Marta Lewicka, Math 2301, Fall 2019

Homework 1 - due Mon Sept 16

1. Check if the following linear spaces E are normed by the given function $\|\cdot\|$: $E \longrightarrow \mathbf{R}$. Are they Banach spaces?
(i) $E=\mathbf{R}^{n},\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{r}\right)^{1 / r}$, where $r \geq 1$ is a given number.
(ii) $E=l_{2}$, which are all sequences $x=\left\{x_{i}\right\}_{i=1}^{\infty}$ of real numbers that are square-summable: $\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty .\|x\|=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}$.
(iii) $E=l_{2}$ as in (ii), but: $\|f\|=\sup _{i \geq 1}\left|x_{i}\right|$.
2. The same question as in problem 1.
(i) $E=B(X)$, which are all bounded functions f from a set X to $\mathbf{R} .\|f\|=$ $\sup \{|f(x)| ; x \in X\}$.
(ii) $E=l_{\infty}$, which are all bounded sequences $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ of real numbers. $\|x\|=\sup _{n \geq 1}\left|x_{n}\right|$.
(iii) $E=C([-1,1]) \cap C^{1}((-1,1))$, which are all continuous real functions f on the interval $[-1,1]$, that are continuously differentiable in $(-1,1) .\|f\|=$ $\sup \{|f(x)| ; x \in[-1,1]\}$.
3. Let E be a linear space and let $\|\cdot\|$ and $\|\cdot\|_{1}$ be two norms on E.
(i) Assume that $\|\cdot\|$ and $\|\cdot\|_{1}$ are equivalent. Prove that $(E,\|\cdot\|)$ is a Banach space iff $\left(E,\|\cdot\|_{1}\right)$ is a Banach space.
(ii) Give an example of $E,\|\cdot\|$ and $\|\cdot\|_{1}$ so that $(E,\|\cdot\|)$ is a Banach space but $\left(E,\|\cdot\|_{1}\right)$ is not.
(iii) Prove that the function $\|\cdot\|: E \longrightarrow \mathbf{R}$ is continuous on $(E,\|\cdot\|)$. Must it be continuous on $\left(E,\|\cdot\|_{1}\right)$ as well?
4. Let E be a normed space and let $T \in E^{*}$. Does there necessarily exist $x \in E$ such that $\|x\|=1$ and $|T(x)|=\|T\|$?
5. (i) Let E be a normed space and E_{0} its linear subspace. Let $T_{0}: E_{0} \longrightarrow \mathbf{R}$ be a given linear functional. Show that there exists a linear functional $T: E \longrightarrow \mathbf{R}$ such that $T_{\mid E_{0}}=T_{0}$.
(ii) Let E be an infinitely dimensional normed space (which means that there exists an infinite sequence of its elements, which are linearly independent). Use part (i) to prove that there exists a discontinuous linear functional $T: E \longrightarrow \mathbf{R}$.
