1. Let $F : A \to \mathbb{R}$ be a continuous function on a compact set $A \subset \mathbb{R}^N$. Verify that, setting:

$$F(x) := \min_{y \in A} \left\{ F(y) + \frac{|x - y|}{\text{dist}(x, A)} - 1 \right\}$$

for all $x \in \mathbb{R}^N \setminus A$, defines a continuous extension of F on \mathbb{R}^N.

(This construction is due to Hausdorff and it provides a proof of the Tietze extension theorem (it may be generalized to A a closed subset of a metric space, F continuous and bounded from below on A).]

2. Let (X, \mathcal{M}, μ) be a measure space. For every $A \subset X$, define:

$$\mu^*(A) := \inf \{ \mu(B); A \subset B, B \in \mathcal{M} \}.$$

(i) Show that μ^* is a measure generator, coinciding with μ on \mathcal{M} and such that it is 0 on every subset of a zero μ-measure set.

(ii) Let \mathcal{M}_c be the σ-algebra generated by μ^*. Show that $\mathcal{M} \subset \mathcal{M}_c$.

(iii) Is the following characterisation true?:

$$\mathcal{M}_c = \{ A \in 2^X; \exists B \in \mathcal{M} \ A \subset B \text{ and } \mu(B) = \mu^*(A) \text{ and } \mu^*(B \setminus A) = 0 \}$$

3. Let $f : [a, b] \to \mathbb{R}$ be a given function.

(i) If f is continuous, show that its graph is a set of (Lebesgue) measure 0 in \mathbb{R}^2.

(ii) What if f is just a (possibly discontinuous) monotone function?

4. Prove that the following subsets of $[0, 1]$ are compact, of Lebesgue measure 0 and uncountable:

(i) the set A containing all numbers which admit a binary representation $0, c_1 c_2 c_3 ...$ such that $c_n = 0$ for all n odd,

(ii) the set B of all numbers which admit a binary representation $0, c_1 c_2 c_3 ...$ such that for every n there is: $c_n = 0$ or $c_{n+1} = 0$.

5. Show that the derivative of a differentiable function $f : (a, b) \to \mathbb{R}$ is a (Lebesgue) measurable function.