Marta Lewicka, Math 2302, Spring 2020

Homework 13 - due Wed March 25

1. Prove the following generalization of the Holder inequality. Let $1 \leq p_{i} \leq \infty$, where $i: 1 . . k$ satisfy $\sum_{i=1}^{k} 1 / p_{i}=1 / p$ for some $p \in[1, \infty]$. If $f_{i} \in L^{p_{i}}(\Omega), i: 1 \ldots k$, then the product $f_{1} \ldots f_{n}$ belongs to the space $L^{p}(\Omega)$ and:

$$
\left\|f_{1 \ldots} \ldots f_{n}\right\|_{L^{p}} \leq\left\|f_{1}\right\|_{L^{p_{1}} \ldots}\left\|f_{n}\right\|_{L^{p_{n}}} .
$$

2. Prove the following interpolation inequality. If $f \in L^{p}(\Omega) \cap L^{q}(\Omega)$, for some $1 \leq p \leq q \leq \infty$, then $f \in L^{r}(\Omega)$ for any $r \in[p, q]$ and there holds:

$$
\|f\|_{L^{r}} \leq\|f\|_{L^{p}}^{\alpha}\|f\|_{L^{q}}^{1-\alpha}, \quad \frac{1}{r}=\frac{\alpha}{p}+\frac{1-\alpha}{q}, \alpha \in[0,1] .
$$

3. Suppose that $\Omega \subset \mathbf{R}^{n}$ has finite measure and let $1 \leq p, q \leq \infty$.
(i) Prove that if $f \in L^{q}(\Omega)$ and $p \leq q$, then $f \in L^{p}(\Omega)$ and:

$$
\|f\|_{L^{p}} \leq(\mu(\Omega))^{1 / p-1 / q}\|f\|_{L^{q}}
$$

(ii) Prove that for any pair of distinct exponents $p \neq q$ we have: $L^{p}(\mathbf{R}) \not \subset L^{q}(\mathbf{R})$. Hint: consider the function:

$$
f(x)=\frac{1}{|x|^{1 / 2} \sqrt{1+\log ^{2}|x|}}
$$

4. Let $f \in L^{p}\left(\mathbf{R}^{n}\right), g \in L^{q}\left(\mathbf{R}^{n}\right), h \in L^{r}\left(\mathbf{R}^{n}\right), p, q, r \in[1, \infty]$.
(i) Prove that if $1 / p+1 / q-1=1 / r \geq 0$, then $f * g \in L^{r}\left(\mathbf{R}^{n}\right)$ and $\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}$.
(ii) Prove the following version of Young's Theorem. If $1 / p+1 / q+1 / r=2$, then:

$$
\left|\int_{\mathbf{R}^{n}}(f * g) h\right| \leq\|f\|_{L^{p}}\|g\|_{L^{q}}\|h\|_{L^{r}}
$$

5. Prove that every Banach space E is linearly isometric to a closed subspace of $\mathcal{C}(X)$, where X is a compact topological space. When E is separable, prove that X may be taken as the interval $[0,1]$.
[Hint: If X is a compact metric space which can be seen as a convex subset of some linear space, then show that there exists a continuous function f from $[0,1]$ onto X.]
