Marta Lewicka, Math 2302, Spring 2020

Homework 14 – due Wed April 1

1. Let $1 . For every <math>f \in L^p((0,\infty))$, define:

$$F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t \qquad \forall x \in (0, \infty).$$

Prove that $F \in L^p((0,\infty))$ and:

$$||F||_{L^p} \le \frac{p}{p-1} ||f||_{L^p}.$$

[Hint: Assume first that f is nonnegative and compactly supported in $(0, \infty)$. Integrate by parts and notice that xF'(x) = f(x) - F(x).]

- **2.** Using Jensen's inequality, prove:
 - (i) Holder's inequality [Hint: Use $\phi(x) = x^p$ and consider first the case of f, g nonnegative and such that $||g||_{L^q} = 1.$]
 - (ii) Minkowski's inequality (that is, the triangle inequality for the norm in L^p [Hint: Use $\phi(x) =$ $(1-x^{1/p})^p$ and assume first that f, g are nonnegative, $f \leq 1$ and $||f+g||_{L^p} = 1$.]
- **3.** For which functions $f \in L^p$ and $g \in L^{p'}$ we have "equality" in Holder's inequality?:

$$||fg||_{L^1} = ||f||_{L^p} ||g||_{L^{p'}}$$

4. Prove the converse of the Riesz - Frechet - Kolmogorov theorem. Assume that a subset \mathcal{F} of $L^p(\mathbf{R}^n)$ has compact closure. (We assume that 1 .) Then there holds:

- (i) $\exists C > 0 \quad \forall f \in \mathcal{F}$ $||f||_{L^p(\mathbf{R}^n)} \le C,$
- (ii) $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall h \in B(0, \delta) \quad \forall f \in \mathcal{F} \qquad \|\tau_h f f\|_{L^p(\mathbf{R}^n)} < \epsilon,$ (iii) $\forall \epsilon > 0 \quad \exists \Omega \in \mathcal{L}_n$, bounded $\forall f \in \mathcal{F} \qquad \|f\|_{L^p(\mathbf{R}^n \setminus \Omega)} < \epsilon.$

5. Let $\Omega \subset \mathbf{R}^n$ be open, bounded and of (Lebesgue) measure 1. Let $f \in L^1(\Omega)$. Prove that:

$$\lim_{p \to 0} \left(\int_{\Omega} |f|^p \right)^{1/p} = \exp\left(\int_{\Omega} \ln |f| \right).$$

[Hint: Use Jensen's inequality to prove \leq . For the converse inequality, notice that $\ln |x| \leq |x| - 1$ and $\lim_{p \to 0} (|x|^p - 1)/p = \ln |x|.]$