Marta Lewicka, Math 2301, Fall 2019

Homework 10 - due Fri Dec 6

1. Let $f:[0,1] \longrightarrow \mathbf{R}$ be a continuous function. For each $c \in \mathbf{R}$ let $n(c)$ denote the number of solutions of the equation $f(x)=c$. Prove that the function $n: \mathbf{R} \longrightarrow \overline{\mathbf{R}}_{+}$ is Lebesgue measurable.
2. Prove that every (Lebesgue) measurable function $f:[0,1] \longrightarrow \mathbf{R}$ is a limit almost everywhere of a sequence $\left\{f_{n}\right\}$ of continuous functions. Is it always possible to choose this sequence to be monotone?
3. Let U be a bounded open subset of \mathbf{R}^{n} and let $f:(a, b) \times U \longrightarrow \mathbf{R}$ be a continuous function such that for each $(t, x) \in(a, b) \times U$ the partial derivative $\partial f / \partial t(t, x)$ exists and satisfies: $\|\partial f / \partial t(t, x)\| \leq g(x)$, for some integrable function $g: U \longrightarrow \mathbf{R}$. Define the function: $F(t):=\int_{U} f(t, \cdot) \mathrm{d} \mu_{n}$. Prove that F is differentiable and that:

$$
F^{\prime}(t)=\int_{U} \frac{\partial f}{\partial t}(t, \cdot) \mathrm{d} \mu_{n}
$$

4. Prove that \mathcal{L}_{n+m} is the smallest σ-algebra of subsets of \mathbf{R}^{n+m}, containing the product σ-algebra $\mathcal{L}_{n} \otimes \mathcal{L}_{m}$ and all sets of zero outer (Lebesgue) measure.
5. Let (X, \mathcal{M}, μ) be a finite measure space, so that $\mu(X)<\infty$. We say that a sequence of real-valued, integrable functions f_{n} on X is uniformly integrable, if $\sup _{n}\left\{\int_{X}\left|f_{n}\right| \mathrm{d} \mu\right\}<\infty$ and:

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad \mu(A)<\delta \Longrightarrow \forall n \quad \int_{A}\left|f_{n}\right| \mathrm{d} \mu<\epsilon
$$

Prove that a sequence f_{n} satisfies $\int_{X}\left|f_{n}-f\right| \mathrm{d} \mu \rightarrow 0$ if and only if both f_{n} converges to f in measure and the f_{n} are uniformly integrable.

