MIDTERM 2 : Math 1700 : Spring 2014 SOLUTIONS

Problem 1. (10 points)

Let X be a compact topological space and for each $i \in \mathbb{N}$ let $F_i \subset X$ be a closed, nonempty subset of X. Assume further that the subsets F_i are nested, i.e.:

$$\forall i \quad F_{i+1} \subset F_i.$$

Using only the definition of compactness, prove that the set $\bigcap_{i=1}^{\infty} F_i$ is nonempty.

Assume, by contradiction, that $\bigcap_{i=1}^{\infty} F_i = \emptyset$. Then, the sequence of open sets $U_n = X \setminus F_n$ is a covering of X. Notice that this sequence is increasing, i.e. $U_n \subset U_{n+1}$. By compactness of X, $\{U_n\}$ has a finite subcovering: $X = \bigcup_{i=1}^N U_n$. But this implies that $U_N = X$, contradiction with $F_N \neq \emptyset$.

Problem 2. (10 points)

Let X and Y be two topological spaces. Show that $X \times Y$ (with the product topology) is separable if and only if X and Y are both separable.

" \Rightarrow ": Let $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ be a dense countable subset of $X \times Y$. Then $\{a_n\}_{n \in \mathbb{N}}$ is a dense countable subset of X. To prove the density, take an open set $U \subset X$. Then $U \times Y$ is open in $X \times Y$, so it contains some (a_n, b_n) . Consequently, $a_n \in U$. Separability of Y is proven in the same manner.

" \Leftarrow ": Let $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ be dense countable subsets of, respectively, X and Y. Then $\{(a_m, b_n)\}_{m,n\in\mathbb{N}}$ is a dense countable subset of $X \times Y$. To prove the density, let $U \times V$ be any basis open subset of $X \times Y$. Then for some m, n we have: $a_m \in U$ and $b_n \in V$. Consequently, $(a_m, b_n) \in U \times V$.

Problem 3. (10 points)

Let X be a topological space which is completely regular (i.e. $T_{3\frac{1}{2}}$). Let $A, B \subset X$ be two closed, disjoint subsets, and assume that A is compact. Prove that there exists a continuous function $f: X \to [0, 1]$ such that $f_{|A} = 0$ and $f_{|B} = 1$.

Since X is $T_{3\frac{1}{2}}$, for every $a \in A$ there exists a continuous function $f_a : X \to [0,1]$ such that $f_a(a) = 0$ and $(f_a)_{|B} = 1$. Consider the open sets $U_a = (f_a)^{-1}(-\infty, \frac{1}{2})$, which cover the set A. By compactness, there exists a finite subcover $\{U_{a_i}\}_{i=1}^N$.

Define the function $g: X \to [0,1]$ by: $g(x) = \prod_{i=1}^{N} f_{a_i}(x)$. Clearly, g is continuous and $g_{|B} = 1$. Further, for every $x \in A$ there is i: 1..N so that $f_{a_i}(x) < \frac{1}{2}$, so that: $g(x) < \frac{1}{2}$. We hence see that $g(A) \subset [0, \frac{1}{2}]$.

Let $h: [0,1] \to [0,1]$ be a continuous function such that $h_{|[0,1/2]} = 0$ and h(1) = 1. Then $f := h \circ g: X \to [0,1]$ is a continuous function with the desired properties.

Problem 4. (10 points)

Show that if X is a locally compact Hausdorff space then its one-point compactification is also Hausdorff.

We know that any one-point compactification of X is homeomorphic to the space $Y = X \cup \{a\}$ where the topology is given by: the collection of U open subsets of X and sets $\{a\} \cup (X \setminus C)$ for all compact subsets C of X.

It is enough to show that Y is Hausdorff. Take $x \neq y$ in Y. We have to show that x, y can be separated by two disjoint open sets in Y. In the first case: $x, y \in X$. Using X being Hausdorff, there are two disjoint open sets in X (hence open sets in Y) such that $x \in U$ and $y \in V$.

In the second case x = a and $y \in X$. By local compactness of X, there is an open set U and a compact set C such that $y \in U \subset C \subset X$. Then $Y \setminus C$ is an open neighbourhood of a in Y, which is disjoint from U. This ends the proof.

Problem 5. (10 points)

Let (X, d) be a metric space.

- (i) If X is Lindelöf, show that X is second countable.
- (ii) If X is separable, show that X is second countable.

(i) For every $n \in \mathbb{N}$ consider the following open cover of $X: \{B(x, \frac{1}{n})\}_{x \in X}$. By the Lindelöf property, choose a countable subcover \mathcal{B}_n . Then $\mathcal{B} := \bigcup_{n=1}^{\infty} \mathcal{B}_n$ is countable and it generates a (countable) basis of the metric topology in X. To prove this last property, fix $x \in U$ an open subset of X. Clearly $B(x, \epsilon) \subset U$, for some $\epsilon > 0$. By construction of \mathcal{B} , there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x \in B(x_n, \frac{1}{n})$ for all $n \in \mathbb{N}$. Consequently, $d(x_n, x) < \frac{1}{n}$ and so $x_n \to x$ as $n \to \infty$. In particular, there must be: $B(x_n, \frac{1}{n}) \subset B(x, \epsilon) \subset U$ for $n > \frac{2}{\epsilon}$ large enough, because:

$$\forall y \in B(x_n, \frac{1}{n}) \qquad d(y, x) \le d(y, x_n) + d(x_n, x) < \frac{1}{n} + \frac{1}{n} < \epsilon.$$

(ii) Let $\{x_n\}_{n\in\mathbb{N}}$ be a countable dense subset of X. Then $\{B(x_n, \frac{1}{m}); n, m \in \mathbb{Z}\}$ is countable and it generates a (countable) basis of the metric topology in X. To prove this last property, fix $x \in U$ an open subset of X. Clearly $B(x, \epsilon) \subset U$, for some $\epsilon > 0$. Take n, m such that $d(x, x_n) < \frac{\epsilon}{2}$ and $m > \frac{2}{\epsilon}$. Then $B(x_n, \frac{1}{m}) \subset B(x, \epsilon) \subset U$, because:

$$\forall y \in B(x_n, \frac{1}{m}) \qquad d(y, x) \leq d(y, x_n) + d(x_n, x) < \frac{1}{m} + d(x_n, x) < \epsilon.$$

Bonus Problem. (20 points) (Only complete/almost-complete solution to this problem will be awarded points)

Let (X, d) be a metric space. Show that X is compact if and only if every continuous function $f: X \to \mathbb{R}$ is bounded.

" \Rightarrow ": Let $f : X \to \mathbb{R}$ be a continuous function. Since X is compact, f(X) is compact. Since compact subsets of \mathbb{R} are bounded, f is bounded.

" \Leftarrow ": Suppose that the metric space X is not compact, so that there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ with no convergent subsequence. Let A be the set of points in this sequence. We first claim that A is a closed subset with the discrete topology.

To see that A is closed, let $y \notin A$. Suppose that for all $\epsilon > 0$ there is an element of A contained in $B(y, \epsilon)$. Then we may inductively dene a subsequence converging to y by letting x_{n_i} be a point in $B(y, \epsilon)$ for $\epsilon = d(y, x_{n_{i-1}})/2$. Since there is no subsequence converging to y, we see that there is some $\epsilon > 0$ such that $B(y, \epsilon)$ is disjoint from A. Thus A is closed.

To see that A has the discrete topology, choose $x \in A$. Suppose that for all $\epsilon > 0$ there is an element of $A \setminus \{x\}$ contained in $B(x, \epsilon)$. Then we may inductively dene a subsequence converging to x by letting x_{n_i} be a point in $B(x, \epsilon) \setminus \{x\}$ for $\epsilon = d(y, x_{n_{i-1}})/2$. Since there is no subsequence converging to x, we see that there is some $\epsilon > 0$ such that $B(x, \epsilon) - \{x\}$ is disjoint from A. Thus A has the discrete topology.

Since $\{x_n\}_{n\in\mathbb{N}}$ has no convergent subsequence, A must have innitely many elements. Thus we can choose a surjection $f : A \to \mathbb{Z}$. Since A is discrete, f is continuous. By the Tietze extension theorem, f can be extended to a (necessarily unbounded) continuous function $g : X \to \mathbb{R}$. As this contradicts the hypotheses, it follows that X is compact.