Marta Lewicka, Math 2303, Fall 2012

Homework 2

– due November 12, 2012 –

Let E, F, G denote Banach spaces.

1. Let $T \in \mathcal{L}(E)$ be a linear continuous operator on Banach space E. By \mathcal{R} : $\rho(T) \longrightarrow \mathcal{L}(E)$ we denote the resolvent function of T. Prove that:

- (i) $\mathcal{R}(\lambda_1) \mathcal{R}(\lambda_2) = (\lambda_1 \lambda_2)\mathcal{R}(\lambda_1)\mathcal{R}(\lambda_1), \quad \forall \lambda_1, \lambda_2 \in \rho(T)$
- (ii) \mathcal{R} is differentiable on $\rho(T)$ (find its derivative)
- (iii) $\lim_{|\lambda| \to \infty} \mathcal{R}(\lambda) = 0$
- (iv) the spectrum $\sigma(T)$ is always nonempty
- (v) if $\lambda \in \sigma(T)$ then $\lambda^n \in \sigma(T^n)$
- (vi) the spectral radius: $\max\{|\lambda|; \lambda \in \sigma(T)\} = \lim_{n \to \infty} ||T^n||^{1/n}$.

2. (i) Let $T \in \mathcal{K}(E, F)$ and let $S \in \mathcal{L}(F, G)$ be injective. Prove that for every $\epsilon > 0$ there exists C > 0 so that:

$$||Tx|| \le \epsilon ||x|| + C||STx|| \qquad \forall x \in E.$$

(ii) Let Ω be a ball in \mathbb{R}^n . Prove that for every $\epsilon > 0$ there exists C > 0 so that:

$$\|\nabla u\| \le \epsilon \|D^2 u\| + C\|u\| \qquad \forall u \in \mathcal{C}^2(\bar{\Omega}),$$

where $\|\cdot\|$ denotes the $\mathcal{C}^0(\bar{\Omega})$ norm of a given function.

(iii) Prove that in (ii) one can take $C = 4(\min(\epsilon, 1/R))^{-1}$, where R is the radius of the ball Ω .

3. Let Ω be an open subset of \mathbb{R}^n . Let $K \in L^2(\Omega \times \Omega, \mathbb{K})$ and let $T \in \mathcal{L}(L^2(\Omega), L^2(\Omega))$ be the integral Hilbert-Schmidt operator:

$$(Tf)(x) = \int_{\Omega} K(x,y)f(y) \, \mathrm{d}y.$$

Prove that $||T|| = ||K||_{L^2}$ if and only if:

$$K(x,y) = K_1(x) \cdot K_2(y) \quad \forall \text{ a.e. } x, y \in \Omega,$$

for some $K_1, K_2 \in L^2(\Omega)$.

4. Let T be the integral Hilbert-Schmidt operator, as in Problem 3. Prove that: $\dim \operatorname{Ker}(\operatorname{Id} - T) \leq \|K\|_{L^2(\Omega \times \Omega)}^2.$

5. Prove that every finite codimension subspace E_0 of E is complemented in E.