Marta Lewicka, Math 2302, Spring 2020

Homework 15 – due Mon April 20

1. Let $p \in [1, \infty]$, $u \in W^{1,p}(\Omega)$, and let $f \in \mathcal{C}^{\infty}(\mathbf{R})$ be such that f(0) = 0 and $f' \in L^{\infty}$. Prove that: $f \circ u \in W^{1,p}(\Omega)$ and $\nabla(f \circ u) = (f' \circ u)\nabla u$.

2. Let $p \in [1, \infty]$, $u \in W^{1,p}(\Omega)$ and let $h : \tilde{\Omega} \longrightarrow \Omega$ be a diffeomorphism of class \mathcal{C}^{∞} between the open sets $\tilde{\Omega}$ and Ω . Assume that both det ∇h and det $\nabla(h^{-1})$ are in L^{∞} . Prove that $u \circ h \in W^{1,p}(\tilde{\Omega})$ and $\nabla(u \circ h) = [(\nabla u) \circ h] \nabla h$.

3. Let $p \in [2, \infty)$. We define:

 $W_0^{1,p}(\Omega) = closure_{W^{1,p}(\Omega)} \mathcal{C}_c^{\infty}(\Omega).$

Prove the following interpolation inequality:

$$\forall u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \qquad \|\nabla u\|_{L^p} \le C \|u\|_{L^p}^{1/2} \|\nabla^2 u\|_{L^p}^{1/2}$$

where the constant C depands only on Ω and p.

- 4. Let $p \in [1,\infty]$. For $u \in W^{1,p}(\Omega)$, define $u^+ = \max(u,0)$.
 - (i) Prove that $u^+ \in W^{1,p}(\Omega)$ and that:

$$\nabla(u^{+}) = \begin{cases} \nabla u & \text{a.e. in } \{x; \ u(x) > 0\} \\ 0 & \text{a.e. in } \{x; \ u(x) \le 0\} \end{cases}$$

- (ii) Given $c \in \mathbf{R}$, show that $\nabla u = 0$ almost everywhere in the (measurable) set $\{x; u(x) = c\}$.
- (iii) Prove that if the sequence $\{u_n\}$ converges to u in $W^{1,p}(\Omega)$, then also $\{u_n^+\}$ converges to u^+ .

5. Let $\Omega \subset \mathbf{R}^n$ be open, bounded and of class \mathcal{C}^1 . Let $u \in W^{k,p}(\Omega)$. Using the established facts for $W^{1,p}(\Omega)$, deduce the following statement. If k < n/p then $u \in L^q(\Omega)$, where 1/q = 1/p - k/n and for some constant C depending only on k, p, n and Ω one has:

$$\|u\|_{L^q(\Omega)} \le C \|u\|_{W^{k,p}(\Omega)}.$$