Marta Lewicka, Math 2301, Fall 2019

Homework 10 – due Fri Dec 6

- **1.** Let $f:[0,1] \longrightarrow \mathbf{R}$ be a continuous function. For each $c \in \mathbf{R}$ let n(c) denote the number of solutions of the equation f(x) = c. Prove that the function $n: \mathbf{R} \longrightarrow \bar{\mathbf{R}}_+$ is Lebesgue measurable.
- **2.** Prove that every (Lebesgue) measurable function $f:[0,1] \longrightarrow \mathbf{R}$ is a limit almost everywhere of a sequence $\{f_n\}$ of continuous functions. Is it always possible to choose this sequence to be monotone?
- **3.** Let U be a bounded open subset of \mathbf{R}^n and let $f:(a,b)\times U\longrightarrow \mathbf{R}$ be a continuous function such that for each $(t,x)\in(a,b)\times U$ the partial derivative $\partial f/\partial t$ (t,x) exists and satisfies: $\|\partial f/\partial t (t,x)\| \leq g(x)$, for some integrable function $g:U\longrightarrow \mathbf{R}$. Define the function: $F(t):=\int_U f(t,\cdot)\,\mathrm{d}\mu_n$. Prove that F is differentiable and that:

$$F'(t) = \int_U \frac{\partial f}{\partial t}(t, \cdot) d\mu_n.$$

- **4.** Prove that \mathcal{L}_{n+m} is the smallest σ -algebra of subsets of \mathbf{R}^{n+m} , containing the product σ -algebra $\mathcal{L}_n \otimes \mathcal{L}_m$ and all sets of zero outer (Lebesgue) measure.
- **5.** Let (X, \mathcal{M}, μ) be a finite measure space, so that $\mu(X) < \infty$. We say that a sequence of real-valued, integrable functions f_n on X is uniformly integrable, if $\sup_n \{ \int_X |f_n| \ \mathrm{d}\mu \} < \infty$ and:

$$\forall \epsilon > 0 \quad \exists \delta > 0 \qquad \mu(A) < \delta \implies \forall n \quad \int_A |f_n| \, d\mu < \epsilon.$$

Prove that a sequence f_n satisfies $\int_X |f_n - f| d\mu \to 0$ if and only if both f_n converges to f in measure and the f_n are uniformly integrable.