Marta Lewicka, Math 2303, Fall 2012

Midterm

- December 10, 2012 -

1. (30 points) State the following results that we learned in this course. Include all details.
(i) The Fredholm alternative
(ii) The definition of the Hausdorff dimension
(iii) The Muller-Sverak theorem on convex integration.
2. (20 points) State the Lebesgue decomposition theorem for (nonnegative) Radon measures. Prove uniqueness of the stated decomposition.

Proof of uniqueness: Let μ, ν be two Radon measures on \mathbb{R}^{n}. Let $\nu=\nu_{a c}^{1}+\nu_{s}^{1}=$ $\nu_{a c}^{2}+\nu_{s}^{2}$ where the subscripts 'ac' and 's' stand for 'absolutely continuous' and 'singular'. In case $\nu_{s}^{1}, \nu_{s}^{2}=0$, that is when ν is absolutely continuous with respect to μ, the decomposition is unique since $\nu=\nu_{a c}$. Assume that $\nu_{s}^{1} \neq \nu_{s}^{2} \neq 0$. It is not possible to have two decompositions: one absolutely continuous and the other one having nontrivial singular part, since then there would be a set of μ-measure zero so that in the absolutely continuous decomposition we would obtain ν-measure zero, but the decomposition having a singular part would yield a positive value; thus the only possible case is to have two non-trivial but different singular parts. We get $\nu_{s}^{1}-\nu_{s}^{2}=\nu_{a c}^{2}-\nu_{a c}^{1}$. Since we assume that ν_{s}^{1}, ν_{s}^{2} are non-trivial and different then there is a ν-measurable set A with μ-measure zero such that (without loss of generality) $\nu_{s}^{1}(A)-\nu_{s}^{2}(A) \neq 0$. However, since A has μ-measure zero for the absolutely continuous side, this is a contradiciton.
3. (30 points) Prove that every compact self-adjoint operator T on a (complex) Hilbert space H has an eigenvalue λ satisfying $|\lambda|=\|T\|$.

Define $\lambda_{1}=\sup _{\|x\|=1}\langle T x, x\rangle$ and $\lambda_{2}=\inf _{\|x\|=1}\langle T x, x\rangle$. We know that if $\lambda_{i} \neq 0$ then λ_{i} is an eigenvalue of T. We also know that $T=0$ iff $\langle T x, x\rangle=0$ for all $x \in H$. Therefore there always exists an eigenvalue λ with $|\lambda|=\sup _{\|x\|=1}|\langle T x, x\rangle|:=m$. It remains to prove that $m=\|T\|$. We have:

$$
\|T\|=\sup _{\|x\|=1}\|T x\|=\sup _{\|x\|=\|y\|=1}|\langle T x, y\rangle| \geq m
$$

On the other hand, for any $\|x\|=\|y\|=1$:

$$
\begin{aligned}
2 \Re\langle T x, y\rangle & =\langle T x, y\rangle+\langle T y, x\rangle=\frac{1}{2}(\langle T(x+y), x+y\rangle-\langle T(x-y), x-y\rangle) \\
& \leq \frac{1}{2}\left(\|x+y\|^{2}+\|x-y\|^{2}\right) m=m\left(\|x\|^{2}+\|y\|^{2}\right)=2 m
\end{aligned}
$$

by parallelogram identity. Therefore, $\Re\langle T x, y\rangle \leq m$ and so, applying a rotation:

$$
\sup _{\|x\|=\|y\|=1}|\langle T x, y\rangle| \leq m .
$$

Hence $\|T\| \leq m$, which proves the result.

