FINAL EXAM : Math 1350 : Fall 2014 GOOD LUCK!!!

Problem 1. (5pts)

It is known that S is a smooth surface in \mathbb{R}^3 and that $f_1: U_1 \to \mathbb{R}^3$ and $f_2: U_2 \to \mathbb{R}^3$ are two local charts of S around some point $p \in S$, such that $f_1(0) = f_2(0) = p$. An absent-minded student from a differential geometry class computed the transition map $(f_2)^{-1} \circ f_1$ and scribbled the answer on a scrap of paper. Later, he found four pieces of paper with the following formulae:

(a) $u = x^2 + y + z$, $v = e^{x - \sin y} z$, (b) $u = \sqrt{x}$, $v = x^{1/7}$, (c) u = 20, v = 2, (d) $u = -x + \frac{y}{x+1}$, $v = \frac{e^y}{x+1}$, (e) u = x + y, v = 2x

He knows that one of these five is the right answer and the other four are notes from a computational economics tutorial. Which of the formulae (a)-(e) represents the transition map? Explain your answers.

Problem 2. (15pts) Calculate the Frenet frame, the curvature and torsion of the following curve in \mathbb{R}^3 :

$$\gamma(t) = (\cos t, \sin t, t) \qquad t \in (-1, 1)$$

Problem 3. (20pts)

Let S be a surface of revolution with parametrization: $\sigma(u, v) = (\phi(u) \cos v, \phi(u) \sin v, u)$.

(1) Find the principal directions, the principal curvatures, and the Gaussian curvature of S.

(2) Show that any meridian curve $v \equiv v_0$ is a geodesic. Show that a horisontal curve $u \equiv u_0$ is a geodesic if and only if $\phi'(u_0) = 0$.

Problem 4. (20pts)

Write the formula for or disprove existence of a diffeomorphism between an open subset of the plane \mathbb{R}^2 and an open subset of the unit sphere \mathbb{S}^2 which:

- (1) preserves the angles (conformal diffeomorphim).
- (2) preserves the area (equiareal diffeomorphism).
- (3) preserves the lengths of curves (isometry).

Problem 5. (20pts)

Let S be a compact surface in \mathbb{R}^3 .

- (1) Show that the Gauss map $\mathcal{G}: S \to \mathbb{S}^2$ is surjective.
- (2) Show that $\int_{S} \max\{\kappa, 0\} \, d\mathcal{A} \ge 4\pi$ (where κ denotes the Gaussian curvature of S).
- (3) Deduce that for S with non-zero genus, there also must hold: $\int_S \max\{-\kappa, 0\} \, d\mathcal{A} \ge 4\pi$.