Marta Lewicka, Math 2301, Fall 2019

Homework 6 – due Fri Oct 18

1. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{C}^1 maps from an open subset U of a Banach space E into a Banach space F. Assume that $\{f_n\}$ converge pointwise to a map $f: U \longrightarrow F$ and that the sequence of derivatives $\{f'_n\}$ converges uniformly to a mapping $g: U \longrightarrow \mathcal{L}(E, F)$. Prove that f is \mathcal{C}^1 and that f' = g.

2. Let $f \in C^{k+1}(U, F)$ where U is an open subset of a Banach space E and F is another Banach space. Let $x_0 \in U$ and $v \in E$ be such that $x_0 + tv \in U$, for every $t \in [0, 1]$. Prove the Taylor's formula:

$$f(x_0 + v) = f(x_0) + \left(\sum_{i=1}^k \frac{1}{i!} D^i f(x_0)(v, \dots, v)\right) + R_k(x_0, v),$$

where $||R_k(x_0, v)|| / ||v||^k \to 0$ as $v \to 0$.

[Hint: As in the proof of the mean value theorem and the symmetry of the second derivative, use the Hahn-Banach theorem to reduce the statement to the case of a real function of one variable.]

3. Let *E* be a Banach space. Show that the mapping $Inv : \mathcal{GL}(E, E) \longrightarrow \mathcal{GL}(E, E)$ given by $Inv(T) = T^{-1}$ is differentiable and find its derivative.

4. Let U be an open subset of a Banach space E. Given a function $g \in C^1(U, \mathbf{R})$, define the mapping

$$S_g: \mathcal{C}([0,1],U) \longrightarrow \mathbf{R}, \qquad S_g(f) = \int_0^1 g(f(s)) \, \mathrm{d}s.$$

Show that S_q is \mathcal{C}^1 and find its derivative.

5. Let M be some σ -algebra of subsets of X, let N be some σ -algebra of subsets of Y. Given is a function $f: X \longrightarrow Y$. Which of the following families is a σ -algebra? Provide a proof or a counterexample.

- a) $\{B \subset Y; f^{-1}(B) \in M\},\$ b) $\{f(A); A \in M\},\$
- c) $\{A \subset X; f(A) \in N\},\$
- d) $\{f^{-1}(B); B \in N\}.$
- $(D), D \in \mathbb{N}_{j}.$