Marta Lewicka, Math 2302, Spring 2020

Homework 12 – due Wed Feb 26

1. Prove Schur's Lemma: the weak and strong convergence in l_1 coincide.

The proof may be divided in the following steps:

(i) If the lemma was not correct, we would have a sequence $\{\{x_n^k\}_{n=1}^{\infty}\}_{k=1}^{\infty}$ converging weakly to 0 in l_1 (as $k \to 0$) and such that:

$$\|\{x_n^k\}_{n=1}^{\infty}\|_{l_1} \ge 1 \qquad \forall k.$$

(ii) One could find then an increasing sequence of natural numbers $\{n_k\}_{k=1}^{\infty}$ such that (without loss of generality):

$$\sum_{n=n_k}^{n_{k+1}-1} |x_n^k| > \frac{3}{4} \| \{x_n^k\}_{n=1}^{\infty} \|_{l_1} \qquad \forall k$$

(iii) The above contradicts the weak convergence of our sequence to 0.

2. Prove that l_2 is a Hilbert space, and that the following spaces are not Hilbert: $l_1, l_{\infty}, C(K)$ (space of continuous functions on some compact subset metric space, with the sup norm).

3. Let *E* be a Banach space and let $F \neq E$ be its closed subspace.

- (i) Prove that for every $\epsilon > 0$ there exists $x_{\epsilon} \in E$ of norm 1 and such that $\operatorname{dist}(x_{\epsilon}, F) \ge (1 \epsilon)$. (We say that x_{ϵ} is ϵ -perpendicular to F).
- (ii) Using (i), prove that the closed unit ball in E is compact (in the strong topology) iff E has finite dimension.

4. Prove or disprove the following statement. Every Banach space in which the parallelogram identity holds is a Hilbert space (in the sence that it admits a scalar product which induces its norm).

5. Use the following outline to prove that the unit ball \overline{B}_{E^*} in E^* (*E* is a Banach space) with weak * topology is metrizable iff *E* is separable.

Proof of separability \implies metrizability:

(i) Find a sequence x_n of elements in \overline{B}_E , dense in this ball, and define:

$$d(T,S) := \sum_{n=1}^{\infty} \frac{1}{2^n} |(T-S)(x_n)| \qquad \forall T, S \in \overline{B}_{E^*}.$$

Check that d is a metric on \overline{B}_{E^*} .

- (ii) Take a basic weak * open neighbourhood U of T in \overline{B}_{E^*} , given through evaluations at points $y_1, \ldots y_k$ in \overline{B}_E . Approximate each y_i by a x_{n_i} and choose r much smaller than each 2^{-n_i} . The open ball centered at T and of radius r with respect to the metric d should then be contained in U.
- (iii) Conversely, think of an open ball centered at T and of radius r > 0 with respect to the metric d. Construct its subset which is basic weak * open neighbourhood of T in \overline{B}_{E^*} . The convergence of the series in the definition of d is a hint.

Proof of mertizability \implies separability:

(iv) Consider a decreasing sequence of open balls B_n centered at 0 and of radii say 1/n with respect to the metric. Each B_n contains a basic weak * open neighbourhood of 0 in \overline{B}_{E^*} , given through evaluations at a finite collection of points $A_n \subset \overline{B}_E$. Take $D = \bigcup A_n$. The subspace F = span(D)is dense in E because $F^{\perp} = \{0\}$.