MIDTERM 2 : Math 1350 : Fall 2014
 GOOD LUCK!!!

Problem 1. (15pts)
Consider the helicoid S parametrised by:

$$
\sigma(u, v)=(v \cos u, v \sin u, u) \quad \forall(u, v) \in \mathbb{R}^{2}
$$

(1) Show that σ above is a regular parametrisation of a ruled surface.
(2) Compute the Gaussian curvature and the mean curvature of S.

Problem 2. (15pts)
(1) State the definition of a geodesic curve on a surface S and prove that it must have constant speed.
(2) Prove that every geodesic has zero geodesic curvature.
(3) Is the curve: $\gamma(t)=\sigma\left(\frac{t}{\sqrt{10}}, 3\right)$ a geodesic on the surface S in problem 1?

Problem 3. (20pts)
Let S be an oriented surface, whose unit normal vector at a point $p \in S$ we denote by $N(p)$. For every $\lambda \in \mathbb{R}$ such that $|\lambda| \ll 1$ is very small, define:

$$
S^{\lambda}=\{p+\lambda N(p) ; p \in S\}
$$

(1) Prove that S^{λ} is an oriented surface and find its normal vector N^{λ}.
(2) Find the Weingarten map \mathcal{W}^{λ} of S^{λ} in terms of the Weingarten map \mathcal{W} of S.
(3) Prove that the principal curvatures of S^{λ} are given by:

$$
\kappa_{1}^{\lambda}=\frac{\kappa_{1}}{1-\lambda \kappa_{1}}, \quad \kappa_{2}^{\lambda}=\frac{\kappa_{2}}{1-\lambda \kappa_{2}}
$$

where κ_{1} and κ_{2} are the principal curvatures of S.

