MIDTERM 2 : Math 1700 : Spring 2014
 SOLUTIONS

Problem 1. (10 points)
Let X be a compact topological space and for each $i \in \mathbb{N}$ let $F_{i} \subset X$ be a closed, nonempty subset of X. Assume further that the subsets F_{i} are nested, i.e.:

$$
\forall i \quad F_{i+1} \subset F_{i} .
$$

Using only the definition of compactness, prove that the set $\bigcap_{i=1}^{\infty} F_{i}$ is nonempty.
Assume, by contradiction, that $\bigcap_{i=1}^{\infty} F_{i}=\emptyset$. Then, the sequence of open sets $U_{n}=X \backslash F_{n}$ is a covering of X. Notice that this sequence is increasing, i.e: $U_{n} \subset U_{n+1}$. By compactness of $X,\left\{U_{n}\right\}$ has a finite subcovering: $X=\cup_{i=1}^{N} U_{n}$. But this implies that $U_{N}=X$, contradiction with $F_{N} \neq \emptyset$.

Problem 2. (10 points)
Let X and Y be two topological spaces. Show that $X \times Y$ (with the product topology) is separable if and only if X and Y are both separable.
$" \Rightarrow$ ": Let $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$ be a dense countable subset of $X \times Y$. Then $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a dense countable subset of X. To prove the density, take an open set $U \subset X$.Then $U \times Y$ is open in $X \times Y$, so it contains some $\left(a_{n}, b_{n}\right)$. Consequently, $a_{n} \in U$. Separability of Y is proven in the same manner.
" $\Leftarrow ":$ Let $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be dense countable subsets of, respectively, X and Y. Then $\left\{\left(a_{m}, b_{n}\right)\right\}_{m, n \in \mathbb{N}}$ is a dense countable subset of $X \times Y$. To prove the density, let $U \times V$ be any basis open subset of $X \times Y$. Then for some m, n we have: $a_{m} \in U$ and $b_{n} \in V$. Consequently, $\left(a_{m}, b_{n}\right) \in U \times V$.

Problem 3. (10 points)
Let X be a topological space which is completely regular (i.e. $T_{3 \frac{1}{2}}$). Let $A, B \subset X$ be two closed, disjoint subsets, and assume that A is compact. Prove that there exists a continuous function $f: X \rightarrow[0,1]$ such that $f_{\mid A}=0$ and $f_{\mid B}=1$.

Since X is $T_{3 \frac{1}{2}}$, for every $a \in A$ there existsa continuous function $f_{a}: X \rightarrow[0,1]$ such that $f_{a}(a)=0$ and $\left(f_{a}\right)_{\mid B}=1$. Consider the open sets $U_{a}=\left(f_{a}\right)^{-1}\left(-\infty, \frac{1}{2}\right)$, which cover the set A. By compactness, there exists a finite subcover $\left\{U_{a_{i}}\right\}_{i=1}^{N}$.

Define the function $g: X \rightarrow[0,1]$ by: $g(x)=\prod_{i=1}^{N} f_{a_{i}}(x)$. Clearly, g is continuous and $g_{\mid B}=1$. Further, for every $x \in A$ there is $i: 1 . . N$ so that $f_{a_{i}}(x)<\frac{1}{2}$, so that: $g(x)<\frac{1}{2}$. We hence see that $g(A) \subset\left[0, \frac{1}{2}\right]$.

Let $h:[0,1] \rightarrow[0,1]$ be a continuous function such that $h_{\mid[0,1 / 2]}=0$ and $h(1)=1$. Then $f:=h \circ g: X \rightarrow[0,1]$ is a continuous function with the desired properties.

Problem 4. (10 points)
Show that if X is a locally compact Hausdorff space then its one-point compactification is also Hausdorff.

We know that any one-point compactification of X is homeomorphic to the space $Y=X \cup\{a\}$ where the topology is given by: the collection of U open subsets of X and sets $\{a\} \cup(X \backslash C)$ for all compact subsets C of X.

It is enough to show that Y is Hausdorff. Take $x \neq y$ in Y. We have to show that x, y can be separated by two disjoint open sets in Y. In the first case: $x, y \in X$. Using X being Hausdorff, there are two disjoint open sets in X (hence open sets in $Y)$ such that $x \in U$ and $y \in V$.

In the second case $x=a$ and $y \in X$. By local compactness of X, there is an open set U and a compact set C such that $y \in U \subset C \subset X$. Then $Y \backslash C$ is an open neighbourhood of a in Y, which is disjoint from U. This ends the proof.

Problem 5. (10 points)
Let (X, d) be a metric space.
(i) If X is Lindelöf, show that X is second countable.
(ii) If X is separable, show that X is second countable.
(i) For every $n \in \mathbb{N}$ consider the following open cover of X : $\left\{B\left(x, \frac{1}{n}\right)\right\}_{x \in X}$. By the Lindelöf property, choose a countable subcover \mathcal{B}_{n}. Then $\mathcal{B}:=\cup_{n=1}^{\infty} \mathcal{B}_{n}$ is countable and it generates a (countable) basis of the metric topology in X. To prove this last property, fix $x \in U$ an open subset of X. Clearly $B(x, \epsilon) \subset U$, for some $\epsilon>0$. By construction of \mathcal{B}, there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $x \in B\left(x_{n}, \frac{1}{n}\right)$ for all $n \in \mathbb{N}$. Consequently, $d\left(x_{n}, x\right)<\frac{1}{n}$ and so $x_{n} \rightarrow x$ as $n \rightarrow \infty$. In particular, there must be: $B\left(x_{n}, \frac{1}{n}\right) \subset B(x, \epsilon) \subset U$ for $n>\frac{2}{\epsilon}$ large enough, because:

$$
\forall y \in B\left(x_{n}, \frac{1}{n}\right) \quad d(y, x) \leq d\left(y, x_{n}\right)+d\left(x_{n}, x\right)<\frac{1}{n}+\frac{1}{n}<\epsilon .
$$

(ii) Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a countable dense subset of X. Then $\left\{B\left(x_{n}, \frac{1}{m}\right) ; n, m \in \mathbb{Z}\right\}$ is countable and it generates a (countable) basis of the metric topology in X. To prove this last property, fix $x \in U$ an open subset of X. Clearly $B(x, \epsilon) \subset U$, for some $\epsilon>0$. Take n, m such that $d\left(x, x_{n}\right)<\frac{\epsilon}{2}$ and $m>\frac{2}{\epsilon}$. Then $B\left(x_{n}, \frac{1}{m}\right) \subset$ $B(x, \epsilon) \subset U$, because:

$$
\forall y \in B\left(x_{n}, \frac{1}{m}\right) \quad d(y, x) \leq d\left(y, x_{n}\right)+d\left(x_{n}, x\right)<\frac{1}{m}+d\left(x_{n}, x\right)<\epsilon .
$$

Bonus Problem. (20 points) (Only complete/almost-complete solution to this problem will be awarded points)
Let (X, d) be a metric space. Show that X is compact if and only if every continuous function $f: X \rightarrow \mathbb{R}$ is bounded.
$" \Rightarrow$ ": Let $f: X \rightarrow \mathbb{R}$ be a continuous function. Since X is compact, $f(X)$ is compact. Since compact subsets of \mathbb{R} are bounded, f is bounded.
" \Leftarrow ": Suppose that the metric space X is not compact, so that there is a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with no convergent subsequence. Let A be the set of points in this sequence. We first claim that A is a closed subset with the discrete topology.

To see that A is closed, let $y \notin A$. Suppose that for all $\epsilon>0$ there is an element of A contained in $B(y, \epsilon)$. Then we may inductively dene a subsequence converging to y by letting $x_{n_{i}}$ be a point in $B(y, \epsilon)$ for $\epsilon=d\left(y, x_{n_{i-1}}\right) / 2$. Since there is no subsequence converging to y, we see that there is some $\epsilon>0$ such that $B(y, \epsilon)$ is disjoint from A. Thus A is closed.

To see that A has the discrete topology, choose $x \in A$. Suppose that for all $\epsilon>0$ there is an element of $A \backslash\{x\}$ contained in $B(x, \epsilon)$. Then we may inductively dene a subsequence converging to x by letting $x_{n_{i}}$ be a point in $B(x, \epsilon) \backslash\{x\}$ for $\epsilon=d\left(y, x_{n_{i-1}}\right) / 2$. Since there is no subsequence converging to x, we see that there is some $\epsilon>0$ such that $B(x, \epsilon)-\{x\}$ is disjoint from A. Thus A has the discrete topology.

Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has no convergent subsequence, A must have innitely many elements. Thus we can choose a surjection $f: A \rightarrow \mathbb{Z}$. Since A is discrete, f is continuous. By the Tietze extension theorem, f can be extended to a (necessarily unbounded) continuous function $g: X \rightarrow \mathbb{R}$. As this contradicts the hypotheses, it follows that X is compact.

