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Part 6: Random Graphs with
General Degree Distributions



Generating functions

e Consider a probability distribution of a non-negative,
integer random variable p,

E.g., the distribution of the node degree in a network

The (probability) generating function for the probability
distribution p, Is:

8 =Py + P+ P+ T o= Y pidt
k=0

Hence, if we know g(z) we can recover the probability
distribution: - 1 dkg
C okl dZf

z=0

e The probability distribution and the generating function
are two different representations of the same quantity
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Examples

e Consider a variable that only takes 4 values (e.g., 1, 2, 3, 4)
p, = 0 for k=0 or k>4
Let us further assume that p,=0.4, p,=0.3, p;=0.1 and p,=0.2

Then: 2(2)=0.42+0322+0.12° +0.27*

e Now let us assume that k follows a Poisson distribution:

k
C

Py = e_cﬁ

Then the corresponding probability generating function is:

g(Z)=e—CE(CZ) =ec(z—1)




Examples

e Suppose k follows an exponential distribution:

p.=Ce™, A>0 C=1-¢"

Then the generating function is:

g0 = (- (2 = £

€ —Z

The above function converges iff z<e”

Given that we are only interested in the range 0<z<1, this holds
true



Power-law distributions

e As we have seen many real networks exhibit power-law

degree distribution
To reiterate, in its pure form we have:

p.=Ck™, a>0 k>0 and p,=0

L . 5 1
The normalization constantis: €.k =1=>C=@

k=1

v Where ((a) is the Riemman zeta function

Then the probability generating function is:

I & e L)
- Nk o Ha
82" F T

v'Where Li, is the polylogarithm of z

3 dLi,(z) _ 0 Ek—azk _ Ek—(a—l)zk—l _
0z 1ot k=1

0z

Li, (2)
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Power-law distribution

e Real networks, as we have seen, do not follow power-law
over all the values of k

Power-law is generally followed at the tail of the distribution after
a cut-off value k.-

In this case the more accurate generating function is:
g()=0, ,()+C Y k“¢*  Lerch transcendent
k=k, .

Q,(z) is a polynomial in z of degree n
C is the normalizing constant



Normalization and moments

e If we set z=1 at the generating function we get:

g)=Yp,
k=0
If the underlying probability distribution is normalized to unity,

g(1)=1
v This is not always the case — recall the distribution of small
components for a random graph

e The derivative of the generating function is: @)=Y .:z"
Evaluating at z=1 we get:

g'()= Y kp, = (k)



Normalization and moments

e The previous result can be generalized in higher moments
of the probability distribution:

e This is convenient since many times we first calculate the
generating function and hence, we can compute
interesting quantities directly from g(z)

Possible even in cases we do not have a closed form for g(z)



Powers of generating functions

e A very important property of generating functions is
related with their powers

e In particular let us assume ¢g(z) that represents the
probability distribution of k (e.g., degree)
If we draw m numbers — independently - from this distribution,
the generating function of this sum is the m-th power of g(z)!

This is a very important property that we is extensively used in
derivations for the configuration model and beyond
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Powers of generating functions

e Given that the m numbers are drawn independently from
the distribution, the probability that they take a particular

set of values {k} is: ] p,

Hence the probability 1 that they will sum up to s, is given if we
consider all the possible combinations of k; values that sum up

to s: SN ;
05 LS Sl

k=0  k,=0

Substituting to the generation function h(z) for m:
hiz) Zmz”
i 5 _}: s, Eoki) [T P
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Configuration model

e In the configuration model we provide a given degree
sequence

This sequence has the exact degree of every node in the
network

v The number of edges in the network is fixed - Generalization of
G(n,m)

e Each vertex i can be thought as having k; “stubs” of edges

We choose at each step two stubs uniformly at random from the
still available ones and connect them with an edge

"""—-—-—.' X
12 Y /'\ ™



Configuration model

e The graph created from running once the above process is
just one possible matching of stubs

All possible matchings appear with equal probabilities

Hence, the configuration model can be thought as the ensemble
iIn which each matching with the chosen degree sequence

appear with equal probability

e However, configuration model has a few catches
The sum of the degrees need to be even

Self-edges and multi-edges might appear

v If we modify the process to remove these edges then the network
is no longer drawn uniformly from the set of possible matchings

v It can be shown that the density of these edges tends to 0
13



Configuration model

e While all matchings appear with equal probabilities, not all

14

networks appear with equal probability!
One network might correspond to multiple matchings

We can create all the matchings for a given network by
permuting the stubs at each vertex in every possible way

v Total number of matches for a given network: N(khH =] !
Independent of the actual network

With Q({k;}) being the number of total matchings, each network
indeed appears with equal probability N/Q

afvb el asyh ™ a
[ [ [ [ o, & d [
d f o .f ¢ ¥ € i
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C f s i o f ) ri
Hr [ “l' [ [~ [ i [



Configuration model

e However in the above we have assumed only simple edges
When we add multi- or self-edges things become more
complicated

v'Not all permutations of stubs correspond to different matchings
e Two multi-edges whose stubs are permuted
simultaneously result in the same maching
Total number of matchings is reduced by A;/!
v A is the multiplicity of the edge (i,))

e For self-edges there is a further factor of 2 because the

interchange of the two edges does not generate new

matching “O” ﬁOu 0;
V- e
(Hi<j 4, !)(HiAii 3 d i 4 d f .:\':__ i
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Configuration model

e The total probability of a network is still N/Q but now we
have N to depend on the structure of the network itself

Hence, different networks have different probabilities to appear

¢ In the limit of large n though, the density of multi- and self-
edges is zero and hence, the variations in the above
probabilities are expected to be small

16



A slight modification

e Some times we might be given the degree distribution p,
rather than the degree sequence

e In this case we draw a specific degree sequence from this
distribution and work just as above

e The two models are not very different

The crucial parameter that comes into calculations is the
fraction of nodes with degree k
v In the extended model this fraction is p, in the limit of large n

v'In the standard configuration model this fraction can be directly
calculated from the degree sequence given

17



Edge probability

e What is the probability of an edge between nodes i and j?

18

There are k; stubs at node i and k; at |

v The probability that one of the k; stubs of node i connects with one of
the stubs of node j is k/(2m-1)

v Since there are k; possible stubs for vertex i the overall probability is:
k.k k.k

__ it R
2m-1 2m

The above formula is the expected number of edges between

nodes i and j but in the limit of large m the probability and mean

values become equal (why??)

pij



Edge probability

e What is the probability of having a second edge between i
and j?
_kk (k= 1)(k; - 1)

Pijz (2m)>

This is basically the probability that there is a multi-edge
between vertices i and |

e Summing over all possible pairs of nodes we can get the
expected number of multi-edges in the network:

2

1 1 |{R)-(k)
2(2m)’ 2Kk k= Dik, =D~ 2[ (k)

The expected number of multi-edges remains constant as the
network grows larger, given that the moments are constant

i
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Edge probability

e What is the probability of a self edge ?

The possible number of pairs between the k; stubs of node j is
72k(k-1). Hence:

bk =D k(K =D

T am—1 Am

e Summing over all nodes we get the expected number of

self edges:
3y, -0

2(k)
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Edge probability

e What is the expected number n; of common neighbors
between nodes i and j?

Consider node i = Probability that i is connected with I: kk/2m

Probability that j is connected to | (after node i connected to it):

Hence:

_\ kK, k;(k,—1) 3 kik; Elkz(kz -1 ~ <k2>—<k>
Y20 am T om nky k)
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Random graphs with given expected degree

e The configuration model can be thought as an extension
of the G(n,m) random graph model

e Alternatively, we can assign to each vertex i in the graph a
parameter c, and create an edge between two nodes i and ]
with a probability c,c,/2m

We need to allow for self- and multi-edges to keep the model
tractable

Hence the probability between edges i and j is:

Cicj

om’ L= Ecl.=2m

2
C

S
\4m /

22



Random graphs with given expected degree

e Based on the above graph generation process we have:
Average number of edges In the network:

IED TS R e

2m

i<j i<j
Average degree of node i:

CC. CC

2
kN=2p. LTI N\ \ L
<l> p,ﬁgpy 2m+j¢i2m < 2m K

e Hence, c; is the average degree of node |

The actual degree on a realization of the model will differ in
general from c,

It can be shown that the actual degree follows Poisson
distribution with mean c; (unless if ¢,=0)

23



Random graphs with given expected degree

e Hence in this model we specify the expected degree
sequence {c;} (and consequently the expected number of
edges m), but not the actual degree sequence and number
of edges

This model is analogous to G(n,p)

e The fact that the distribution of the expected degrees c; is
not the same as the distribution of the actual degrees k;
makes this model not widely used

Given our will to be able to choose the actual degree distribution
we will stick with the configuration model even if it is more
complicated

24



Neighbor’s degree distribution

e Considering the configuration model, we want to find what
is the probability that the neighbor of a node has degree k

In other words, we pick a vertex i and we follow one of its
edges. What is the probability that the vertex at the other end of
the edge has degree k?

e Clearly it cannot be simply p,

Counter example: If the probability we are looking for was p, it
means that the probability of this neighbor vertex to have
degree of zero is p, (which is in general non-zero). However,
clearly this probability is 0!

25



Neighbor’s degree distribution

e Since there are k stubs at every node of degree k, there is
a k/(2m-1) probability the edge we follow to end to a

specific node of degree k
In the limit of large network this probability can be simplified to

k/2m
The total number of nodes with degree k is np,
Hence the probability that a neighbor of a node has degree k is:

inpk=@ since 2m=n<k>

2m <k> ’

26



Average degree of a neighbor

e What is the average degree of an individual’s network

27

neighbor?

We have the degree probability of a neighbor, so we simply
need to sum over it:

average degree of a neighbor= ) k kp, = <k2>
e degrc ol neghtor= ONC
. _ <k2>_ B
Given that: o (k)= 0 >(< ?)- <k>) o >

v Your friends have more friends than you! (Friendship paradox)

Even though this result is derived using the configuration model
it has been shown to hold true in real networks as well!




Excess degree distribution

e In many of the calculations that will follow we want to
know how many edges the neighbor node has except the

one that connects it to the initial vertex

e The number of edges attached to a vertex other than the
edge we arrived along is called excess degree q,

The excess degree is 1 less than the actual degree. Hence:

_ (k + 1)pk+1

qy <k>
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Clustering coefficient

e Recall that clustering coefficient is the probability that two
nodes with a common neighbor are neighbors themselves

Consider node u that has at least two neighbors, i and |

If the excess degrees of i and j are k; and k; respectively, then
the probability that they are connected with an edge is kik/2m

Averaging over the excess distribution and both i and j we get:
= kk 1

O 0 2 = ll”:‘”’*]

k=(}

1 T= :
e k(k+ 1)pe.
2mik)? _;.Zﬂ e+ 1ipen

L [& i
2mik)? ) (k= 1kpy

_J.' {1
1 [0 - k)
no ke
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Clustering coefficient

e As with the Poisson random graph, the clustering
coefficient of the configuration model goes as n' and
vanishes in the limit of large networks

Not very promising model for real networks with large clustering
coefficient

e However, in the enumerator of the expression, there is
<k?>, which can be large in some networks depending on
the degree distribution

E.g., power law

30



Generating functions for degree distributions

e We will denote the generating functions for the degree
distribution and the excess degree distribution as g,(z)

and g,(z) respectively go(z>=§ .2

8(2)= S:qkzk

e We can get the relation ‘between the two generating
functions:

1 k 1 < k-1 1 dg 8' (2)

In order to find the excess degree distribution we simply need to
find the degree distribution
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Generating functions for degree distributions

e Let us assume that the degree distribution follows a

Poisson distribution y
Dy =¢ Tl

c(z-1)
Ce — ec(z_l)

g, (2)=e""=g(2)= =g,(2)

C

e The two generating functions are identical

This is one reason why calculations on Poisson random graph
are relatively straightforward
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Generating functions for degree distributions

e Let us assume a power law degree distribution:

Ok _Li,(2)
Pt 0 L
Li _ (z Li, (z
gl (Z) — 1 ( ) _ 1 ( )

zLi, (z-1) zE(a-1)

33



Number of second neighbors of a vertex

e Let us calculate the probability that a vertex has exactly k
second neighbors

p E p,P? (kI m)

P@)(klm) is the conditional probability of having k second
neighbors given that we have m direct neighbors

e The number of second neighbors of a vertex is essentially
the sum of the excessive degrees of its first neighbors

The probability that the excess degree vertex
of the first neighbors is j,...,j, IS

34 n 9,

first neighbors

second neighbors



Number of second neighbors of a vertex

e Summing over all sets of values that sum up to m we get:

P®(k1m)= i i i ok, Y. ]r)ﬁqj
Ji=0 j=0  j,,=0 =1

e Therefore

P EPmEE E(Xk}’,mﬂ%

m=0 4=0 j,=0  j,,=0

e Using the probability generator function g(?(z) we get:
g¥() = ¥ pat

Y :#Y pa Yo X ST i) T
k=0 mre=il g =00 foa = 1
5 5o 3 0 g

S =L r=1

35 i P li g;z'
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Number of second neighbors of a vertex

e The quantity in brackets Is the probability generator
function of q,

g2 =Y p.(&(2)" = 8(8(2)

e The above equation reveals that once we know the
generating functions for the vertices degrees and the
vertices excessive degree we can find the probability
distribution of the second neighbors

e Is there an easier way to derive the above resuit ?
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Number of d-hop neighbors

e Similarly we can calculate the number of 3-hop neighbors

Assuming m second neighbors (2-hop neighbors), the number
of 3-hop neighbors is the sum of the excess degree of each of
the second neighbors

v PG)(k|m) is the probability of having k 3-hop neighbors, given that
we have m 2-hop neighbors

Similar to above P®)(k|m) has generating function [g,(z)]?
M) =Y, 3. p PO (kim)et L P E P (klm)z
k=0 m=10

Y piig(I" = g @i(2))

Lolg(g(z))).
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Number of d-hop neighbors

e This can generalize to d-hop distance neighbors:

g(2)=g,(8(..8,(2)..))
d-1
e The above holds true for all distances d in an infinite
graph

e At a finite graph, it holds true for small values of d

e It is difficult to use the above equation to obtain closed
forms for the probabilities of the size of d-hop
neighborhoods

We can calculate averages though
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Average number of d-hop neighbors

e What is the average size of the 2-hop neighborhood?
We need to evaluate the derivative of g\9)(z) at z=1
dg(2)
dz
g4(1)=1 and hence the average number of second neighbors is
C2=g,0(1)g,1(1) g1(1) ik‘ik
v g'5(1)=<k> and k=i

= 8,(8,(2))g,(2)

2=

E tk+ 1)peiq E[L—E}Lp

b= .l. [

((k*) — (K)).

-\_\_.o—

J!L
]
k)

c, = <k2>—<k>
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Average number of d-hop neighbors

e The average number of d-hop neighbors is given by:

cd=dg(d)| L= (D8] = 8 Mg (D =g (D), 1) =—2o =2 =22
dz ' - - g,() (k) ¢
e Hence, e, (¢
Ca=Co— = | G
¢y ¢

e The average number of neighbors at distance d increases
or falls exponentially to d

If this number increase then we must have a giant component

Hence, the configuration model exhibits a giant component iff
C,>C,, Which can be written as:

(k*)=2(k)>0
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Giant component

e Given that 1, is the probability that a randomly selected
node belongs to a small component of size s, the
probability that a randomly chosen node belongs to a
small component is: ) 7, =/

e Hence, the probability that a node belongs to the giant
componentis S=1-hy(1)=1-g,(h4(1))

Note that hy(1) is not necessarily 1 as with most probability
generator functions

Given that h(1)=g,(h(1)) 2 S=1-go(g4(h4(1)))
e Setting h,(1)=u we get

u=g,(u) and hence,

S=1-9,(94(u))=1-go(u)
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Giant component

e For the above equations it is obvious that u is a fixed point
of g,(z)
One trivial fixed point is z=1, since g,(1)=1
With u=1 though, we have S=1-g,(1)=0, which corresponds to
the case we do not have giant component

Hence, if there is to be a giant component there must be at least
one more fixed point of g,(z)

e What is the physical interpretation of u?

u=mH=Y p,
P Is the probability that a vertex at the end of any edge belongs
to a small component of size s

v'Hence, the above sum is the total probability that such a vertex
does not belong to the giant component
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Graphical solution

e When we can find the fixed point of g, everything becomes
easier

However, most of the times this is not possible
v'Graphical solution

e g4(z) is proportional to the probabilities q, and hence for
z20 is in general positive

Furthermore, its derivatives are also proportional to g, and
hence are in general positive

Thus, g4(z) is positive, increase and upward concave
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Graphical solution

e In order for g, to have another fixed point u<1, its

derivative at u=1 needs to be greater than 1

)=k
(k)

&)= iqu = Lik(k+1)pk+1 = <11€_>§(k_1)kpk -

OF=

e In order for the derivative at u=1 to be greater than 1 it

needs to hold: .

<k2<>k_<k> >1< (k)= 2(k)>0

This is exactly the condition that we saw 3
previously for the presence of a giant component

Hence, there is a giant component iff there is a
fixed point u<1 for g,

49
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Mean component sizes

e Using an approach similar to that with the Poisson random
graph we can calculate some average quantities

e The mean size of the component of a randomly chosen
Vertex IS given by: ESSJIS h(')(l) h(')(2)
()= >oa, 1-5 g

g, (D’
IR IEFAD)

Eventually, after some calculations we get: (s)=1+

e As with the random Poisson graph the above calculation
is biased

Following similar calculations we get the actual average small

component size: R 2

50 2 _ ke




Complete distribution of small component

sizes

e iy[d”[gl( )]} o

E
Il

Po

__:1'rS for the configuration model
3 with exponential
. degree distribution with A=1.2

o 107 E %
x I e

Tl

10 ¢

'!:IELI'-lJ'.I'{-LI'EI}]LﬂJ
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Random graphs with power law degree

e Let’s start with a pure power law:

0 fork=0
Pr =1

e A giant component exists iff [<k?>-2<k>] > 0

R S )
ky=Skp, = -
0= 2= 2 ™t |

2 _m 2 =wk_a+2=é'(a—2)
<k>_§kp" 2wt

k=1
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Random graphs with power law degree

e The above result is of little practical importance since
rarely we have a pure power law degree distribution
We have seen that a distribution that follows a power law at its
tail will have a finite <k2> iff a>3, and a finite <k> iff a>2
v'Hence, if 2<a<3 - a giant component always exists
vWhen a>3 - a giant component might or might not exist
v When a<2 - a giant component always exists
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Random graphs with power law degree

e What is the size S of the giant component when one
exists?

Recall, S=1-g4(u), where u is a fixed point of g,

For a pure power law we have: Li,(2)

gl(Z) = zC(a—l)

k—a+luk (k + 1)—a+1 uk
Li, (u) E g

Cuba-1) ui(@-1)  &a-1)

The enumerator is strictly positive for non-negative values of u
v'Hence, u=0 iff {(a-1) diverges
v ((a-1) diverges for a<2

Hence,
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Random graphs with power law degree

e Hence, for as2, u=0 - There is a giant component with
S=1-g,(0)=1-p,=1!
The giant component fills the whole network !
Of course this holds true at the limit of large n

e For 2<as3.4788... there is a giant component that fills a
proportion S of the network

e For a>3.4788... there is no giant component (i.e., S=0)
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Random graphs with power law degree

(L5 |

Swee of gant component §

0

Exponent o
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