
MIDTERM 1 : Math 1700 : Spring 2014
SOLUTIONS

Problem 1. (5+5 points)
Let (X, d) be a metric space.
(i) Show that if a ball in X of radius 7 is a subset of a ball of radius 3, then these
balls must be the same.
(ii) Can a ball in X of radius 4, be a proper subset of a ball of radius 3?

(i) Let B(x, 7) ⊂ B(y, 3). Take any z ∈ B(y, 3) and note that: d(z, x) ≤ d(z, y)+
d(y, x) < 3 + 3 = 6 < 7. Consequently: B(y, 3) ⊂ B(x, 7).

(ii) Yes, this is possible. Let X = {−5/2, 0, 5/2} be the subspace of R, inheriting
its (Euclidean) metric. Then B(0, 3) = X and B(5/2, 4) = {0, 5/2}.

Problem 2. (10+5 points)
Let {Xα} be a family of topological spaces. For each α, let Aα be a subset of Xα.

(i) Prove that:
∏
α

Aα =
∏
α

Āα, where the closure in the left hand side is taken

with respect to the product topology.
(ii) Is the same true for the box topology?

We will prove that the desired equality is valid in both box and product topologies.

We first prove the inclusion “⊂”. Take any f ∈
∏
Aα. Fix an index α0; we want

to show that f(α0) ∈ Aα0
. Take any open set Uα0

⊂ Xα0
, so that f(α0) ∈ Uα0

.
Consider the set U =

∏
Uα, where Uα0 is given and ∀α 6= α0 we put Uα = Xα.

Then U is open in both topologies and it contains f . Therefore there exists g ∈∏
Aα ∩

∏
Uα, and consequently g(α0) ∈ Aα0

∩ Uα0
. Hence f(α0) ∈ Aα0

.

We now prove the inclusion “⊃”. Given f ∈
∏
Aα, take any basis element∏

Uα in the topology under consideration, which contains f . Then for all indices
α, we have: f(α) ∈ Aα ∩ Uα. Hence there exists g(α) ∈ Aα ∩ Uα. Consequently:

g ∈
∏
Aα ∩

∏
Uα, which implies that f ∈

∏
Aα.

Problem 3. (5+10 points)
Let X,Y be two topological spaces, and let f : X → Y be a function.
(i) Prove that if f is continuous, then for every convergent sequence xn → x0 in X,
the sequence f(xn) converges to f(x0) in Y .
(ii) Is the converse true?

(i) Let U be an open set in Y containing f(x0). Since f−1(U) is open, there
exists N such that xn ∈ f−1(U) for all n ≥ N . Therefore f(xn) ∈ U for all n ≥ N ,
which establishes the claim.

(ii) The converse is not true. Consider the topological space X = R with the
topology given by the empty set, and the sets whose complements are countable. Let
Y = R be standard Euclidaen topological space, and let f : X → Y be the identity
map. Notice first that f is not continuous, because f−1((0,∞)) = (0,∞) is not
open in X.

On the other hand, f is sequentially continuous. Indeed, a sequence xn converges
to x0 in X if and only if there exists N such that xn = x0 for all n ≥ N . Clearly,
f(xn) = xn converges then to f(x0) = x0 in Y .
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Problem 4. (10 points)
Let X and Y be two topological spaces and let Y be Hausdorff. Given a function
f : X → Y , define Gf (called the graph of f) to be the subspace:

Gf = {(x, f(x)); x ∈ X}
of X × Y. Prove that if f is continuous, then Gf is closed.

We will show that (X×Y )\Gf is open. Take (x0, y0) 6∈ Gf , so that y0 6= f(x0).
Since Y is Hausdorff, there exists two open disjoint sets U1 and U2, such that
y0 ∈ U1 and f(x0) ∈ U2. Then the set f−1(U2) × U1 is open in X × Y (in view
of continuity of f) and it contains the point (x0, y0). Note also that for every
x ∈ f−1(U2) there is: f(x) ∈ U2 so f(x) 6∈ U1. Consequently: f−1(U2) × U1 ⊂
(X × Y ) \Gf .

====================

Bonus Problem. (15 points)
Prove that the cartesian product of an arbitrary family of connected topological
spaces is connected in the product topology.

Let {Xα}α∈A be a family of connected topological spaces. We will show that the
space X =

∏
α∈AXα is connected.

For every α ∈ A, choose a point aα ∈ Xα. Given any finite subset B ⊂ A,
consider the following subspace of X, which is homeomorpic to

∏
α∈B Xα, hence

connected (we use here the theorem that the Cartesian product of finitely many
connected spaces is connected):

ZB =
∏
α∈A

Cα, where Cα =

{
Xα if α ∈ B
{aα} if α 6∈ B .

Note that: ⋂
B⊂A; B finite

ZB =
∏
α∈A
{aα}.

When the intersection of the connected spaces is nonempty, their union is connected,
so the space:

Z =
⋃

B⊂A; B finite

ZB

is a connected subspace of X.
Now we will show that Z̄ = X, which will end the proof of connectivity of X.

Take any point
∏
{xα} ∈ X and take its arbitrary open neighbourhood V in the

produt topology in X. The set V must contain another open neighbourhood U of
the same point, of the form: U =

∏
α∈A Uα, where for all α outside of a finite set

B ⊂ A we have Uα = Xα. Then:

(ZB ∩ U) 3
∏
α∈A
{cα}, where cα =

{
xα if α ∈ B
aα if α 6∈ B .

Hence: Z ∩ U 6= ∅, and it follows that:
∏
{xα} ∈ Z̄. This ends the proof.


