Marta Lewicka, Math 2302, Spring 2020

Homework 11 – due Wed Feb 12

1. Let *E* be a normed space. Let \mathcal{A}_0 be the collection of sets $U \subset E^*$ of the form:

$$U = \{T \in E^*; |T(x_i)| < \epsilon_i, i : 1 \dots n\} = \bigcap_{i=1}^n J(x_i)^{-1}(-\epsilon_i, \epsilon_i)$$

for some $n \ge 1$ and $\epsilon_i > 0$, $x_i \in E$, $i: 1 \dots n$. For a given $T_0 \in E^*$, define the family of translated sets U:

$$\mathcal{A}_{T_0} = \{ T_0 + U; \ U \in \mathcal{A}_0 \}$$

- (i) Prove that the weak * topology on E^* is composed of E^* and (arbitrary) unions of sets from the family: $\bigcup_{T_0 \in E^*} \mathcal{A}_{T_0}$.
- (ii) Prove that \mathcal{A}_{T_0} is a basis of open neighbourhoods of T_0 in the weak * topology.

Here, $J(x_i) \in E^{**}$ is the operator of evaluation on x_i .

2. Based on the first separation theorem from class, prove the following geometric form of the Hahn-Banach theorem. Let E be a normed space and let A, B be two nonempty, convex, disjoint subsets of E. Assume that one of the following conditions hold:

- (i) at least one of the sets A, B is open,
- (ii) both sets A, B are closed and at least one of them is compact.
- Then there exists $T \in E^* \setminus \{0\}$ and $\alpha \in \mathbf{R}$ such that:

$$T(x) \le \alpha \le T(y) \qquad \forall x \in A \quad \forall y \in B$$

3. Using the result from problem 2, prove the following distance formula. Let E_0 be a linear subspace of a normed space E. For $x_0 \in E$, define the distance:

$$d(x_0, E_0) = \inf\{||x_0 - x||; \ x \in E_0\}.$$

Define the set of functionals anihilating E_0 :

$$E_0^{\perp} := \{ T \in E^*; \ T_{|E_0} = 0 \}.$$

Then:

$$d(x_0, E_0) = \sup\{|T(x_0)|; T \in E_0^{\perp} \text{ and } ||T|| \le 1\}$$

Notice that when $E_0 = \{0\}$ then we have known this result before.

4. Prove the following geometrical form of the Hahn-Banach theorem. Let E be a normed space and let W be its open, convex, nonempty subset. Let F be a linear subspace of E, such that $W \cap F = \emptyset$. Then there exists a hyperspace H of E (that is, $H = T^{-1}(0)$ for some linear, nonzero functional $T : E \longrightarrow \mathbf{R}$) which contains F and such that $W \cap H = \emptyset$. Moreover, H with these properties is automatically closed.

[Hint: First observe that the theorem is valid for $E = \mathbb{R}^2$. In the general setting, use Zorn's lemma to construct H.]

5. Let *E* be a normed space. Prove that if $\phi \in E^{**} \setminus J(E)$ then ϕ is not continuous with respect to the weak* topology on *E*^{*}. Deduce that the weak and the weak* topology on *E*^{*} coincide iff *E* is reflexive.

[Hint: Prove first that if $\phi : E^* \longrightarrow \mathbf{R}$ is linear and continuous with respect to the weak* topology (on E^*), then there exist $x_1, x_2 \dots, x_n \in E$ such that:

$$\bigcap_{i=1}^{n} Ker(J(x_i)) \subset Ker(\phi).$$

Then prove that necessarily ϕ must be a linear combination of $J(x_i)$.]