Marta Lewicka, Math 2301, Fall 2019

Homework 3 – due Fri Sept 27

1. Prove that every metric space X is paracompact (i.e. every open covering of X admits an open neighbourhood-finite refinement).

2. Recall that a metric space Y is an extensor, if for every continuous function $f : A \longrightarrow Y$ defined on a closed subset A od a metric space X, there exists a continuous function $\tilde{f} : X \longrightarrow Y$ such that $\tilde{f}(x) = f(x)$ for every $x \in A$.

Prove that:

- (i) a space homeomorphic to an extensor is also an extensor,
- (ii) a retract of an extensor is an extensor,
- (iii) if Y_1 and Y_2 are extensors, then $Y_1 \times Y_2$ is an extensor.
- **3.** Find the norms of the following linear functionals on $\mathcal{C}[-1,1]$:

(i)
$$T(f) := \int_0^1 f(x) \, dx,$$

(ii) $T(f) := \int_{-1}^1 (\operatorname{sgn} x) f(x) \, dx,$
(iii) $T(f) := \int_{-1}^1 f(x) \, dx - f(0),$
(iv) $T(f) := \frac{f(\epsilon) + f(-\epsilon) - 2f(0)}{\epsilon^2},$
(v) $T(f) := \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} f(1/n)$

4. Prove that the space $C_b(\mathbb{R}^N)$ of bounded continuous functions on \mathbb{R}^N , with the supremum norm $\|\cdot\|_{\infty}$, is not separable.

Hint: Modify the proof of nonseparability of l_{∞} .

5. Let (X, d) be a metric space. Fix a reference point $x_0 \in X$ and let E be the vector space of all the Lipschitz continuous functions $f : X \longrightarrow \mathbf{R}$ such that $f(x_0) = 0$. Define ||f|| to be the smallest Lipschitz constant of f, that is:

$$||f|| := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}.$$

Prove that $(E, || \cdot ||)$ is a Banach space.