## MIDTERM 1 : Math 1700 : Spring 2014 <br> GOOD LUCK!!!

Problem 1. ( $5+5$ points)
Let $(X, d)$ be a metric space.
(i) Show that if a ball in $X$ of radius 7 is a subset of a ball of radius 3 , then these balls must be the same.
(ii) Can a ball in $X$ of radius 4, be a proper subset of a ball of radius 3 ?

Problem 2. ( $10+5$ points)
Let $\left\{X_{\alpha}\right\}$ be a family of topological spaces. For each $\alpha$, let $A_{\alpha}$ be a subset of $X_{\alpha}$.
(i) Prove that: $\overline{\prod_{\alpha} A_{\alpha}}=\prod_{\alpha} \bar{A}_{\alpha}$, where the closure in the left hand side is taken with respect to the product topology.
(ii) Is the same true for the box topology?

Problem 3. ( $5+10$ points)
Let $X, Y$ be two topological spaces, and let $f: X \rightarrow Y$ be a function.
(i) Prove that if $f$ is continuous, then for every convergent sequence $x_{n} \rightarrow x_{0}$ in $X$, the sequence $f\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$ in $Y$.
(ii) Is the converse true?

Problem 4. (10 points)
Let $X$ and $Y$ be two topological spaces and let $Y$ be Hausdorff. Given a function $f: X \rightarrow Y$, define $G_{f}$ (called the graph of $f$ ) to be the subspace:

$$
G_{f}=\{(x, f(x)) ; x \in X\}
$$

of $X \times Y$. Prove that if $f$ is continuous, then $G_{f}$ is closed.
$===================$
Bonus Problem. (15 points)
Prove that the cartesian product of an arbitrary family of connected topological spaces is connected in the product topology.

