
School of Information Sciences
University of Pittsburgh

TELCOM2125: Network Science and
Analysis

 Konstantinos Pelechrinis
Spring 2015

Figures are taken from:
M.E.J. Newman, “Networks: An Introduction”

Part 6: Random Graphs with
General Degree Distributions

2

Generating functions

l! Consider a probability distribution of a non-negative,
integer random variable pk
§! E.g., the distribution of the node degree in a network
§! The (probability) generating function for the probability

distribution pk is:

§! Hence, if we know g(z) we can recover the probability
distribution:

l! The probability distribution and the generating function
are two different representations of the same quantity

3

g(z) = p0 + p1z + p2z
2 + p3z

3 +... = pkz
k

k=0

!

"

pk = 1
k!

dkg
dzk

z=0

Examples

l! Consider a variable that only takes 4 values (e.g., 1, 2, 3, 4)
§! pk = 0 for k=0 or k>4
§! Let us further assume that p1=0.4, p2=0.3, p3=0.1 and p4=0.2
§! Then:

l! Now let us assume that k follows a Poisson distribution:

§! Then the corresponding probability generating function is:

4

g(z) = 0.4z + 0.3z2 + 0.1z3 + 0.2z4

pk = e!c ck

k!

g(z) = e−c (cz)k

k!k=0

∞

∑ = ec(z−1)

Examples

l! Suppose k follows an exponential distribution:

§! Then the generating function is:

§! The above function converges iff

§! Given that we are only interested in the range 0≤z≤1, this holds
true

5

pk =Ce
−!k, ! > 0 C =1− e−!

g(z) = (1! e!!) (e!!z)k

k=0

"

= e! !1
e! ! z

z < e!

Power-law distributions

l! As we have seen many real networks exhibit power-law
degree distribution
§! To reiterate, in its pure form we have:

§! The normalization constant is:
ü!Where ζ(α) is the Riemman zeta function

§! Then the probability generating function is:

ü!Where Liα is the polylogarithm of z

6

pk = Ck−α, α > 0 k > 0 and p0 = 0

C k−α
k=1

∞

∑ =1⇒C = 1
ζ (α)

g(z) = 1
ζ (α)

k!αzk
k=1

"

=
Liα (z)
ζ (α)

∂Liα (z)
∂z

= ∂
∂z

k−αzk

k=1

∞

∑ = k−(α−1)zk−1

k=1

∞

∑ = Liα−1(z)
z

Power-law distribution

l! Real networks, as we have seen, do not follow power-law
over all the values of k
§! Power-law is generally followed at the tail of the distribution after

a cut-off value kmin
§! In this case the more accurate generating function is:

§! Qn(z) is a polynomial in z of degree n
§! C is the normalizing constant

7

g(z) =Qkmin−1
(z)+C k−αzk

k=kmin

∞

∑ Lerch transcendent

Normalization and moments

l! If we set z=1 at the generating function we get:

§! If the underlying probability distribution is normalized to unity,
g(1)=1
ü!This is not always the case – recall the distribution of small

components for a random graph

l! The derivative of the generating function is:
§! Evaluating at z=1 we get:

8

g(1) = pk
k=0

!

"

g '(z) = kpkz
k−1

k=0

∞

∑

g '(1) = kpk
k=0

∞

∑ = k

Normalization and moments

l! The previous result can be generalized in higher moments
of the probability distribution:

l! This is convenient since many times we first calculate the
generating function and hence, we can compute
interesting quantities directly from g(z)
§! Possible even in cases we do not have a closed form for g(z)

9

km = z d
dz

!
"
#

$
%
&

m

g(z)
'

(
)
)

*

+
,
,

z=1

= dmg
d(ln z)m

z=1

Powers of generating functions

l! A very important property of generating functions is
related with their powers

l! In particular let us assume g(z) that represents the
probability distribution of k (e.g., degree)
§! If we draw m numbers – independently - from this distribution,

the generating function of this sum is the m-th power of g(z)!
§! This is a very important property that we is extensively used in

derivations for the configuration model and beyond

10

Configuration model

l! In the configuration model we provide a given degree
sequence
§! This sequence has the exact degree of every node in the

network
ü!The number of edges in the network is fixed à Generalization of

G(n,m)

l! Each vertex i can be thought as having ki “stubs” of edges
§! We choose at each step two stubs uniformly at random from the

still available ones and connect them with an edge

12

Figure 13.1: The configuration model. Each vertex is given a number of “stubs” of edges equal
to its desired degree. Then pairs of stubs are chosen at random and connected together to form
edges (dotted line).

The uniform distribution over matchings in the configuration model has the important
consequence that any stub in a configuration model network is equally likely to be connected to
any other. This, as we will see, is the crucial property that makes the model solvable for many of
its properties.

There are a couple of minor catches with the network generation process described here. First,
there must be an even number of stubs overall if we want to end up with a network consisting only
of vertices and edges, with no dangling stubs left over. This means that the sum of the degrees
must add up to an even number. We will assume that the degrees we have chosen satisfy this
condition, otherwise it is clearly not possible to create a graph with the given degree sequence.

A second issue is that the network may contain self-edges or multiedges, or both. There is
nothing in the network generation process that prevents us from creating an edge that connects a
vertex to itself or that connects two vertices that are already connected by another edge. One might
imagine that one could avoid this by rejecting the creation of any such edges during the process,
but it turns out that this is not a good idea. A network so generated is no longer drawn uniformly
from the set of possible matchings, which means that properties of the model can no longer be
calculated analytically, at least by any means currently known. It can also mean that the network
creation process breaks down completely. Suppose, for example, that we come to the end of the
process, when there are just two stubs left to be joined, and find that those two both belong to the
same vertex so that joining them would create a self-edge. Then either we create the self-edge or
the network generation process fails.

In practice, therefore, it makes more sense to allow the creation of both multiedges and self-
edges in our networks and the standard configuration model does so. Although some real-world
networks have self-edges or multiedges in them, most do not, and to some extent this makes the
configuration model less satisfactory as a network model. However, as shown below, the average
number of self-edges and multiedges in the configuration model is a constant as the network
becomes large, which means that the density of self-edges and multiedges tends to zero in this
limit. This means, to all intents and purposes, that we can ignore the self-edges and multiedges in
the large size limit.187

A further issue with the configuration model is that, while all matchings of stubs appear with
equal probability in the model, that does not mean that all networks appear with equal probability
because more than one matching can correspond to the same network, i.e., the same topological
connections between vertices. If we label the stubs to keep track of which is which, then there are
typically many different ways we can join up pairs of labeled stubs to create the same final
configuration of edges. Figure 13.2 shows an example of a set of eight matchings that all
correspond to the same three-vertex network.

Configuration model

l! The graph created from running once the above process is
just one possible matching of stubs
§! All possible matchings appear with equal probabilities
§! Hence, the configuration model can be thought as the ensemble

in which each matching with the chosen degree sequence
appear with equal probability

l! However, configuration model has a few catches
§! The sum of the degrees need to be even
§! Self-edges and multi-edges might appear

ü!If we modify the process to remove these edges then the network
is no longer drawn uniformly from the set of possible matchings

ü!It can be shown that the density of these edges tends to 0
13

Configuration model

l! The total probability of a network is still N/! but now we
have N to depend on the structure of the network itself
§! Hence, different networks have different probabilities to appear

l! In the limit of large n though, the density of multi- and self-
edges is zero and hence, the variations in the above
probabilities are expected to be small

16

A slight modification

l! Some times we might be given the degree distribution pk
rather than the degree sequence

l! In this case we draw a specific degree sequence from this
distribution and work just as above

l! The two models are not very different
§! The crucial parameter that comes into calculations is the

fraction of nodes with degree k
ü!In the extended model this fraction is pk in the limit of large n
ü!In the standard configuration model this fraction can be directly

calculated from the degree sequence given

17

Edge probability

l! What is the probability of an edge between nodes i and j?
§! There are ki stubs at node i and kj at j

ü!The probability that one of the ki stubs of node i connects with one of
the stubs of node j is kj/(2m-1)

ü!Since there are ki possible stubs for vertex i the overall probability is:

§! The above formula is the expected number of edges between
nodes i and j but in the limit of large m the probability and mean
values become equal (why??)

18

pij =
kik j

2m !1
"

kik j

2m

Edge probability

l! What is the probability of having a second edge between i
and j?

§! This is basically the probability that there is a multi-edge
between vertices i and j

l! Summing over all possible pairs of nodes we can get the
expected number of multi-edges in the network:

§! The expected number of multi-edges remains constant as the
network grows larger, given that the moments are constant

19

pij,2 =
kik j (ki !1)(kj !1)

(2m)2

1
2(2m)2 kik j (ki !1)(kj !1)

ij
" = 1

2

k2 ! k

k

#

$
%
%

&

'
(
(

2

Edge probability

l! What is the probability of a self edge ?
§! The possible number of pairs between the kj stubs of node j is
½kj(kj-1). Hence:

l! Summing over all nodes we get the expected number of
self edges:

20

pjj =
1
2 kj (kj !1)

2m !1
"

kj (kj !1)
4m

pii
i
∑ =

k2 − k
2 k

Edge probability

l! What is the expected number nij of common neighbors
between nodes i and j?
§! Consider node i à Probability that i is connected with l: kikl/2m
§! Probability that j is connected to l (after node i connected to it):

kj(kl-1)/(2m-1)
§! Hence:

21

nij = kikl
2m

kj (kl !1)
2ml

" =
kik j
2m

kl (kl !1)
l"
n k

= pij
k2 ! k

k

Random graphs with given expected degree

l! The configuration model can be thought as an extension
of the G(n,m) random graph model

l! Alternatively, we can assign to each vertex i in the graph a
parameter ci and create an edge between two nodes i and j
with a probability cicj/2m
§! We need to allow for self- and multi-edges to keep the model

tractable
§! Hence the probability between edges i and j is:

22

p ij=

cicj
2m

, i ! j

ci
2

4m
, i = j

"

#
$
$

%
$
$

ci
i
∑ = 2m

Random graphs with given expected degree

l! Based on the above graph generation process we have:
§! Average number of edges in the network:

§! Average degree of node i:

l! Hence, ci is the average degree of node i
§! The actual degree on a realization of the model will differ in

general from ci

§! It can be shown that the actual degree follows Poisson
distribution with mean ci (unless if ci=0)

23

pij
i≤ j
∑ =

cicj
2mi< j

∑ +
ci
2

4mi
∑ =

cicj
4mij

∑ =m

ki = 2pii + pij
j≠i
∑ =

ci
2

2m
+

cicj

2mj≠i
∑ =

cicj

2mj
∑ = ci

Random graphs with given expected degree

l! Hence in this model we specify the expected degree
sequence {ci} (and consequently the expected number of
edges m), but not the actual degree sequence and number
of edges
§! This model is analogous to G(n,p)

l! The fact that the distribution of the expected degrees ci is
not the same as the distribution of the actual degrees ki
makes this model not widely used
§! Given our will to be able to choose the actual degree distribution

we will stick with the configuration model even if it is more
complicated

24

Neighbor’s degree distribution

l! Considering the configuration model, we want to find what
is the probability that the neighbor of a node has degree k
§! In other words, we pick a vertex i and we follow one of its

edges. What is the probability that the vertex at the other end of
the edge has degree k?

l! Clearly it cannot be simply pk
§! Counter example: If the probability we are looking for was pk it

means that the probability of this neighbor vertex to have
degree of zero is p0 (which is in general non-zero). However,
clearly this probability is 0!

25

Neighbor’s degree distribution

l! Since there are k stubs at every node of degree k, there is
a k/(2m-1) probability the edge we follow to end to a
specific node of degree k
§! In the limit of large network this probability can be simplified to

k/2m
§! The total number of nodes with degree k is npk
§! Hence the probability that a neighbor of a node has degree k is:

26

k
2m

npk = kpk

k
, since 2m = n k

Average degree of a neighbor

l! What is the average degree of an individual’s network
neighbor?
§! We have the degree probability of a neighbor, so we simply

need to sum over it:

§! Given that:

ü!Your friends have more friends than you! (Friendship paradox)
§! Even though this result is derived using the configuration model

it has been shown to hold true in real networks as well!

27

average degree of a neighbor= k kpk

kk
! =

k2

k

k2

k
! k = 1

k
k2 ! k 2() = ! k

2

k
" 0

Excess degree distribution

l! In many of the calculations that will follow we want to
know how many edges the neighbor node has except the
one that connects it to the initial vertex

l! The number of edges attached to a vertex other than the
edge we arrived along is called excess degree qk
§! The excess degree is 1 less than the actual degree. Hence:

28

qk =
(k +1)pk+1

k

Clustering coefficient

l! Recall that clustering coefficient is the probability that two
nodes with a common neighbor are neighbors themselves
§! Consider node u that has at least two neighbors, i and j
§! If the excess degrees of i and j are ki and kj respectively, then

the probability that they are connected with an edge is kikj/2m
§! Averaging over the excess distribution and both i and j we get:

29

13.4 CLUSTERING COEFFICIENT

As a simple application of the excess degree distribution, let us calculate the clustering coefficient
for the configuration model. Recall that the clustering coefficient is the average probability that
two neighbors of a vertex are neighbors of each other.

Consider then a vertex v that has at least two neighbors, which we will denote i and j. Being
neighbors of v, i and j are both at the ends of edges from v, and hence the number of other edges
connected to them, ki and kj are distributed according to the excess degree distribution, Eq. (13.46).
The probability of an edge between i and j is then kikj/2m (see Eq. (13.32)) and, averaging both ki
and kj over the distribution qk, we get an expression for the clustering coefficient thus:

(13.47)

where we have made use of 2m = n�k�, Eq. (6.23).
Like the clustering coefficient of the Poisson random graph, Eq. (12.11), this expression goes as

n-1 for fixed degree distribution, and so vanishes in the limit of large system size. Hence, like the
Poisson random graph, the configuration model appears to be an unpromising model for real-world
networks with high clustering. Note, however, that Eq. (13.47) contains the second moment �k2�
of the degree distribution in its numerator which can become large, for instance in networks with
power-law degree distributions (see Section 8.4.2). This can result in surprisingly large values of C
in the configuration model. For further discussion of this point see Section 8.6.

Clustering coefficient

l! As with the Poisson random graph, the clustering
coefficient of the configuration model goes as n-1 and
vanishes in the limit of large networks
§! Not very promising model for real networks with large clustering

coefficient

l! However, in the enumerator of the expression, there is
<k2>, which can be large in some networks depending on
the degree distribution
§! E.g., power law

30

Generating functions for degree distributions

l! We will denote the generating functions for the degree
distribution and the excess degree distribution as g0(z)
and g1(z) respectively

l! We can get the relation between the two generating
functions:

§! In order to find the excess degree distribution we simply need to
find the degree distribution

31

g0 (z) = pkz
k

k=0

∞

∑

g1(z) = qkz
k

k=0

∞

∑

g1(z) = 1
k

(k +1)pk+1z
k

k=0

!

" = 1
k

kpkz
k#1

k=0

!

" = 1
k

dgo

dz
= go

' (z)
g0

' (1)

Generating functions for degree distributions

l! Let us assume that the degree distribution follows a
Poisson distribution

l! The two generating functions are identical
§! This is one reason why calculations on Poisson random graph

are relatively straightforward

32

pk = e!c ck

k!

go(z) = e
c(z!1) " g1(z) =

cec(z!1)

c
= ec(z!1) = go(z)

Generating functions for degree distributions

l! Let us assume a power law degree distribution:

33

pk = k!

" (!)
! g0 (z) = Li! (z)

" (!)

g1(z) =
Li!!1(z)

zLi!!1(z!1)
= Li!!1(z)
z" (! !1)

Number of second neighbors of a vertex

l! Let us calculate the probability that a vertex has exactly k
second neighbors

§! P(2)(k|m) is the conditional probability of having k second
neighbors given that we have m direct neighbors

l! The number of second neighbors of a vertex is essentially
the sum of the excessive degrees of its first neighbors
§! The probability that the excess degree
of the first neighbors is j1,…,jm is:

34

pk
(2) = pmP(2)(k | m)

m=0

∞

∑

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX

Armed with these results, we are now in a position to make some more detailed calculations of
the properties of the configuration model. The first question we will address is a relatively simple
one: what is the probability that a vertex has exactly k second neighbors in the network?

Let us break this probability down by writing it in the form

(13.57)

where P(2)(k|m) is the probability of having k second neighbors given that we have m first
neighbors and pm is the ordinary degree distribution. Equation (13.57) says that the total
probability of having k second neighbors is the probability of having k second neighbors given that
we have m first neighbors, averaged over all possible values of m. We assume that we are given
the degree distribution pm; we need to find P(2) (k|m) and then complete the sum.

Figure 13.4: Calculation of the number of second neighbors of a vertex. The number of second
neighbors of a vertex (top) is equal to the sum of the excess degrees of the first neighbors.

As illustrated in Fig. 13.4, the number of second neighbors of a vertex is equal to the sum of the
excess degrees of the first neighbors. And as discussed in the previous section, the excess degrees
are distributed according to the distribution qk, Eq. (13.46), so that the probability that the excess
degrees of our m first neighbors take the values j1 . . . jm is . Summing over all sets of values
j1 . . . jm, the probability that the excess degrees sum to k and hence that we have k second
neighbors is

qjr
r=1

m

!

Number of second neighbors of a vertex

l! Summing over all sets of values that sum up to m we get:

l! Therefore

l! Using the probability generator function g(2)(z) we get:

35

P(2)(k | m) = ...
j2=0

!

" !(k, jrr") qjr
r=1

m

#
jm=0

!

"
j1=0

!

"

pk
(2) = pm

m=0

!

" ...
j2=0

!

" !(k, jrr") qjr
r=1

m

#
jm=0

!

"
j1=0

!

"

(13.58)

Substituting this expression into (13.57), we find that

(13.59)

By now, you may be starting to find sums of this type familiar. We saw them previously in Eqs.
(12.25) and (13.27), for example. We can handle this o ne by the same trick we used before:
instead of trying to calculate directly, we calculate instead its generating function g(2) (z) thus:

(13.60)

But now we notice an interesting thing: the sum in square brackets in the last line is none other
than the generating function g1(z) for the excess degree distribution, Eq. (13.49). Thus Eq. (13.60)
can be written as

(13.61)

where g0(z) is the generating function for the ordinary degree distribution, defined in Eq. (13.48).
So once we know the generating functions for our two basic degree distributions the generating
function for the distribution of the second neighbors is very simple to calculate.

Number of second neighbors of a vertex

l! The quantity in brackets is the probability generator
function of qk

l! The above equation reveals that once we know the
generating functions for the vertices degrees and the
vertices excessive degree we can find the probability
distribution of the second neighbors

l! Is there an easier way to derive the above result ?

36

g(2)(z) = pm (g1(z))
m

m=0

∞

∑ = g0 (g1(z))

Number of d-hop neighbors

l! Similarly we can calculate the number of 3-hop neighbors
§! Assuming m second neighbors (2-hop neighbors), the number

of 3-hop neighbors is the sum of the excess degree of each of
the second neighbors
ü!P(3)(k|m) is the probability of having k 3-hop neighbors, given that

we have m 2-hop neighbors
o! Similar to above P(3)(k|m) has generating function [g1(z)]2

37

!"#$%&'(# ')*+*#,%-#".#"**/#'.#0.#')+.10)#')2-# 3*"0')4#&%3&13%'2."#'.#+*%&)#567#89:7;9<7#=*#&%"#
/*+2>*#')*#-%?*#+*-13'#?1&)#?.+*#612&@34#A4#?%@2"0#1-*#.$#')*#BC.,*+-D#C+.C*+'4#.$#0*"*+%'2"0#
$1"&'2."-#')%'#,*#/*+2>*/#2"#E*&'2."#9:797F7#G)*+*#,*#-).,*/#8567#89:7HI<<#')%'(#02>*"#%#61%"'2'4#k#
/2-'+2A1'*/# %&&.+/2"0# '.# %# /2-'+2A1'2."# ,2')# 0*"*+%'2"0# $1"&'2."# g8z<(# m# 2"/*C*"/*"'# 61%"'2'2*-#
/+%,"# $+.?# ')*# -%?*# /2-'+2A1'2."#)%>*# %# -1?# ,).-*# /2-'+2A1'2."# 2-# 02>*"# A4# ')*# 0*"*+%'2"0#
$1"&'2."# Jg8z<Km7#=*# &%"# %CC34# ')2-# +*-13'#)*+*(# A4# ".'2"0# ')%'# ')*# m# *L&*--# /*0+**-# .$# ')*# $2+-'#
"*20)A.+-# .$# .1+# >*+'*L# %+*# M1-'# -1&)# %# -*'# .$# 2"/*C*"/*"'# 61%"'2'2*-7# N2>*"# ')%'# g98z<# 2-# ')*#
0*"*+%'2"0#$1"&'2."#$.+#')*#/2-'+2A1'2."#.$#%#-2"03*#."*#.$#')*?#8567#89:7FO<<(#')*#/2-'+2A1'2."#P8H<

8kPm<#.$# ')*2+# -1?Q,)2&)# 2-# ')*#"1?A*+#.$# -*&."/#"*20)A.+-Q)%-#0*"*+%'2"0# $1"&'2."# Jg98z<Km7#
G)%'#2-(

#

89:7;H<#
##

R.,(#1-2"0#567#89:7ST<(#')*#0*"*+%'2"0#$1"&'2."#$.+# #2-

#

89:7;:<#
##

!"#$1'1+*#&%3&13%'2."-(#,*#,233#+*C*%'*/34#?%@*#1-*#.$#')2-#-).+'&1'#'.#0*'#.1+#+*-13'-(#+%')*+#')%"#
'%@2"0#')*#3."0#+.1'*#*L*?C32$2*/#2"#567#89:7;U<7#

=*#&%"#%3-.#1-*#-2?23%+#?*')./-#'.#&%3&13%'*#')*#C+.A%A232'4#/2-'+2A1'2."#.$#')*#"1?A*+#.$#')2+/#
"*20)A.+-7#G)*#"1?A*+#.$#')2+/#"*20)A.+-#2-#')*#-1?#.$#')*#*L&*--#/*0+**-#.$#*%&)#.$#')*#-*&."/#
"*20)A.+-7#G)1-(#2$#')*+*#%+*#m#-*&."/#"*20)A.+-(#')*"#')*#C+.A%A232'4#/2-'+2A1'2."#P8:<#8kPm<#.$#')*#
"1?A*+#.$#')2+/#"*20)A.+-#)%-#0*"*+%'2"0#$1"&'2."#Jg98z<Km#%"/#')*#.>*+%33#C+.A%A232'4#.$#)%>2"0#k#
')2+/#"*20)A.+-#2-#*L%&'34#%"%3.0.1-#'.#567#89:7;:<V

#

89:7;F<#

#

#

#

#

#

Number of d-hop neighbors

l! This can generalize to d-hop distance neighbors:

l! The above holds true for all distances d in an infinite
graph

l! At a finite graph, it holds true for small values of d

l! It is difficult to use the above equation to obtain closed
forms for the probabilities of the size of d-hop
neighborhoods
§! We can calculate averages though

38

g(d) (z) = g0 (g1(...g1(z)...))
d−1

! "## $##

Average number of d-hop neighbors

l! What is the average size of the 2-hop neighborhood?
§! We need to evaluate the derivative of g(2)(z) at z=1

§! g1(1)=1 and hence the average number of second neighbors is
c2=g’0(1)g’1(1)
ü!g’0(1)=<k> and

39

dg(2)

dz
= g0

' (g1(z))g1
' (z)

(13.68)

But and

(13.69)

where we have used Eq. (13.46). Thus the mean number of second neighbors can also be written

(13.70)

We can take this approach further and calculate the mean number cd of neighbors at any distance
d. Differentiating Eq. (13.65) we get

(13.71)

and setting z = 1 we get

(13.72)

c2 = k2 − k

Average number of d-hop neighbors

l! The average number of d-hop neighbors is given by:

l! Hence,

l! The average number of neighbors at distance d increases

or falls exponentially to d
§! If this number increase then we must have a giant component
§! Hence, the configuration model exhibits a giant component iff

c2>c1, which can be written as:

40

cd =
dg(d)

dz z=1 = g
(d!1)' (g1(z))g1

' (z) z=1 = g
(d!1)' (1)g1

' (1) = cd!1g1
' (1), g1

' (1) = c2

go
' (1)

= c2

k
= c2

c1

cd = cd!1
c2

c1

= c2

c1

"

#
$

%

&
'

d!1

c1

k2 ! 2 k > 0

Giant component

l! Given that "s is the probability that a randomly selected
node belongs to a small component of size s, the
probability that a randomly chosen node belongs to a
small component is:

l! Hence, the probability that a node belongs to the giant
component is S = 1 – h0(1) = 1 – g0(h1(1))
§! Note that h0(1) is not necessarily 1 as with most probability

generator functions
§! Given that h1(1)=g1(h1(1)) à S=1-g0(g1(h1(1)))

l! Setting h1(1)=u we get
§! u=g1(u) and hence,
§! S=1-go(g1(u))=1-g0(u)

46

π ss! = h0 (1)

Giant component

l! For the above equations it is obvious that u is a fixed point
of g1(z)
§! One trivial fixed point is z=1, since g1(1)=1
§! With u=1 though, we have S=1-g0(1)=0, which corresponds to

the case we do not have giant component
§! Hence, if there is to be a giant component there must be at least

one more fixed point of g1(z)
l! What is the physical interpretation of u?

§! ρs is the probability that a vertex at the end of any edge belongs

to a small component of size s
ü!Hence, the above sum is the total probability that such a vertex

does not belong to the giant component
47

u = h1(1) = !ss∑

Graphical solution

l! When we can find the fixed point of g1 everything becomes
easier
§! However, most of the times this is not possible

ü!Graphical solution

l! g1(z) is proportional to the probabilities qk and hence for
z$0 is in general positive
§! Furthermore, its derivatives are also proportional to qk and

hence are in general positive
§! Thus, g1(z) is positive, increase and upward concave

48

Mean component sizes

l! Using an approach similar to that with the Poisson random
graph we can calculate some average quantities

l! The mean size of the component of a randomly chosen
vertex is given by:

§! Eventually, after some calculations we get:

l! As with the random Poisson graph the above calculation
is biased
§! Following similar calculations we get the actual average small

component size:
50

s =
s! ss!
! ss!

= h0
' (1)

1" S
= h0

' (2)
g0 (u)

s =1+ g0
' (1)u2

g0 (u)[1! g1
' (u)]

R = 2
2 ! k u2

1!S

Random graphs with power law degree

l! The above result is of little practical importance since
rarely we have a pure power law degree distribution
§! We have seen that a distribution that follows a power law at its

tail will have a finite <k2> iff α>3, and a finite <k> iff α>2
ü!Hence, if 2<α≤3 à a giant component always exists
ü!When α>3 à a giant component might or might not exist
ü!When α≤2 à a giant component always exists

53

Random graphs with power law degree

l! What is the size S of the giant component when one
exists?
§! Recall, S=1-g0(u), where u is a fixed point of g1
§! For a pure power law we have:

§! Hence,

§! The enumerator is strictly positive for non-negative values of u
ü!Hence, u=0 iff ζ(α-1) diverges
ü! ζ(α-1) diverges for α≤2

54

g1(z) = Li!!1(z)
z" (! !1)

u = Li!!1(u)
u" (! !1)

=
k!!+1uk

k=1

"

#
u" (! !1)

=
(k +1)!!+1uk

k=0

"

#
" (! !1)

Random graphs with power law degree

l! Hence, for &'2, u=0 ! There is a giant component with
S=1-g0(0)=1-p0=1!
§! The giant component fills the whole network !
§! Of course this holds true at the limit of large n

l! For 2<&'3.4788… there is a giant component that fills a
proportion S of the network

l! For &>3.4788… there is no giant component (i.e., S=0)

55

