Marta Lewicka, Math 2301, Fall 2019

Homework 5 – due Fri Oct 11

1. Let Λ be a metric space, E a Banach space, and let $F : \Lambda \times E \longrightarrow E$ be a function such that:

$$\exists \kappa < 1 \ \forall \lambda \in \Lambda \ \forall x, y \in E \quad \|F(\lambda, x) - F(\lambda, y)\| \le \kappa \|x - y\|$$

Prove that:

(i) for every $\lambda \in \Lambda$ there exists a unique $x(\lambda) \in E$ such that $x(\lambda) = F(\lambda, x(\lambda))$,

(ii) for every $\lambda \in \Lambda$, $y \in E$ one has:

$$\|x(\lambda) - F(\lambda, y)\| \le \frac{\kappa}{1-\kappa} \|y - F(\lambda, y)\|,$$
$$\|y - x(\lambda)\| \le \frac{1}{1-\kappa} \|y - F(\lambda, y)\|.$$

2. Let $f_1 : E \longrightarrow F_1$ and $f_2 : E \longrightarrow F_2$ be two differentiable mappings between Banach spaces E, F_1, F_2 . Define $f : E \longrightarrow F_1 \times F_2$ by: $f(x) = (f_1(x), f_2(x))$. Prove that f is differentiable and find its derivative. (Here $F_1 \times F_2$ is the Banach space equipped with the norm $||(y_1, y_2)|| := ||y_1||_{F_1} + ||y_2||_{F_2}$.)

3. Let E, F, G be normed spaces and let $\phi : E \times F \longrightarrow G$ be a bilinear map (i.e. such that both maps: $\phi(\cdot, y) : E \longrightarrow G$ and $\phi(x, \cdot) : F \longrightarrow G$ are linear, for every $x \in E$ and $y \in F$).

(i) Prove that ϕ is continuous iff it is bounded, that is:

 $\exists C > 0 \quad \forall x \in E \ \forall y \in F \qquad \|\phi(x, y)\| \le C \cdot \|x\| \cdot \|y\|.$

(ii) Let $\mathcal{L}(E, F; G)$ be the linear space of all continuous bilinear mappings ϕ , as above. Prove that it is a normed space, with the norm defined as:

$$\|\phi\| := \sup \{ \|\phi(x, y)\|; \|x\| \le 1, \|y\| \le 1 \}.$$

(iii) Prove that if G is Banach then $\mathcal{L}(E, F; G)$ is also Banach.

4. For $p \in (0, 1)$, define l_p and $|| \cdot ||_{l_p}$ by the standard formula. Show that $|| \cdot ||_{l_p}$ is not a norm.

5. Give an example of a discontinuous linear map between normed spaces, so that:

- (i) its graph is closed and its target space is Banach,
- (ii) its graph is closed and its domain space is Banach.