Marta Lewicka, Math 2301, Fall 2019

Homework 1 – due Mon Sept 16

1. Check if the following linear spaces E are normed by the given function $\|\cdot\|$: $E \longrightarrow \mathbf{R}$. Are they Banach spaces?

- (i) $E = \mathbf{R}^n$, $||x|| = \left(\sum_{i=1}^n |x_i|^r\right)^{1/r}$, where $r \ge 1$ is a given number. (ii) $E = l_2$, which are all sequences $x = \{x_i\}_{i=1}^{\infty}$ of real numbers that are square-summable: $\sum_{i=1}^{\infty} |x_i|^2 < \infty$. $||x|| = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2}$. (iii) $E = l_2$ as in (ii), but: $||f|| = \sup_{i \ge 1} |x_i|$.
- **2.** The same question as in problem 1.
 - (i) E = B(X), which are all bounded functions f from a set X to **R**. ||f|| = $\sup\{|f(x)|; x \in X\}.$
 - (ii) $E = l_{\infty}$, which are all bounded sequences $x = \{x_n\}_{n=1}^{\infty}$ of real numbers. $\|x\| = \sup_{n>1} |x_n|.$
 - (iii) $E = C([-1,1]) \cap C^1((-1,1))$, which are all continuous real functions f on the interval [-1, 1], that are continuously differentiable in (-1, 1). ||f|| = $\sup\{|f(x)|; x \in [-1,1]\}.$
- **3.** Let *E* be a linear space and let $\|\cdot\|$ and $\|\cdot\|_1$ be two norms on *E*.
 - (i) Assume that $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent. Prove that $(E, \|\cdot\|)$ is a Banach space iff $(E, \|\cdot\|_1)$ is a Banach space.
 - (ii) Give an example of E, $\|\cdot\|$ and $\|\cdot\|_1$ so that $(E, \|\cdot\|)$ is a Banach space but $(E, \|\cdot\|_1)$ is not.
 - (iii) Prove that the function $\|\cdot\|: E \longrightarrow \mathbf{R}$ is continuous on $(E, \|\cdot\|)$. Must it be continuous on $(E, \|\cdot\|_1)$ as well?

4. Let E be a normed space and let $T \in E^*$. Does there necessarily exist $x \in E$ such that ||x|| = 1 and |T(x)| = ||T||?

5. (i) Let E be a normed space and E_0 its linear subspace. Let $T_0: E_0 \longrightarrow \mathbf{R}$ be a given linear functional. Show that there exists a linear functional $T: E \longrightarrow \mathbf{R}$ such that $T_{|E_0} = T_0$.

(ii) Let E be an infinitely dimensional normed space (which means that there exists an infinite sequence of its elements, which are linearly independent). Use part (i) to prove that there exists a discontinuous linear functional $T: E \longrightarrow \mathbf{R}$.