MIDTERM 1 : Math 1700 : Spring 2014 GOOD LUCK!!!

Problem 1. (5+5 points)

Let (X, d) be a metric space.

(i) Show that if a ball in X of radius 7 is a subset of a ball of radius 3, then these balls must be the same.

(ii) Can a ball in X of radius 4, be a proper subset of a ball of radius 3?

Problem 2. (10+5 points)

Let $\{X_{\alpha}\}$ be a family of topological spaces. For each α , let A_{α} be a subset of X_{α} . (i) Prove that: $\prod_{\alpha} A_{\alpha} = \prod_{\alpha} \bar{A}_{\alpha}$, where the closure in the left hand side is taken with respect to the product topology. (ii) Is the same true for the box topology?

Problem 3. (5+10 points)

Let X, Y be two topological spaces, and let $f : X \to Y$ be a function. (i) Prove that if f is continuous, then for every convergent sequence $x_n \to x_0$ in X, the sequence $f(x_n)$ converges to $f(x_0)$ in Y. (ii) Is the converse true?

Problem 4. (10 points)

Let X and Y be two topological spaces and let Y be Hausdorff. Given a function $f: X \to Y$, define G_f (called the graph of f) to be the subspace:

$$G_f = \{(x, f(x)); x \in X\}$$

of $X \times Y$. Prove that if f is continuous, then G_f is closed.

Bonus Problem. (15 points)

Prove that the cartesian product of an arbitrary family of connected topological spaces is connected in the product topology.