FINAL EXAM : Math 1350 : Fall 2014 GOOD LUCK!!!

Problem 1. (5pts)
It is known that S is a smooth surface in \mathbb{R}^{3} and that $f_{1}: U_{1} \rightarrow \mathbb{R}^{3}$ and $f_{2}: U_{2} \rightarrow \mathbb{R}^{3}$ are two local charts of S around some point $p \in S$, such that $f_{1}(0)=f_{2}(0)=p$. An absent-minded student from a differential geometry class computed the transition map $\left(f_{2}\right)^{-1} \circ f_{1}$ and scribbled the answer on a scrap of paper. Later, he found four pieces of paper with the following formulae:
(a) $u=x^{2}+y+z, \quad v=e^{x-\sin y} z$,
(b) $u=\sqrt{x}, \quad v=x^{1 / 7}$,
(c) $u=20, \quad v=2$,
(d) $u=-x+\frac{y}{x+1}, \quad v=\frac{e^{y}}{x+1}$,
(e) $u=x+y, \quad v=2 x$

He knows that one of these five is the right answer and the other four are notes from a computational economics tutorial. Which of the formulae (a)-(e) represents the transition map? Explain your answers.

Problem 2. (15pts)
Calculate the Frenet frame, the curvature and torsion of the following curve in \mathbb{R}^{3} :

$$
\gamma(t)=(\cos t, \sin t, t) \quad t \in(-1,1)
$$

Problem 3. (20pts)
Let S be a surface of revolution with parametrization: $\sigma(u, v)=(\phi(u) \cos v, \phi(u) \sin v, u)$.
(1) Find the principal directions, the principal curvatures, and the Gaussian curvature of S.
(2) Show that any meridian curve $v \equiv v_{0}$ is a geodesic. Show that a horisontal curve $u \equiv u_{0}$ is a geodesic if and only if $\phi^{\prime}\left(u_{0}\right)=0$.

Problem 4. (20pts)
Write the formula for or disprove existence of a diffeomorphism between an open subset of the plane \mathbb{R}^{2} and an open subset of the unit sphere \mathbb{S}^{2} which:
(1) preserves the angles (conformal diffeomorphim).
(2) preserves the area (equiareal diffeomorphism).
(3) preserves the lengths of curves (isometry).

Problem 5. (20pts)
Let S be a compact surface in \mathbb{R}^{3}.
(1) Show that the Gauss map $\mathcal{G}: S \rightarrow \mathbb{S}^{2}$ is surjective.
(2) Show that $\int_{S} \max \{\kappa, 0\} \mathrm{d} \mathcal{A} \geq 4 \pi$ (where κ denotes the Gaussian curvature of S).
(3) Deduce that for S with non-zero genus, there also must hold: $\int_{S} \max \{-\kappa, 0\} \mathrm{d} \mathcal{A} \geq 4 \pi$.

