stubs are chosen at random and connected together to form 
edges (dotted line). 
  

The uniform distribution over matchings in the configuration model has the important 
consequence that any stub in a configuration model network is equally likely to be connected to 
any other. This, as we will see, is the crucial property that makes the model solvable for many of 
its properties. 

There are a couple of minor catches with the network generation process described here. First, 
there must be an even number of stubs overall if we want to end up with a network consisting only 
of vertices and edges, with no dangling stubs left over. This means that the sum  of the degrees 
must add up to an even number. We will assume that the degrees we have chosen satisfy this 
condition, otherwise it is clearly not possible to create a graph with the given degree sequence. 

A second issue is that the network may contain self-edges or multiedges, or both. There is 
nothing in the network generation process that prevents us from creating an edge that connects a 
vertex to itself or that connects two vertices that are already connected by another edge. One might 
imagine that one could avoid this by rejecting the creation of any such edges during the process, 
but it turns out that this is not a good idea. A network so generated is no longer drawn uniformly 
from the set of possible matchings, which means that properties of the model can no longer be 
calculated analytically, at least by any means currently known. It can also mean that the network 
creation process breaks down completely. Suppose, for example, that we come to the end of the 
process, when there are just two stubs left to be joined, and find that those two both belong to the 
same vertex so that joining them would create a self-edge. Then either we create the self-edge or 
the network generation process fails. 

In practice, therefore, it makes more sense to allow the creation of both multiedges and self-
edges in our networks and the standard configuration model does so. Although some real-world 
networks have self-edges or multiedges in them, most do not, and to some extent this makes the 
configuration model less satisfactory as a network model. However, as shown below, the average 
number of self-edges and multiedges in the configuration model is a constant as the network 
becomes large, which means that the density of self-edges and multiedges tends to zero in this 
limit. This means, to all intents and purposes, that we can ignore the self-edges and multiedges in 
the large size limit.187 

A further issue with the configuration model is that, while all matchings of stubs appear with 
equal probability in the model, that does not mean that all networks appear with equal probability 
because more than one matching can correspond to the same network, i.e., the same topological 
connections between vertices. If we label the stubs to keep track of which is which, then there are 
typically many different ways we can join up pairs of labeled stubs to create the same final 
configuration of edges. Figure 13.2 shows an example of a set of eight matchings that all 
correspond to the same three-vertex network.

 

 



Configuration model 

l  The graph created from running once the above process is 
just one possible matching of stubs 
§  All possible matchings appear with equal probabilities 
§  Hence, the configuration model can be thought as the ensemble 

in which each matching with the chosen degree sequence 
appear with equal probability 

l  However, configuration model has a few catches 
§  The sum of the degrees need to be even 
§  Self-edges and multi-edges might appear 

ü If we modify the process to remove these edges then the network 
is no longer drawn uniformly from the set of possible matchings 

ü It can be shown that the density of these edges tends to 0  
13 



Configuration model 

l  While all matchings appear with equal probabilities, not all 
networks appear with equal probability!  
§  One network might correspond to multiple matchings 
§  We can create all the matchings for a given network by 

permuting the stubs at each vertex in every possible way 
ü Total number of matches for a given network: 

o  Independent of the actual network   
§  With Ω({ki}) being the number of total matchings, each network 

indeed appears with equal probability N/Ω 
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Figure 13.2: Eight stub matchings that all give the same network. This small network is 
composed of three vertices of degree two and hence having two stubs each. The stubs are lettered 
to identify them and there are two distinct permutations of the stubs at each vertex for a total of 
eight permutations overall. Each permutation gives rise to a different matching of stub to stub but 
all matchings correspond to the same topological configuration of edges, and hence there are eight 
ways in which this particular configuration can be generated by the stub matching process. 
  

In general, one can generate all the matchings that correspond to a given network by taking any 
one matching for that network and permuting the stubs at each vertex in every possible way. Since 
the number of permutations of the ki stubs at a vertex i is ki!, this implies that the number of 
matchings corresponding to each network is N({ki}) = �iki!, which takes the same value for all 
networks, since the degrees are fixed. This implies that in fact networks occur with equal 
probability in the configuration model: if there are ȍ({ki}) matchings, each occurring with the 
same probability, then each network occurs with probability N/ȍ. 

However, this is not completely correct. If a network contains self-edges or multiedges then not 
all permutations of the stubs in the network result in a new matching of stubs. Consider Fig. 13.3. 
Panel (a) shows a network with the same degree sequence as those of Fig. 13.2, but a different 
matching of the stubs that creates a network with one self-edge and a multiedge consisting of two 
parallel single edges. In panel (b) we have permuted the stubs a and b at the ends of the self-edge 
but, as we can see, this has not resulted in a new matching of the stubs themselves. Stubs a and b 
are still connected to one another just as they were before. (The network is drawn differently now, 
but in terms of the matching and the topology of the edges nothing has changed from panel (a).) In 
panel (c) we have identically permuted the stubs at both ends of the multiedge. Again this has no 
effect on which stubs are matched with which others. 

 

Figure 13.3: Permutations that do not produce new matchings. (a) The network shown here 
has the same degree sequence as those of Fig. 13.2 but a different configuration of edges, having 
one self-loop and a multiedge consisting of two parallel edges. (b) If we permute the stubs a and b

 

 

 

N({ki}) = ki!i∏



Configuration model 

l  However in the above we have assumed only simple edges 
§  When we add multi- or self-edges things become more 

complicated 
ü Not all permutations of stubs correspond to different matchings 

l  Two mul t i - edges whose s tubs a re permuted 
simultaneously result in the same maching 
§  Total number of matchings is reduced by Aij!  

ü Aij is the multiplicity of the edge (i,j) 

l   For self-edges there is a further factor of 2 because the 
interchange of the two edges does not generate new 
matching 
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Configuration model 

l  The total probability of a network is still N/Ω but now we 
have N to depend on the structure of the network itself 
§  Hence, different networks have different probabilities to appear 

l  In the limit of large n though, the density of multi- and self-
edges is zero and hence, the variations in the above 
probabilities are expected to be small 
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A slight modification 

l  Some times we might be given the degree distribution pk 
rather than the degree sequence 

l  In this case we draw a specific degree sequence from this 
distribution and work just as above 

l  The two models are not very different 
§  The crucial parameter that comes into calculations is the 

fraction of nodes with degree k 
ü In the extended model this fraction is pk in the limit of large n 
ü In the standard configuration model this fraction can be directly 

calculated from the degree sequence given 
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Edge probability 

l  What is the probability of an edge between nodes i and j? 
§  There are ki stubs at node i and kj at j 

ü The probability that one of the ki stubs of node i connects with one of 
the stubs of node j is kj/(2m-1) 

ü Since there are ki possible stubs for vertex i the overall probability is: 

§  The above formula is the expected number of edges between 
nodes i and j but in the limit of large m the probability and mean 
values become equal  (why??) 
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pij =
kik j
2m−1

≅
kik j
2m



Edge probability 

l  What is the probability of having a second edge between i 
and j? 

§  This is basically the probability that there is a multi-edge 
between vertices i and j 

l  Summing over all possible pairs of nodes we can get the 
expected number of multi-edges in the network: 

§  The expected number of multi-edges remains constant as the 
network grows larger, given that the moments are constant 
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Edge probability 

l  What is the probability of a self edge ? 
§  The possible number of pairs between the kj stubs of node j is 
½kj(kj-1).  Hence: 

l  Summing over all nodes we get the expected number of 
self edges:  
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pjj =
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2 kj (kj −1)
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Edge probability 

l  What is the expected number nij of common neighbors 
between nodes i and j? 
§  Consider node i à Probability that i is connected with l: kikl/2m 
§  Probability that j is connected to l (after node i connected to it): 

kj(kl-1)/(2m-1) 
§  Hence: 
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Random graphs with given expected degree 

l  The configuration model can be thought as an extension 
of the G(n,m) random graph model 

l  Alternatively, we can assign to each vertex i in the graph a 
parameter ci and create an edge between two nodes i and j 
with a probability cicj/2m 
§  We need to allow for self- and multi-edges to keep the model 

tractable 
§  Hence the probability between edges i and j is: 
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Random graphs with given expected degree 

l  Based on the above graph generation process we have: 
§  Average number of edges in the network: 

§  Average degree of node i: 

l  Hence, ci is the average degree of node i  
§  The actual degree on a realization of the model will differ in 

general from ci 

§  It can be shown that the actual degree follows Poisson 
distribution with mean ci (unless if ci=0) 
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Random graphs with given expected degree 

l  Hence in this model we specify the expected degree 
sequence {ci} (and consequently the expected number of 
edges m), but not the actual degree sequence and number 
of edges 
§  This model is analogous to G(n,p) 

l  The fact that the distribution of the expected degrees ci is 
not the same as the distribution of the actual degrees ki 
makes this model not widely used 
§  Given our will to be able to choose the actual degree distribution 

we will stick with the configuration model even if it is more 
complicated 
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Neighbor’s degree distribution 

l  Considering the configuration model, we want to find what 
is the probability that the neighbor of a node has degree k 
§  In other words, we pick a vertex i and we follow one of its 

edges.  What is the probability that the vertex at the other end of 
the edge has degree k? 

l  Clearly it cannot be simply pk 
§  Counter example: If the probability we are looking for was pk it 

means that the probability of this neighbor vertex to have 
degree of zero is p0 (which is in general non-zero).  However, 
clearly this probability is 0! 
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Neighbor’s degree distribution 

l  Since there are k stubs at every node of degree k, there is 
a k/(2m-1) probability the edge we follow to end to a 
specific node of degree k 
§  In the limit of large network this probability can be simplified to 

k/2m 
§  The total number of nodes with degree k is npk 
§  Hence the probability that a neighbor of a node has degree k is: 
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Average degree of a neighbor 

l  What is the average degree of an individual’s network 
neighbor? 
§  We have the degree probability of a neighbor, so we simply 

need to sum over it: 

§  Given that: 

ü Your friends have more friends than you! (Friendship paradox) 
§  Even though this result is derived using the configuration model 

it has been shown to hold true in real networks as well!  
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Excess degree distribution 

l  In many of the calculations that will follow we want to 
know how many edges the neighbor node has except the 
one that connects it to the initial vertex 

l  The number of edges attached to a vertex other than the 
edge we arrived along is called excess degree qk 
§  The excess degree is 1 less than the actual degree.  Hence: 
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Clustering coefficient 

l  Recall that clustering coefficient is the probability that two 
nodes with a common neighbor are neighbors themselves 
§  Consider node u that has at least two neighbors, i and j 
§  If the excess degrees of i and j are ki and kj respectively, then 

the probability that they are connected with an edge is kikj/2m 
§  Averaging over the excess distribution and both i and j we get: 
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13.4 CLUSTERING COEFFICIENT  

As a simple application of the excess degree distribution, let us calculate the clustering coefficient 
for the configuration model. Recall that the clustering coefficient is the average probability that 
two neighbors of a vertex are neighbors of each other. 

Consider then a vertex v that has at least two neighbors, which we will denote i and j. Being 
neighbors of v, i and j are both at the ends of edges from v, and hence the number of other edges 
connected to them, ki and kj are distributed according to the excess degree distribution, Eq. (13.46). 
The probability of an edge between i and j is then kikj/2m (see Eq. (13.32)) and, averaging both ki 
and kj over the distribution qk, we get an expression for the clustering coefficient thus:

 

(13.47) 
  

where we have made use of 2m = n�k�, Eq. (6.23). 
Like the clustering coefficient of the Poisson random graph, Eq. (12.11), this expression goes as 

n-1 for fixed degree distribution, and so vanishes in the limit of large system size. Hence, like the 
Poisson random graph, the configuration model appears to be an unpromising model for real-world 
networks with high clustering. Note, however, that Eq. (13.47) contains the second moment �k2� 
of the degree distribution in its numerator which can become large, for instance in networks with 
power-law degree distributions (see Section 8.4.2). This can result in surprisingly large values of C 
in the configuration model. For further discussion of this point see Section 8.6. 

 

 



Clustering coefficient 

l  As with the Poisson random graph, the clustering 
coefficient of the configuration model goes as n-1 and 
vanishes in the limit of large networks 
§  Not very promising model for real networks with large clustering 

coefficient 

l  However, in the enumerator of the expression, there is 
<k2>, which can be large in some networks depending on 
the degree distribution 
§  E.g., power law 
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Generating functions for degree distributions 

l  We will denote the generating functions for the degree 
distribution and the excess degree distribution as g0(z) 
and g1(z) respectively 

l  We can get the relation between the two generating 
functions: 

§  In order to find the excess degree distribution we simply need to 
find the degree distribution 
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Generating functions for degree distributions 

l  Let us assume that the degree distribution follows a 
Poisson distribution 

l  The two generating functions are identical 
§  This is one reason why calculations on Poisson random graph 

are relatively straightforward 
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Generating functions for degree distributions 

l  Let us assume a power law degree distribution: 
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Number of second neighbors of a vertex 

l  Let us calculate the probability that a vertex has exactly k 
second neighbors  

§  P(2)(k|m) is the conditional probability of having k second 
neighbors given that we have m direct neighbors 

l  The number of second neighbors of a vertex is essentially 
the sum of the excessive degrees of its first neighbors 
§  The probability that the excess degree 
of the first neighbors is j1,…,jm is: 
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m=0
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∑

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX  

Armed with these results, we are now in a position to make some more detailed calculations of 
the properties of the configuration model. The first question we will address is a relatively simple 
one: what is the probability  that a vertex has exactly k second neighbors in the network? 

Let us break this probability down by writing it in the form

 

(13.57) 
  

where P(2)(k|m) is the probability of having k second neighbors given that we have m first 
neighbors and pm is the ordinary degree distribution. Equation (13.57) says that the total 
probability of having k second neighbors is the probability of having k second neighbors given that 
we have m first neighbors, averaged over all possible values of m. We assume that we are given 
the degree distribution pm; we need to find P(2) (k|m) and then complete the sum. 

 

Figure 13.4: Calculation of the number of second neighbors of a vertex. The number of second 
neighbors of a vertex (top) is equal to the sum of the excess degrees of the first neighbors. 
  

As illustrated in Fig. 13.4, the number of second neighbors of a vertex is equal to the sum of the 
excess degrees of the first neighbors. And as discussed in the previous section, the excess degrees 
are distributed according to the distribution qk, Eq. (13.46), so that the probability that the excess 
degrees of our m first neighbors take the values j1 . . . jm is . Summing over all sets of values 
j1 . . . jm, the probability that the excess degrees sum to k and hence that we have k second 
neighbors is
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m

∏



Number of second neighbors of a vertex 

l  Summing over all sets of values that sum up to m we get: 

l  Therefore 

l  Using the probability generator function g(2)(z) we get:  
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(13.58) 
  

Substituting this expression into (13.57), we find that

 

(13.59) 
  

By now, you may be starting to find sums of this type familiar. We saw them previously in Eqs. 
(12.25) and (13.27), for example. We can handle this o ne by the same trick we used before: 
instead of trying to calculate  directly, we calculate instead its generating function g(2) (z) thus:

 

(13.60) 
  

But now we notice an interesting thing: the sum in square brackets in the last line is none other 
than the generating function g1(z) for the excess degree distribution, Eq. (13.49). Thus Eq. (13.60) 
can be written as

 

(13.61) 
  

where g0(z) is the generating function for the ordinary degree distribution, defined in Eq. (13.48). 
So once we know the generating functions for our two basic degree distributions the generating 
function for the distribution of the second neighbors is very simple to calculate. 

 

 

 

 

 

 



Number of second neighbors of a vertex 

l  The quantity in brackets is the probability generator 
function of qk 

l  The above equation reveals that once we know the 
generating functions for the vertices degrees and the 
vertices excessive degree we can find the probability 
distribution of the second neighbors 

l  Is there an easier way to derive the above result ? 
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Number of d-hop neighbors 

l  Similarly we can calculate the number of 3-hop neighbors 
§  Assuming m second neighbors (2-hop neighbors), the number 

of 3-hop neighbors is the sum of the excess degree of each of 
the second neighbors 
ü P(3)(k|m) is the probability of having k 3-hop neighbors, given that 

we have m 2-hop neighbors 
o  Similar to above P(3)(k|m) has generating function [g1(z)]2 
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In fact, there was no need to go through this lengthy calculation to reach Eq. (13.61). We can 
derive the same result much more quickly by making use of the “powers” property of generating 
functions that we derived in Section 13.1.4. There we showed (Eq. (13.28)) that, given a quantity k 
distributed according to a distribution with generating function g(z), m independent quantities 
drawn from the same distribution have a sum whose distribution is given by the generating 
function [g(z)]m. We can apply this result here, by noting that the m excess degrees of the first 
neighbors of our vertex are just such a set of independent quantities. Given that g1(z) is the 
generating function for the distribution of a single one of them (Eq. (13.49)), the distribution P(2)

(k|m) of their sum—which is the number of second neighbors—has generating function [g1(z)]m. 
That is,

 

(13.62) 
  

Now, using Eq. (13.57), the generating function for  is

 

(13.63) 
  

In future calculations, we will repeatedly make use of this shortcut to get our results, rather than 
taking the long route exemplified in Eq. (13.60). 

We can also use similar methods to calculate the probability distribution of the number of third 
neighbors. The number of third neighbors is the sum of the excess degrees of each of the second 
neighbors. Thus, if there are m second neighbors, then the probability distribution P(3) (k|m) of the 
number of third neighbors has generating function [g1(z)]m and the overall probability of having k 
third neighbors is exactly analogous to Eq. (13.63):

 

(13.64) 

 

 

 

 

 



Number of d-hop neighbors 

l  This can generalize to d-hop distance neighbors: 

l  The above holds true for all distances d in an infinite 
graph 

l  At a finite graph, it holds true for small values of d 

l  It is difficult to use the above equation to obtain closed 
forms for the probabilities of the size of d-hop 
neighborhoods 
§  We can calculate averages though 
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g(d ) (z) = g0 (g1(...g1(z)...))
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Average number of d-hop neighbors 

l  What is the average size of the 2-hop neighborhood? 
§  We need to evaluate the derivative of g(2)(z) at z=1 

§  g1(1)=1 and hence the average number of second neighbors is 
c2=g’0(1)g’1(1) 
ü g’0(1)=<k> and 
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(13.68) 
  

But  and

 

(13.69) 
  

where we have used Eq. (13.46). Thus the mean number of second neighbors can also be written

 

(13.70) 
  

We can take this approach further and calculate the mean number cd of neighbors at any distance 
d. Differentiating Eq. (13.65) we get

 

(13.71) 
  

and setting z = 1 we get

 

(13.72) 
  

 

 

 

 

 

 

 

 

c2 = k2 − k



Average number of d-hop neighbors 

l  The average number of d-hop neighbors is given by: 

 
l  Hence,  
 
l  The average number of neighbors at distance d increases 

or falls exponentially to d 
§  If this number increase then we must have a giant component 
§  Hence, the configuration model exhibits a giant component iff 

c2>c1, which can be written as: 
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Giant component 

l  Given that πs is the probability that a randomly selected 
node belongs to a small component of size s, the 
probability that a randomly chosen node belongs to a 
small component is: 

l  Hence, the probability that a node belongs to the giant 
component is S = 1 – h0(1) = 1 – g0(h1(1)) 
§  Note that h0(1) is not necessarily 1 as with most probability 

generator functions 
§  Given that h1(1)=g1(h1(1)) à S=1-g0(g1(h1(1))) 

l  Setting h1(1)=u we get 
§  u=g1(u) and hence, 
§  S=1-go(g1(u))=1-g0(u) 
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Giant component 

l  For the above equations it is obvious that u is a fixed point 
of g1(z) 
§  One trivial fixed point is z=1, since g1(1)=1 
§  With u=1 though, we have S=1-g0(1)=0, which corresponds to 

the case we do not have giant component 
§  Hence, if there is to be a giant component there must be at least 

one more fixed point of g1(z) 
l  What is the physical interpretation of u? 

 
§  ρs is the probability that a vertex at the end of any edge belongs 

to a small component of size s   
ü Hence, the above sum is the total probability that such a vertex 

does not belong to the giant component 
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Graphical solution 

l  When we can find the fixed point of g1 everything becomes 
easier 
§  However, most of the times this is not possible 

ü Graphical solution 

l  g1(z) is proportional to the probabilities qk and hence for 
z≥0 is in general positive 
§  Furthermore, its derivatives are also proportional to qk and 

hence are in general positive 
§  Thus, g1(z) is positive, increase and upward concave  
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Graphical solution 

l  In order for g1 to have another fixed point u<1, its 
derivative at u=1 needs to be greater than 1 

l  In order for the derivative at u=1 to be greater than 1  it 
needs to hold: 

§  This is exactly the condition that we saw  
previously for the presence of a giant component 
§  Hence, there is a giant component iff there is a 
fixed point u<1 for g1  
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13.8.2 GRAPHICAL SOLUTIONS AND THE EXISTENCE OF THE GIANT COMPONENT 

The example given in the last section is unusual in that we can solve the fixed-point equation 
(13.91) exactly for the crucial parameter u. In most other cases exact solutions are not possible, but 
we can nonetheless get a good idea of the behavior of u by graphical means. The derivatives of g1

(z) are proportional to the probabilities ȡs and hence are all non-negative. That means that for z � 0, 
g1 (z) is in general positive, an increasing function of its argument, and upward concave. It also 
takes the value 1 when z = 1. Thus it must look qualitatively like one of the curves in Fig. 13.6. 
The solution of the fixed-point equation u = g1 (u) is then given by the intercept of the curve y = g1 
(u) with the line y = u (the dotted line in the figure). 

 

Figure 13.6: Graphical solution of Eq. (13.91). The solution of the equation u = g1 (u) is given 
by the point at which the curve y = g1 (u) intercepts the line y = u. 
  

As we already know, there is always a trivial solution at u = 1 (top right in the figure). But now 
we can see that there can be just one other solution with u < 1 and only if the curve takes the right 
form. In particular, we have a non-trivial solution at u < 1 if the slope  of the curve at u = 1 is 
greater than the slope of the dotted line. That is, if
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Mean component sizes 

l  Using an approach similar to that with the Poisson random 
graph we can calculate some average quantities 

l  The mean size of the component of a randomly chosen 
vertex is given by: 

§  Eventually, after some calculations we get: 

l  As with the random Poisson graph the above calculation 
is biased 
§  Following similar calculations we get the actual average small 

component size:  
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Complete distribution of small component 
sizes 
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and hence

 

(13.132) 
  

 

Figure 13.7: The distribution of component sizes in a configuration model. The probability ʌs 
that a vertex belongs to a component of size s for the configuration model with an exponential 
degree distribution of the form (13.129) for Ȝ = 1.2. The solid lines represent the exact formula, 
Eq. (13.132), for the n ĺ � limit and the points are measurements of ʌs averaged over 100 
computer-generated networks with n = 107 vertices each. 
  

Figure 13.7 shows a comparison of this formula with the results of numerical simulations for Ȝ = 
1.2 and, as we can see, the agreement between formula and simulations is good—our calculations 
seem to describe the simulated random graph well even though the graph is necessarily finite in 
size while the calculations are performed in the limit of large n.

 

 

 

 

πs for the configuration model 
with exponential 

degree distribution with λ=1.2 



Random graphs with power law degree 

l  Let’s start with a pure power law: 

l  A giant component exists iff [<k2>-2<k>] > 0  
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Figure 13.8: Graphical solution of Eq. (13.138). The configuration model with a pure power-law 

degree distribution (Eq. (13.133)) has a giant component if ȗ(Į í 2) > 2ȗ(Į í 1). This happens for 

values of Į below the crossing point of the two curves. 

  

Returning to the pure power law let us calculate the size S of the giant component, when there is 

one. The fundamental generating functions g
0
(z) and g

1
(z) for the power-law distribution are given 

by Eqs. (13.55) and (13.56), which we repeat here for convenience:

 

(13.139) 

  

Here ȗ(Į) is the Riemann zeta function again and LiĮ(z) is the polylogarithm

 

(13.140) 

  

(See Eq. (13.15).) Now the crucial equation (13.91) for the probability u = h
1
(1) reads

 

 

 

 

 

 

 

α<3.4788… 



Random graphs with power law degree 

l  The above result is of little practical importance since 
rarely we have a pure power law degree distribution 
§  We have seen that a distribution that follows a power law at its 

tail will have a finite <k2> iff α>3, and a finite <k> iff α>2 
ü Hence, if 2<α≤3 à a giant component always exists 
ü When α>3 à a giant component might or might not exist 
ü When α≤2 à a giant component always exists  
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Random graphs with power law degree 

l  What is the size S of the giant component when one 
exists? 
§  Recall, S=1-g0(u), where u is a fixed point of g1 
§  For a pure power law we have:  

§  Hence, 

§  The enumerator is strictly positive for non-negative values of u 
ü Hence, u=0 iff ζ(α-1) diverges 
ü  ζ(α-1) diverges for α≤2 
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Random graphs with power law degree 

l  Hence, for α≤2, u=0 ! There is a giant component with 
S=1-g0(0)=1-p0=1! 
§  The giant component fills the whole network ! 
§  Of course this holds true at the limit of large n 

l  For 2<α≤3.4788… there is a giant component that fills a 
proportion S of the network 

l  For α>3.4788… there is no giant component (i.e., S=0) 
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Random graphs with power law degree 
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13.11 DIRECTED RANDOM GRAPHS  

In this chapter we have studied random graph models that go a step beyond the Poisson random 
graph of Chapter 12 by allowing us to choose the degree distribution of our model network. This 
introduces an additional level of realism to the model that makes it substantially more informative. 
It is, however, only a first step. There are many other features we can add to the model to make it 
more realistic still. We can for instance create random graph models of networks with assortative 
(or disassortative) mixing [237], bipartite structure [253], or clustering [247]. All of these models 
are still exactly solvable in the limit of large system size, although the solutions are more 
complicated than for the models we have seen in this chapter. For instance, in the case of the 
random graph with assortative mixing the fundamental generating function g1(z) becomes a vector, 
the corresponding equation (13.86) for the distribution of component sizes becomes a vector 
equation, and the condition for the existence of a giant component, Eq. (13.76), becomes a 
condition on the determinant of a matrix. 

 

Figure 13.9: Size of the giant component for the configuration model with a power-law 
degree distribution. This plot shows the fraction of the network filled by the giant component as a 
function of the exponent Į of the power law, calculated by numerical solution of Eqs. (13.91) and 
(13.141). The dotted lines mark the value Į = 2 below which the giant component has size 1 and 
the value Į = 3.4788 above which there is no giant component. 
  

We will not go into detail on all of the many random graph models that have been proposed and 
studied, but in this section we take a look at one case, that of the directed random graph, as an 
example of the types of calculation that are possible.

 

 

 




