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Abstract. We study solutions of first order partial differential relations Du ∈ K , where
u : ! ⊂ n → m is a Lipschitz map and K is a bounded set in m × n matrices, and
extend Gromov’s theory of convex integration in two ways. First, we allow for additional
constraints on the minors of Du and second we replace Gromov’s P−convex hull by the
(functional) rank-one convex hull. The latter can be much larger than the former and this
has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our
work was originally motivated by questions in the analysis of crystal microstructure and we
establish the existence of a wide class of solutions to the two-well problem in the theory of
martensite.

1. Introduction

We study the existence of solutions of the partial differential relation

Du ∈ K a.e. in ! (1.1)

subject to the boundary condition

u = v ∂!. (1.2)

Here ! ⊂ Rn is a bounded domain, u : ! → Rm is a Lipschitz map
and K ⊂ Mm×n is a given subset of the m × n matrices. Such prob-
lems (and their generalizations to manifolds and jet bundles) arise in
a number of areas in mathematics, Gromov’s monography [Gr 86] gives
an overview. Our main motivation stems frommodels of crystal microstruc-
ture (see [BJ 87,CK 88,BJ 92,Mu 98]). In these examples K consists of
several connected components and we are therefore interested in Lipschitz

S. Müller: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26,
D-04103 Leipzig, Germany
V. Šverák: Department of Mathematics, University of Minnesota, 206 Church St. S.E.,
Minneapolis, MN 55455-0436, USA
S. Müller was supported by a Max Planck Research Award and by the TMR network ‘Phase
transitions in crystalline solids’ FMRX-CT98-0229 (DG 12-BDCN)
V. Šverák was supported by a Max Planck Research Award and by NSF

Mathematics Subject Classification (1991): 35J60, (35J20, 35D10)



394 S. Müller, V. Šverák

solutions while in many geometric applications C1 solutions are relevant
(but see [Gr 86], 2.4.11).
After the striking work by Nash [Na 54] and Kuiper [Ku 55] on the

existence of nontrivial isometric C1 immersions Gromov [Gr 73,Gr 86]
developed a very general theory, called convex integration, to address (1.1)
and (1.2). His main result for the Lipschitz case [Gr 86, p. 218] assures,
roughly speaking, that nontrivial solutions of (1.1) and (1.2) exist if a suitable
convex hull of K , called the P-convex hull, has sufficiently large interior
(see [MS 96,DM 96a,DM 96b,DM 97,DM 98,Sy 98] for related work). We
have recently learned that closely related ideas were already used (for the
special case of elliptic systems) in Scheffer’s thesis [Sch 74], see below for
further discussion. For sets K ⊂ Mm×n P-convexity reduces to what was
called lamination convexity in [MS 96] (Matoušek and Plecháč [MP 98] use
the term set-theoretic rank-one convexity). A set E ⊂ Mm×n is lamination
convex if for all matrices A, B ∈ E that satisfy rk(B − A) = 1 the whole
segment [A, B] is contained in E. The lamination convex hull Elc is the
smallest lamination convex set that contains E. The relevance of rank−1
convexity stems from the fact that rank−1matrices arise exactly as gradient
of maps x '→ u(x · n) that only depend on one variable. These maps are the
building blocks in Gromov’s construction.
In this paper we generalize Gromov’s result in two directions. First we

show that one can impose a constraint on a minor (subdeterminant) of Du.
Such a constraint is stable under taking the lamination convex hull and
thus that hull has always empty interior when all elements of K satisfy the
constraint. Therefore one cannot rely on openness to construct approximate
solutions but rather has to show that the constraint can be preserved at each
step of the construction.
Secondly we show that the lamination convex hull can be replaced by the

rank-one convex hull (called functionally rank-one convex hull in [MP 98])
which is defined by duality with rank−1 convex functions. A function
f : Mm×m → R is rank-one convex if it is convex on every rank-one
segment [A, B]. For a compact set K the rank−1 convex hull is defined as

Krc =
{
F ∈ Mm×m : f(F)≤sup

K
f, ∀ f : Mm×m→R rank-one convex

}
.

For an arbitrary set U we define Urc as the union of the hulls Krc, for
all compact sets K ⊂ U . We note in passing that in the literature the
rank-one convex hull of an arbitrary set L is often defined as (L)rc. For
our purposes the separate definitions for compact and general sets are more
convenient (and in line with the situation for ordinary convexity). The differ-
ence between lamination convexity (defined set-theoretically) and rank-one
convexity (defined by duality with functions) may appear to be small since
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both notions agree for ordinary convexity but Corollary 1.5 below and the
recent construction of (variational) elliptic systems with nowhere regular
solutions [MS 99] show that the difference may be striking.
We now fix t ∈ R and a minor (subdeterminant) M : Mm×n → R.

We set

# = {F ∈ Mm×n : M(F) = t}. (1.3)

Theorem 1.1. Let U ⊂ # be open in # and bounded and let v : ! ⊂
Rn → Rm be a piecewise linear Lipschitz map that satisfies

Dv ∈ Urc a.e. in !.

Assume also the the parameter t in the definition of# is not zero. Then there
exists a Lipschitz map u : ! → Rm that satisfies

Du ∈ U a.e. in ∂!

u = v on !.

The hypothesis that v be piecewise linear can be replaced by v ∈
C2,αloc (!;Rm) for some α > 0.

The same assertion holds if # is replaced by Mm×n .

Remarks. 1. For the case without constraint C2,α can be replaced by C1. If
the constraint is on a minor of order n then C2,α can be replaced by C1,α
(cf. Lemma 6.3 below).
2. By simple scaling and covering arguments one can see that u can be chosen
so that |u(x)−v(x)| < ε(x), where ε(x) is a given continuous function on!
(which can vanish at the boundary). In Gromov’s terminology this means
that v admits a fine approximation by solutions of Du ∈ U .
To obtain results for sets that may not be open we use Gromov’s concept

of an in-approximation.

Definition 1.2. Let # be given by (1.3) with t *= 0 and let K ⊂ #. A se-
quence of sets Ui ⊂ # is an in-approximation of K in #, if the Ui are open
in # and the following three conditions are satisfied:

(i) the Ui are uniformly bounded
(ii) Ui ⊂ Urc

i+1
(iii) Ui → K in the following sense: if Fi ∈ Ui and Fi → F then F ∈ K .

Theorem 1.3. Let # be given by (1.3) with t *= 0 and let K ⊂ #. Let Ui
be an in-approximation of K in #. Suppose that v : ! ⊂ Rn → Rm is in
C2,α(!;Rm) (or piecewise linear) and that

Dv ∈ U1 in !.
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Then there exists a Lipschitz map u : ! → Rm that satisfies

Du ∈ K a.e. in !,

u = v on ∂!.

The same assertion holds if # is replaced by Mm×n .

Remark. The condition v ∈ C2,αloc (!;Rm) can be relaxed to v ∈ C1loc for the
case without constraint and to C1,αloc if the constraint is on a minor of order n.
One application of our results concerns the so-called two-well problem

in the theory of martensite (see [BJ 92,Sv 93]).

Corollary 1.4. Suppose that A, B ∈ M2×2 satisfy det A = det B = 1 and
let K = SO(2)A ∪ SO(2)B. Then the problem

Du ∈ K a.e. in !,

u(x) = Fx on ∂!

has a solution if F ∈ int conv K and det F = 1.

The next example which was found independently by several
authors ([AH 86,CT 93,Sch 74,Ta 93]) illustrates the difference between
lamination convexity (defined set-theoretically) and rank-one convexity (de-
fined by duality). Let K be a subset of the diagonal 2 × 2 matrices given
by

K =
{
±

(
1 0
0 3

)
,±

(
3 0
0 −1

)}
(1.4)

(see Fig. 1). Then K contains no rank-one connections and thus Klc = K .
On the other hand Krc contains the square S = {|F11| ≤ 1, |F22| ≤ 1} and
the segments [Ai+1, Ji]. To see this let f be a rank-one convex function
that vanishes on K . Then f is convex along the horizontal and vertical
lines in Fig. 1 and hence attains its maximum over S in one of the corner
points of S, say at J1. If F(J1) > 0 then convexity along [A2, J2] yields the
contradiction f(J2) > f(J1).
One can easily check that the relation Du ∈ K only admits the trivial so-

lution Du = const. Theorem 1.1 guarantees that there are maps u : ! → R2
which vanish at ∂! and whose gradient remains in an arbitrarily small open
neighbourhood of K .

Corollary 1.5. Let K be given by (1.4) and let F ∈ Krc and ε > 0. Then
there exists u : ! ⊂ R2 → R2 such that

dist(Du, K) < ε a.e. in !,

u(x) = Fx on ∂!.
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Fig. 1. The set {A1, A2, A3, A4} is lamination convex but the rank-one convex hull contains
the shaded square and the line segments [Ji, Ai+1]

The difference between rank-one convexity and lamination convexity is
also relevant for the study of m × 2 elliptic systems

div D f(Dv) = 0 (1.5)

where v : ! ⊂ R2 → Rm and f : Mm×2 → R is a smooth function
satisfying suitable ellipticity conditions. If ! is simply connected then (1.5)
is equivalent to the partial differential relation

Du ∈ K (1.6)

where u : ! → R2m and

K =
{(

X
Y

)
∈ M2m×2 : Y = D f(X)J

}
, J =

(
0 −1
1 0

)
.

By a result of Ball [Ba 80] the strong ellipticity condition for (1.5) is
equivalent to the condition that K contains no rank-one connection. Hence
Klc = K for strongly elliptic f . Nonetheless there exist 2×2 systems (even
in variational form) for which Krc is sufficiently nontrivial, and our ap-
proach can be used to construct “wild” solutions to such systems [MS 99].
We learned recently that a closely related construction appears in the thesis
of Scheffer [Sch 74]. He only discusses the nonvariational case in detail
and only obtains W1,2 solutions. Although his results are very interesting it
seems that this work was never published in a journal and therefore has not
received the attention it deserves.
Before discussing the main idea of the proof let us briefly mention other

related work. In [MS 96] we gave a short selfcontained proof of Gromov’s
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result for Lipschitz solutions, specialized to (1.1), (1.2) with K ⊂ Mm×n .
A slightly different approach based on Baire’s theorem has been pursued
by Dacorogna and Marcellini [DM 96a,DM 96b,DM 97], see also [Sy 98].
The case K = O(n) has been studied in detail in [Gr 86], Chapter 2.4.11;

for K = O(3) see also [CP 95]; applications of the latter approach to other
problems can also be found in [CP 97].
The proof of Theorem 1.1 relies on three steps, and a suitable approxi-

mation argument as in [MS 96] then leads to Theorem 1.3. In the first step
one considers a neighbourhood U of two rank-one connected matrices A
and B and shows that any affine boundary condition with gradient in [A, B]
can be realized. This is easy in the unconstrained case, but requires a careful
approximation if a constraint on a minor is imposed. A simple induction
argument yields a weaker version of Theorem 1.1 where Urc is replaced by
Ulc. In the second step we construct, under the hypothesis of Theorem 1.1,
maps that satisfy Du ∈ Urc and for which set set {x : Du(x) ∈ Urc \U) has
small measure. We use a result of Pedregal [Pe 93] (see also [MP 98]) that
the points in Krc are exactly the barycentres of certain probability measures
(called laminates). We prove (and that is one of the key points) that these
measures can be approximated by suitable combinations of Dirac measures
that are supported in an arbitrarily small neighbourhood (in #) of Krc (see
Theorem 3.1 below). In the third step we remove the set {Du ∈ Urc \U} by
a simple iteration.
Step 1 is discussed in Sect. 2 for the unconstrained case. Step 2 is

carried out in Sects. 3 and 4. In Sect. 5 we prove Theorems 1.1 and 1.3
and Corollary 1.4. Finally in Sect. 6 we carry out Step 1 for the case of
a constraint.

2. The unconstrained case for a neighbourhood of two matrices

Wefirst establish a version of Theorem 1.1 for the simplest situation, a small
neighbourhood of two rank−1 connected matrices.
Lemma 2.1. Let A and B be m × n matrices and suppose that

rank(B − A) = 1. (2.1)
Let

C = (1− λ)A+ λB, where λ ∈ (0, 1).
Then for any δ > 0 there exists a piecewise linear map u : ! → Rm such
that

dist(∇u, {A, B}) ≤ δ a.e. in!, (2.2)
sup
!

|u(x)− Cx| ≤ δ, (2.3)

u(x) = Cx on ∂!. (2.4)
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Proof. A simple construction was given in [MS 96]. We recall it for the
convenience of the reader. We will first construct a solution for a special
domainU . The argument will then be finished by an application of the Vitali
covering theorem.
By an affine change of variables we may assume without loss of gener-

ality that

A = −λa⊗ en, B = (1− λ)a⊗ en, C = 0, and |a| = 1.

Let ε > 0, let V = (−1, 1)n−1 × ((λ− 1)ε,λε) and define v : V → Rm by

v(x) = −ελ(1− λ)a+
{ −λaxn if xn < 0,

(1− λ)axn if xn ≥ 0.
Then ∇v ∈ {A, B} and v = 0 at xn = ε(λ− 1) and xn = ελ, but v does not
vanish on the whole boundary ∂V . Next let h(x) = ελ(1− λ)a

∑n−1
i=1 |xi |.

Then h is piecewise linear and |∇h| = ελ(1 − λ)
√
n − 1. Set ũ = v + h.

Note that ũ ≥ 0 on ∂V and let U = {x ∈ V : ũ(x) < 0}. Then
ũ|U is piecewise linear , ũ|∂U = 0,

dist(∇ũ, {A, B}) ≤ ελ(1− λ)
√
n − 1,

|ũ| ≤ ελ(1− λ).

By the Vitali covering theorem one can exhaust ! by disjoint scaled
copies of U . More precisely there exist xi ∈ Rn and ri > 0 such that the
sets Ui = xi + riU are mutually disjoint and |! \ ∪iUi| = 0. Define u by

u(x) =
{
ri ũ(r−1i (x − xi)) if x ∈ Ui,
0 else.

Then ∇u(x) = ∇ũ(r−1i (x − xi)), if x ∈ !i . It follows that u is piecewise
linear, that u|∂! = 0 and that u satisfies (2.2) for a suitable choice of ε.
Moreover by choosing ri ≤ 1 one can also satisfy (2.3). 01

3. Rank-one convex functions and rank-one convex hulls

In this section we fix m, n ∈ N and we consider functions defined on
(subsets of) the space Mm×nof all real m× n matrices. We also fix a natural
number r ≤ min(m, n) and a real number t. For X ∈ Mm×n we let M(X) =
det(Xi j )ri, j=1 and # = {X ∈ Mm×n, M(X) = t}.
Let O ⊂ Mm×n be an open and let f : O → R be a function. We say

that f is rank-one convex in O, if f is convex of each rank-one segment
contained in O. In a similar way, a function f defined on a set O ⊂ #
which is open in # is rank-one convex in O, if it is rank-one convex on
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each rank-one segment contained in O. We will use P to denote the set
of all compactly supported probability measures in Mm×n . For a compact
set K ⊂ Mm×n we use P(K) to denote the set of all probability measures
supported in K . For ν ∈ P we denote by ν̄ the center of mass of ν, i. e.
ν̄ =

∫
Mm×n Xdν(X).

A measure ν ∈ P is a laminate if 〈ν, f 〉 ≥ f(ν̄) for each rank-one
convex function f : Mm×n → R. At the center of our attention will be the
sets Mrc(K) = {ν ∈ P(K), ν is a laminate}, which are defined for any
compact set K ⊂ Mm×n .
Let O be an open subset of Mm×nor a subset of # which is open in #.

We now define an important subset L(O) of laminates, called the laminates
of finite order in O. The definition is by induction:
1. For each A ∈ O, the Dirac mass at A, denoted by δA, belongs to L(O).
2. Assume λ1, . . . ,λm ≥ 0 with

∑
λ j = 1, and that ν = ∑m

j=1 λ jδA j be-
longs to L(O). Assume also that [B1, B2] is a rank-one segment contained
in O, and that there is 0 ≤ s ≤ 1 such that (1 − s)B1 + sB2 = Am . Then
themeasureµ = ∑m−1

j=1 λ jδA j +(1−s)λmδB1+sλmδB2 also belongs toL(O).

Let K be a compact subset of Mm×n(resp. of#). We recall that the rank-
one convex hull K rc ⊂ Mm×n of K (resp. the rank-one convex hullK rc,# ⊂ #
of K relative to#) is defined as follows. A matrix X does not belong to K rc
(resp. to K rc,#) if and only if there exists f : Mm×n → R (resp. f : # → R)
which is rank-one convex (resp. rank one convex in #) such that f ≤ 0
on K and f(X) > 0. It is not difficult to see that K rc = {ν̄; ν ∈Mrc(K)}
for any compact K ⊂ Mm×n . The inclusion ⊂ is obvious. The proof of
the inclusion ⊃ can be found in [Pe 93]; it can be also easily derived from
Lemma 3.2 and Lemma 3.5 below. We can now formulate the main result
of this section.
Theorem 3.1. Let K be a compact subset of# and let ν ∈Mrc(K). Assume
that the number t appearing in the definition of# is not zero. Let K̃ = K rc,#
be the rank-one convex hull of K relative to # and letO ⊂ # be open in #
such that K̃ ⊂ O. Then there exists a sequence ν j ∈ L(O) of laminates of
finite order in O such that the ν j converge weakly∗ to ν in P.

The statement also remains true if we replace # by Mm×n and K rc,#
by K rc.
As a preparation for the proof of the theorem, we prove the following

lemma.
Lemma 3.2. Let O be an open subset of Mm×n or a subset of # which is
open inO. Let f : O→ R be a continuous function and let RO f : O→ R∪
{−∞} be defined by RO f = sup{g, g : O → R is rank-one convex in O
and ≤ f }. Then, for each X ∈ O we have RO f(X) = inf{〈ν, f 〉, ν ∈
L(O), and ν̄ = X}.
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Proof. Let us denote by f̃ the function inO defined by f̃ (X) = inf{〈ν, f 〉,
ν ∈ L(O), and ν̄ = X}. Clearly RO f ≤ f̃ in O. On the other hand, we
see from the definition of the set L(O) that it has the following property: if
ν1, ν2 ∈ L(O) and the segment [ν̄1, ν̄2] is contained in O, then any convex
combination of ν1 and ν2 is again in O. Using this, we see immediately
from the definitions that f̃ is rank-one convex in O and hence RO f = f̃ .

01

Proof of Theorem 3.1. Let ν ∈ Mrc(K) and let ν̄ = A be its center of
mass. We claim that A ∈ K̃ . This can be seen as follows. First we note
that A ∈ #, since 〈ν,M〉 = M(ν̄) by definition of Mrc(K). If A did
not belong to K̃ , there would exist a rank-one convex function g on #
such that g ≤ 0 on K and g(A) > 0. This would mean 〈ν, g〉 < g(A),
which would give a contradiction if we knew that there exists a rank-one
convex function f : Mm×n → R such that | f − g| ≤ ε on K ∪ {A},
where ε is sufficiently small. The existence of such f is guaranteed by
Lemma 3.6 below, and hence the claim A ∈ K̃ is proved. We now choose
a set U ⊂ # which is open in # and satisfies K̃ ⊂ U ⊂ Ū ⊂ O. We
define F = {µ ∈ L(U), µ̄ = A}. We claim the the weak∗ closure of
F contains ν. To prove the claim, we argue by contradiction. Assume ν
does not belong to the weak∗ closure of F . Since F is clearly convex, we
see from the Hahn-Banach Theorem that there exists a continuous function
f : Ū → R such that 〈ν, f 〉 < inf{〈µ, f 〉, µ ∈ L(U) and µ̄ = A}. By
Lemma 3.2, we have inf{〈µ, f 〉, µ ∈ L(U) and µ̄ = A} = RU f(A). We
see that the function f̃ = RU f : U → R is rank-one convex in U and
satisfies 〈ν, f̃ 〉 ≤ 〈ν, f 〉 < f̃ (ν̄). By Lemma 3.6 below, there exists, for each
ε > 0, a rank-one convex function F : Mm×n → R such that |F − f | ≤ ε
on K̃ . We conclude that ν cannot belong toMrc(K), a contradiction. The
proof is finished.

The rest of this section is devoted to the proof of the Lemma 3.6 below.
An important step in the proof of the lemma is the approximation of rank-
one convex functions on# by smooth rank-one convex functions, a problem
which we are now going to consider.
We first remark that any rank-one convex function f on Mm×n can be

approximated by functions of the form ϕε∗ f , where ϕε = ε−mnϕ(x/ε), with
ϕ being a standard mollifier. If ϕ ≥ 0, the functions ϕε ∗ f are obviously
rank-one convex.
To approximate rank-one convex functions on # by smooth functions,

we will use a suitable variant of the simple mollification procedure just
described. However, our method will work only for t *= 0. For t = 0 the
problem seems to be more subtle due to the singularities in #.
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We can write each m × n matrix X as a 2 × 2 block matrix, X =(
X11 X12
X21 X22

)
, where X11 is an r × r matrix, X12 is an (m − r) × r matrix,

etc. We recall that there is a natural action of the group SL(r,R) on Mm×n

given by A · X =
(
AX11 AX12
X21 X22

)
(where A ∈ SL(r,R) and X ∈ Mm×n).

This action clearly leaves # invariant and also maps any rank-one segment
into a rank-one segment.
Let E = {X ∈ Mm×n, X11 = 0}. We consider E as an additive group

which acts on Mm×n by X → X + C, (where X ∈ Mm×n and C ∈ E). This
action also preserves # and all rank-one segments.
We consider a family of mollifiers ϕε : SL(r,R) → R which are

smooth, non-negative, and approximate the Dirac mass at I as ε → 0. Let
also ψε be a family of mollifiers in E which have analogous properties.
For a continuous function f : # → R we let fε(X) = ∫

SL(r,R)

∫
E f(A ·

(X+C))ϕε(A)ψε(C) dA dC, where dA and dC denote the natural invariant
measure in SL(r,R) and E respectively. It is easy to verify that for each rank-
one convex f : # → R the functions fε are again rank-one convex in #,
smooth, and converge to f uniformly on compact subsets of # as ε → 0.

For X ∈ # we let n(X) be the unit normal to # satisfying n(X) ·
∇M(X) > 0. It is well known that for X ∈ Mm×n which is sufficiently
close to # there is a unique π(X) ∈ # which is close to X such that
X = π(X) + tn(π(X)), where t = dist(X,#).
Let f : # → R be a smooth, rank-one convex function. Let U be

a neighbourhood of # on which the projection π introduced above is well-
defined. For ε > 0 and k > 0 we define F = Fε,k : U → R by Fε,k(X) =
f(π(X)) + ε|X|2 + k|M(X) − t|2, where we use the notation introduced
above (see also the beginning of the section).

Lemma 3.3. Let K be a compact subset of #. In the notation introduced
above, for any ε > 0 there exists k > 0 such that the function F = Fε,k is
rank-one convex in an open subset of Mm×n containing K .

Proof. We argue by contradiction. Suppose the statement fails. Then there
exists a sequence Ak ∈ U converging to A ∈ K (as k→∞) and a sequence
Yk of rank-one matrices with |Yk| = 1 converging to a rank-one matrix Y
with |Y | = 1 such that D2Fε,k(Ak)(Yk,Yk) ≤ 0. Since f ◦ π is smooth in
U and M is affine along all rank-one lines, we have D2Fε,l(A)(Y,Y ) ≤ 0
for each l > 0. Using again that f ◦ π is smooth and M is affine along all
rank-one lines, we see that Y is a rank-one matrix belonging to the tangent
space of # at A. Therefore the line described by t → A + tY, t ∈ R is
contained in #. Using the assumption that f is rank-one convex on #, we
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infer that D2Fε,l(A)(Y,Y ) ≥ ε, a contradiction. The proof of Lemma 3.3 is
finished.

Lemma 3.4. Let K be a compact subset of # and let K̃ = K rc,# be the
rank-one convex hull of K relative to #. Then there exists a rank-one
convex g : # → R such that g ≥ 0 in# and K̃ = {X ∈ #, g(X) = 0}. The
statement also remains true if we replace # by Mm×n and K rc,# by K rc.

Proof. For r > 0 we let denote by #r the set # ∩ {|X| < r}. We choose
R > 0 so that K ⊂ #R/2 and define g1 : #R → R by

g1(X) = sup{ f(X), f : #R → R,

f is rank-one convex in #R and f ≤ dist( · , K) in #R}.
The function g1 is obviously non-negative and rank-one convex in #R.

Moreover, {X ∈ #R, g1(X) = 0} ⊃ K and from the definition of K̃ we see
that g1 > 0 outside K̃ . We now define

g(X) =
{
max (g1(X), 12|X|− 9R) when X ∈ #R
12|X| − 9R when X ∈ # ∩ {|X| ≥ R}

Clearly g is rank-one convex on # in a neighbourhood of any point X ∈ #
with |X| *= R. Since g1(X) ≤ 2|X| when |X| = R, we see that we have
g(X) = 12|X|− 9 in a neighbourhood of # ∩ {|X| = R}. We infer that g is
rank-one convex on #. The proof is easily finished.

Lemma 3.5. Let K ⊂ Mm×n be a compact set, let O be an open set
containing K rc (the rank-one convex hull of K ) and let f : O→ R be rank-
one convex. Then there exists F : Mm×n → R which is rank-one convex and
coincides with f in a neighbourhood of K rc.

Proof. We use Lemma 3.4 to obtain a non-negative rank-one convex func-
tion g : Mm×n → R such that K rc = {X, g(X) = 0}. Replacing f by f +c,
if necessary, we can assume that f > 0 in a neighbourhood of K rc. For k > 0
we let Uk = {X ∈ O, f(X) > kg(X)}. We also let Vk be the union of the
connected components ofUk which have a non-empty intersection with K rc.
It is easy to see that there exists k0 > 0 such that V̄k0 ⊂ O. We now let
F(X) = f(X) when X ∈ Vk0 and F(X) = k0g(X) when X ∈ Mm×n \ Vk0 . It
is easy to check that the function F defined in this way is rank-one convex
on Mm×n . 01
Lemma 3.6. Using the notation introduced at the beginning of this section,
let us assume that the number t appearing in the definition of # is not
zero. Let K ⊂ # be a compact set, and let O ⊂ # be a set open in
# which contains K̃ = K rc,#, the rank-one convex hull of K relative
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to #. Let f : O → R be rank-one convex. Then, for each ε > 0, there
exists a rank-one convex function F : Mm×n → R such that |F − f | < ε
on K̃ .

Proof. Using Lemma 3.4 we see that there exists a non-negative rank-one
convex function g : # → R such that K̃ = {X ∈ #, g(X) = 0}. Let us take
a large (open) ball B ⊂ Mm×n containing K̃ . As we saw above, there exists
a smooth rank-one convex function g̃ : # → R such that |g̃ − g| < ε/4 in
B̄ ∩ #. By Lemma 3.3 there exists a neighbourhood U of # ∩ B̄ in Mm×n

and a rank-one convex function G : U → R such that |G − g| ≤ ε/2 on K̃ .
We note that the rank-one convex hull of the set # ∩ B̄ is again # ∩ B̄, and
therefore we can apply Lemma 3.5. The proof is finished easily.

4. The main approximation lemma

In this section we consider a precursor to Theorem 1.1. We show that for
affine boundary data x '→ Fx with F ∈ Urc there exists a piecewise linear
map u whose gradient is always in Urc and most of the time in U . A simple
iteration argument given in the next section will yield Theorem 1.1, and
another more subtle iteration yields Theorem 1.3.

Lemma 4.1. Let # be given by (1.3) with t *= 0. Let V be an open set
in #, let F ∈ Vrc and let ε > 0. Then there exists a piecewise linear map
u : ! ⊂ Rn → Rm such that Du ∈ Vrc a.e. in ! and

|{Du *∈ V }| < ε |!|,
u(x) = Fx on ∂!.

The same assertion holds if # is replaced by Mm×n .

Proof. By definition there exists a compact set K ⊂ V such that F ∈ Krc.
In view of [Pe 93] (see also Sect. 3) there exists a probability measure
ν ∈ Mrc(K) such that F = ν = 〈ν, id〉. Using the action of the group
SL(r,R) × E on # defined in Sect. 3, we see that Vrc is open in #.
Theorem 3.1 yields the existence of laminates of finite order ν j ∈ L(Vrc)
that converge to ν in the weak∗ topology and satisfy ν j = F.
It only remains to show that for each µ ∈ L(Vrc), µ = ∑l

i=1 λiδAi and
each ε > 0 there exists a piecewise linear map u : ! → Rm that satisfies
Du ∈ Vrc and

∣∣∣∣
∣∣∣{|Du − Ai | < ε}

∣∣∣− µ(Ai)|!|
∣∣∣∣ < ε |!|, (4.1)

u = µ x on ∂!. (4.2)
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We prove this assertion by induction over the order of the laminate.
For laminates µ = λδA + (1 − λ)δB of order one the assertion follows
from Theorem 6.1 (and the fact that

∫
!
Du = µ |!|). Assume that the

assertion holds for laminates of order k (or less) and let µ ∈ L(Vrc) be
a laminate of order k + 1. Then there exists a laminate µ′ of order k,
µ′ = ∑l−1

i=1 λ′iδA′i and matrices Al−1, Al ∈ Vrc with rk(Al − Al−1) = 1 and
A′l−1 = sAl−1 + (1− s)Al , s ∈ (0, 1) such that

µ = µ′ − λ′l−1δA′l−1 + sλ′l−1δAl−1 + (1− s)λ′l−1δAl .

By the induction assumption there exists, for each δ > 0, a piecewise linear
map v : ! → Rm such that Dv ∈ Vrc

∣∣∣∣
∣∣∣{|Dv− A′i | < δ}

∣∣∣− µ′(A′i)|!|
∣∣∣∣ < δ|!|,

v = µ′ x = µ x on ∂!.

Consider the set E ⊂ ! where |Dv − A′l−1| < δ. Then E is a countable
union of open sets on which v is affine (up to a set of measure two) and
| |E| − µ(A′l−1)|!| | < δ|!|. Hence we may choose a subset E ′ such that
| |E ′|− λl−1|!| | < 2δ|!| and E ′ is a finite union of open sets E j on which
v is affine.
It remains tomodify v on these sets. Let Fj =Du|E j . Then |Fj−A′l−1|<δ,

and we claim that there exist Bj, C j ∈ Vrc such that Fj = sB j+
(1 − s)C j, rk(Bj − C j) = 1 and |Bj − Al−1| < Cδ, |C j − Al| < Cδ,
where C may depend on Al−1 but not on δ. Indeed in the case without
constraint one can take Bj = Al−1 + (Fj − A′l−1), C j = Al + (Fj − A′l−1)
and the assertion Bj,C j ∈ Vrc follows for a sufficiently small choice of δ.
If a constraint is imposed one can use the group action on # as in Sect. 3
instead of the translation on Mm×n to define Bj and C j .
Using Theorem 6.1 we can replace v on each E j by a map u which

satisfies u = v on ∂E j , Du ∈ Vrc and | |{|Du−Bj| < δ}|−s|E j | | < δ|E j |,
| {|Du−C j| < δ}|−(1−s)|E j| < δ|E j |. If δ is chosen sufficiently small (in
dependence on ε, µ and Vrc) then u satisfies (4.1) and (4.2). This finishes
the proof of the lemma for the case with constraint. The unconstrained case
is completely analogous and was treated in [MS 99]. 01

5. Proof of the main results

Theorem 1.1 is obtained by an iteration of Lemma 4.1 which removes the
set where Du /∈ V . Theorem 1.3 can be deduced from Theorem 1.1 by
a careful choice of approximations u(i) with Du(i) ∈ Ui . The argument is
the same as in [MS 96]. Since it is short, we repeat it for the convenience
of the reader.



406 S. Müller, V. Šverák

Proof of Theorem 1.1. We only consider the situation with constraint since
the unconstrained case is analogous. Suppose first that the boundary data v
are affine, v(x) = Fx+a. Let ε > 0. By Lemma 4.1 there exists a piecewise
linear map u(1) : ! → Rm that satisfies u(1) = v on ∂! and

Du(1) ∈ Urc, |{Du(1) /∈ U}| < ε|!|.

Since u(1) is piecewise linear there exists a family of disjoint sets !k such
that |! \ ⋃

!k| = 0 and u(1)
|!k
is affine. Let {!(1)

j } be the subfamily of those
sets where Du(1) /∈ U . Applying Lemma 4.1 to each set !(1)

j we find maps
u(2)
j that satisfy u(2)

j = u(1) on ∂!
(1)
j and

Du(2)
j ∈ Urc, |{Du(2)

j /∈ U}| < ε|!(1)
j |.

Let

u(2) =
{
u(1) on ! \ ⋃

!
(1)
j ,

u(2)
j on !

(1)
j .

Then u(2) = v on ∂!, Du(2) ∈ Urc a.e. and

|{Du(2) /∈ U}| < ε2|!|,
|{Du(2) *= Du(1)}| < ε|!|.

Repeating this process we find maps u(k) such that u(k) = v in ∂!, Du(k) ∈
Urc a.e.

|{Du(k) /∈ U}| < εk|!|,
|{Du(k) *= Duk−1)}| < εk−1|!|.

In particular Du(k) → Du in measure and Du ∈ U a.e. This finishes the
proof for affine v.
If v is piecewise affine it suffices to apply the previous argument to

each region where v is affine. Finally if v ∈ C2,αloc ∩W1,∞ then we can first
approximate v by a piecewise affine map (see Lemma 6.3 and the remarks
following it). 01
Proof of Theorem 1.3. Again it suffices to consider affine boundary data
v = Fx. For piecewise linear data one can argue on each region where v is
affine, and for general data one can use Lemma 6.3 to obtain a piecewise
linear approximation. Let F ∈ U (1), δ > 0. By Theorem 1.1 there exists
a piecewise linear map u(2) such that Du(2) ∈ U (2) a.e. in!, u(2) = v on ∂!
and

‖u(2) − v‖∞ < δ.
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Given u(i) (with Du(i) ∈ U (i)) and δi > 0 we obtain εi , δi+1 and u(i+1)

inductively as follows. Let

!i = {x ∈ ! : dist(x, ∂!) > 2−i},

let, ∈ C∞0 (Rn)with
∫

, = 1be a usualmollifier and let,ε (x) = ε−n,(x/ε).
Then there exist εi < 2−i such that

‖,εi ∗ Du(i) − Du(i)‖!i < 2−i .

Let

δi+1 = min (2−iεi, δiεi/2).

Then there exists u(i+1) with Du(i+1) ∈ U (i+1) a.e. and

‖u(i+1) − u(i)‖∞ < δi+1.

Since #δi < ∞ we have u(i) → u uniformly and u(i) = v on ∂!.
Moreover

Ri =
∥∥,εi ∗ (Du(i) − Du)

∥∥
L1(!i )

≤
∥∥D,εi ∗ (u(i) − u)

∥∥
L1(!i )

≤ c
εi

∞∑

j=i+1
δ j ≤

2c
εi

δi → 0, as i →∞,

and thus
∥∥Du(i) − Du

∥∥
L1(!)

≤
∥∥Du(i) − Du

∥∥
L1(!\!i)

+
∥∥,εi ∗ Du(i) − Du(i)∥∥

L1(!i)

+
∥∥,εi ∗ Du − Du

∥∥
L1(!i)

+ Ri → 0, as i →∞,

since |Du(i)| + |Du| ≤ C. Hence Du(i) → Du in L1 and thus Du ∈ K . 01
Proof of Corollary 1.4. Let

# = {
F ∈ M2×2 : det F = 1

}
.

Then [Sv 93]

Krc = Krc,# = # ∩ conv K

and the sets

U1 = # ∩ int conv K
Ui = {

F ∈ U1 : 0 < dist(F, K) < 2−i
}

are an in-approximation of K in #.
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6. The basic construction with constraints

6.1. Main result

Theorem 6.1. Let A, B ∈ Mm×n, n,m ≥ 2 and let M be a minor of order
r ≥ 2. Suppose that

rank(B − A) = 1, M(A) = M(B) *= 0.

Let

C = (1− λ)A+ λB, where λ ∈ (0, 1).

Then for any δ > 0, there exists a piecewise linear map u : ! → Rn such
that

M(Du) = M(A) a.e. in !, (6.1)
dist(Du, [A, B]) ≤ δ a.e. in !, (6.2)

|{dist(Du, {A, B}) > δ}| ≤ δ, (6.3)
sup |u − Cx| ≤ δ, (6.4)

u = Cx on ∂!. (6.5)

Remarks. 1. Ifm = n is even one can construct symplectic maps rather than
volume preserving maps in a similar way. Also certain linear constraints
such div u = 0 or Du = (Du)T can be handled (cf. the construction of ψ
and v in the proof of Lemma 6.2 below).
2. The proof employs approximation arguments that are simple but lead

to a construction that is hard to visualize. For n = m = 2 a direct construc-
tion involving 20 gradients is possible. It even satisfies dist(Du, {A, B})≤δ
a. e. in !.

To prove Theorem 6.1 we first construct smooth functions that satisfy
(6.1)–(6.5) and then employ a general argument to approximate those by
piecewise linear functions. Moreover we may assume M(A) = M(B) = 1.
Note that if suffices to establish (6.1)–(6.3) and (6.5) for ! = (0, 1)n . The
result for general ! and (6.4) can then be deduced by covering and scaling
as in the proof of Lemma 2.1.

6.2. Approximation by C∞ maps

Lemma 6.2. Let A, B,C as in Theorem 6.1 and suppose that ! = (0, 1)n ,
r ≥ 2 and

M(A) = M(B) = 1.

Then there exists u ∈ C∞(!̄) that satisfies (6.1)–(6.3) and (6.5).
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Proof. We begin with the typical case

r = m = n, M(Du) = det Du.

After a linear change of variables we may assume

A = Id − λ e1 ⊗ ν, B = Id + (1− λ) e1 ⊗ ν, C = Id.

Since det A = detC we must have ν1 = ν · e1 = 0 and we may assume
ν2 *= 0.
The map u is obtained as the flow of a divergence free vector field. Let

h : R→ R be a smooth one-periodic function that satisfies h′ ′ ∈ [−λ, 1−λ],
|{h ′′ *∈ {−λ, 1 − λ}} ∩ [0, 1]| < δ/4 and let η ∈ C∞0 (U), U = (0, 1)n , be
a suitable cut-off function. Define the vector field v ∈ C∞0 (U;Rr) by

ψ(x) = ε2

ν2
η(x)h

( x · ν
ε

)

v1 = ∂2ψ = εη(x)h ′
( x · ν

ε

)
+ ε2

ν2
(∂2η)h

(x · ν
ε

)

v2 = −∂1ψ = −ε2

ν2
(∂1η)(x)h

( x · ν

ε

)

v3 = · · · = vr = 0.

The small parameter ε > 0 will be chosen below. Consider the flow ϕt
generated by v:

d
dt

ϕt(x) = v(ϕt(x)), ϕ0 = id.

We claim that u = ϕ1 satisfies (6.1)–(6.3), (6.5). Indeed (6.1) and (6.5) hold
since v is divergence free and has compact support.
To prove the remaining assertions let Ft = Dϕt . Then

d
dt
Ft = (Dv ◦ ϕt)Ft, F0 = id. (6.6)

Now

Dv(x) = η(x)h ′′
( x · ν

ε

)
(e1 ⊗ ν) + O(ε)

and, for t ∈ [0, 1],
|(ϕt(x)− x) · ν| ≤ t sup |v · ν| ≤ sup |v2| ≤ Cε2,

since ν1 = 0. Thus (6.6) yields

Du(x) = F1(x) = eL(x) + O(ε),
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where

L(x) = η(x)h ′′
( x · ν

ε

)
(e1 ⊗ ν) .

Estimates (6.2) and (6.3) now follow from the properties of h after a suitable
choice of η and ε, since

et(a⊗b) = Id + t a⊗ b if a · b = 0.

This finishes the proof in the typical case r = m = n.
Now consider the case

r = m < n.

Wemay assume that the minor M involves the firstm rows and columns. For
x ∈ Rn we let x = (x ′, x̃), where x ′ = (x1, . . . , xm), x̃ = (xm+1, . . . , xn)
and similarly we write F = (F ′|F̃) for an m× n matrix F. We may assume

C = (Id | 0), A = C − λ e1 ⊗ ν, B = C + (1− λ) e1 ⊗ ν.

Suppose first ν′ *= 0. Then we may suppose ν2 *= 0 and define the vector
field v as before. Consider the flow ϕt given by

d
dt

ϕt(x) = v(ϕt(x), x̃), ϕ0(x) = x ′.

We claim that u = ϕ1 has the desired properties. Indeed if we consider
Ft = Dϕt and .t(x) = (ϕt(x), x̃) we have

d
dt
F ′t = (Dv)′ ◦.t F ′t F ′0 =Id,

d
dt
F̃t = (Dv)′ ◦.t F̃t + D̃v F̃0 = 0.

In particular we have M(Ft) = det F ′t = 1 since tr(Dv)′ = 0. Moreover
|.t(x) − x) · ν| ≤ Cε2 and the other estimates follows as for the case
r = n = m.
If ν′ = 0 one can still use the same construction provided that ψ is

redefined as follows

ψ(x) = ε3η(x)h
(x2

ε
+ x · ν

ε2

)
.

Finally consider the case

r < m.

We may suppose that

C =
(
Id 0
0 0

)
, a =

(
αe1
â

)
and ν1 = 0 if α *= 0.
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Let v1, . . . , vr be the vector field that is appropriate for the situation obtained
by deleting the rows r + 1, . . . ,m and define maps ϕt : (0, 1)n → Rm by

d
dt

ϕit (x) = α vi
(
ϕ1t (x), . . . ,ϕrt (x), x

r+1, . . . , xn
)
,

ϕi0(x) = xi, for i = 1, . . . , r,

and
d
dt

ϕit(x) = âiv1
(
ϕ1t (x), . . . ,ϕ

r
t (x), x

r+1, . . . , xn
)
,

ϕi0(x) = 0, for i = r + 1, . . . ,m.

To see that the last equation yields the desired result one uses the fact that
|Dϕit − ei | is small for i = 2, . . . , r and that ν1 = 0 if α *= 0. 01

6.3. Approximation by piecewise linear maps

To finish the proof of Theorem 6.1, we note that if we prove the result up
to condition (6.4), then (6.4) can be achieved by a suitable scaling and the
use of Vitali’s covering theorem. Therefore it only remains to establish the
following approximation result.

Lemma 6.3. Let ! be a bounded open set in Rn and let M be a minor of
order r ≥ 2 and let α > 0. Suppose that u ∈ C2,αloc (!,Rm) ∩W1,∞(!;Rm)
and

M(Du) = 1 in !.

Then for every δ > 0 there exists a piecewise linear map v : ! → Rm that
satisfies

M(Dv) = 1 in !, (6.7)
‖Du − Dv‖L∞ ≤ δ, (6.8)

u = v on ∂!. (6.9)

Remarks. 1. If r = n, then C2,αloc can be replaced by C
1,α
loc .

2. If U is an open subset of # = {F ∈ Mm×n : M(F) = 1} and Du ∈ U
then one can achieve in addition Dv ∈ U .
Consider first the typical case m = n = r, M(Du) = det Du. The main

idea is that on a ball B(a, r) where rα[Du]α is sufficiently small one can
replace u by amapwith the same boundary values that is affine on B(a, r/2).
To achieve the replacement one can first consider an interpolation between
u(a)+Du(a)x and u in B(a, r)\ B(a, r/2) and then use the following result
of Dacorogna and Moser to reestablish the constraint.
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Lemma 6.4 ([DM 90]). Let U be a smooth and bounded domain in Rn.
For k ≥ 1 and α ∈ (0, 1) consider the set

X =
{
u ∈ Ck,α(U;Rn) :

∫

U
det Du dx = |U|

}
.

There exists a neighbourhood U of the identity map in X and a smooth map
L : U → Ck,α(U;Rn) such that for all u ∈ U the map Lu is a diffeomor-
phism and

det DLu = 1 in U,

Lu = u on ∂U.

Moreover L id = id.

Proof. Choosing the neighbourhood U sufficiently small we may assume
that it consists of diffeomorphisms. By Lemma 4 of [DM 90] there exists
an operator . from a neighbourhood V of the constant 1 in Y = { f ∈
Ck−1,α(!) :

∫
!
f = |!|} to a neighbourhood of the identity in X such that

det D.( f ) = f in U,

.( f ) = id on ∂U.

It easily follows from the construction of. via the contraction principle that
. is actually a smoothmap (estimate (4) on p. 11 of [DM 90] is incorrect, but
their results are correct; for the present purpose it suffices that the estimate
in question holds with ‖wi‖0 replaced by ‖wi‖k,α). Now define L by

Lu = .( f ) ◦ u, f = det Du−1,

Then Lu satisfies (6.10) and (6.11). Since multiplication and composition
are smooth operations in Ck,α(!;Rn) and the map u '→ u−1 is smooth in U ,
the map u → det Du−1 is a smooth map from U to V (if U is sufficiently
small), and L is smooth. Finally L id = id since .(1) = id. 01
Corollary 6.5. For each n ∈ N,α > 0,M > 0 there exist a δ > 0 such
that the following holds. If B(a, r) ⊂ Rn, u ∈ C1,α(B(a, r);Rn) and

det Du = 1 in !,

rα[Du]α ≤ δ, ‖Du‖L∞ ≤ M,

then there exists a ũ ∈ C1,αloc (B(a, r) \ ∂B(a, r/2)) such that

det Dũ = 1,
Dũ = Du(0) in B(a, r/2),
ũ = u on ∂B(a, r),

r−1‖u − ũ‖L∞ + ‖Du − Dũ‖L∞ ≤ C(M)δ.
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Proof. By scaling and translation we may suppose a = 0, r = 1, u(a) = 0.
First suppose that Du(0) = Id. For ϕ ∈ C∞0 (B(0, 1)), ϕ ≡ 1 on B(0, 1/2))
consider the interpolation

û(x) = ϕ(x)x + (1− ϕ(x))u(x)

on B1 \ B1/2. If δ < δ̄(n,α), then we can apply Lemma 6.4 and define

ũ =
{
x on B1/2,
Lû on B1 \ B1/2.

If F := Du(0) *= Id then we can first consider v = F−1u, define ṽ as
before and let ũ = Fṽ. Since ‖F−1‖ = ‖ adj F‖ ≤ CMn−1 the assertion
follows for δ < C−1M1−n δ̄(n,α). 01
Proof of Lemma 6.3. It suffices to show the following assertion:
There exists a constant/ > 0 (which only depends on n,m and r) with the
following property. For each δ > 0, each α > 0 and each pair (u,!) that
satisfies the hypotheses of the lemma there exists a map ũ ∈ W1,∞(!,Rn),
a finite number of disjoint closed sets Aj ⊂ !, a closed null set N and a
β > 0 such that

M(Dũ) = 1 in !,

ũ|A j is affine,
∣∣ ⋃ Aj

∣∣ ≥ /|!|,
‖ũ − u‖W1,∞ ≤ δ,

ũ ∈ C1,βloc
(
! \ (N ∪⋃

Aj)
)
,

ũ − u ∈ W1,∞
0 (!;Rn).

Indeed if the assertion holds, then one can inductively obtain a decreasing
sequence of open sets !i and maps u(i) such that u(0) = u, u(i+1) − u(i) ∈
W1,∞
0 (!;Rn),

‖u(i+1) − u(i)‖W1,∞ ≤ 2−i−1δ,
u(i+1) = u(i) on ! \ !i,

|!i+1| ≤ (1−/)|!i|,

and ! \ !i is a finite union of closed sets (up to a closed null set Ni ) on
each of which u(i) is affine. It follows that u(i) → v inW1,∞

0 , u− v ∈ W1,∞
0

and v is piecewise linear. Moreover ‖v − u‖W1,∞ ≤ δ.
To prove the assertion we first consider the typical case r = n = m,

M(Du) = det Du.
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There exists open sets !′′ ⊂⊂ !′ ⊂⊂ ! (where ⊂⊂ denotes compact
inclusion, i.e. !′ ⊂ ! etc.) with |!′′| ≥ 1

2 |!|. If , > 0 is sufficiently small
then !′′ can be covered by a lattice of disjoint open cubes of size , that are
contained in !′. The C1,α norm of u is uniformly bounded on the cubes. If
we choose , sufficiently small then each cube contains a ball of radius r to
which Corollary 6.5 applies. This yields the assertion for r = n = m.
The same reasoning applies for general r ≥ 2 if we replace Corollary 6.5

by Lemma 6.6 below. We only state it for r = m, since for r < m one can
simply use usually interpolation by cut-off functions for the components
ur+1, . . . , um . 01
To fix the notation we write x = (x ′, y) ∈ Rm × Rn−m , we denote the

derivative with respect to the first m components by D′ and the derivatives
with respect to the remaining components by Dy. Finally we sometimes
write m × n matrices as F = (F ′,G) ∈ Mm×n × M(n−m)×m .

Lemma 6.6. Let V = B2 × B2 ⊂ Rm × Rn−m and α > 0. Then there exist
δ > 0, M > 0 such that for all u ∈ C2,α(V ;Rm) the following holds. If

‖Du − Du(0)‖1,α < δ, sup |D′u| ≤ M, det D′u = 1,

then there exists a Lipschitz map v : V → Rm that satisfies

det D′v = 1 in V,

Dv = Du(0) in B1/2 × B1/2,
v = u in ! \ B1 × B1,

sup |Dv− Du| < Cδ,

v ∈ C2,α/2(V \ N),

where N = (∂B1/2 ∪ ∂B1)× B1.

The proof of Lemma 6.6 relies on Lemma 6.4 and the following charac-
terization of the nonuniqueness in Lemma 6.4.

Lemma 6.7. Suppose that! is a bounded domain inRn with smooth bound-
ary. For k ≥ 2 and α ∈ (0, 1) consider the spaces

Xk := Ck,α
∂,tr := {

v ∈ Ck,α(!;Rn) : div v = 0 in !, v = 0 on ∂!
}
,

Yk := Dk,α
α,det:= {ϕ : Ck,α(!;Rn) : ϕ : ! → ! diffeomorphism,

det Dϕ = 1 in !,ϕ = id on ∂!}.

Then there exists a smooth diffeomorphism exp that maps a small neigh-
bourhood of 0 in Xk onto a neighbourhood of the identity map in Yk.
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Proof. The Lemma follows from general results on the geodesic flow
in the group of volume preserving diffeomorphisms (see [Ar 66,EM 70],
[HKMRS 98]). Since we need to use the H1 metric (rather than the stan-
dard L2 metric) to enforce the boundary condition ϕ = id on ∂! (rather
than ϕ(∂!) = ∂!) we sketch the proof in the appendix.
Proof of Lemma6.6. Wefirst construct amapw that has the right properties
in the inner cylinder B1/2×B2. An important point is that

∫
B1/2 det D

′w dx ′ =
|B1/2|. We then define an extension u0 = ψ(x ′)w+ (1−ψ(x ′))u that agrees
with u outside B1 × B1. In general det D′u0 *= 1. By Lemma 6.4 we can
replace u0(·, y) by a map ũ(·, y) that satisfies det D′u = 1 and agrees with
u0(·, y) on ∂(B1 \ B1/2). Finally we modify ũ for |y| ≥ 3/4 with the help
of the exponential map defined in Lemma 6.7 so that it agrees with u on
B1 \ B1/2 × ∂B1.
We may suppose that

F := Du(0) = (Id, 0)
since otherwise we could consider

û(x ′, y) = u((F ′)−1x ′, y)− Gy,

where F = (F ′,G). In addition we may assume u(0) = 0.

Step 1: Construction of w.
Let ϕ ∈ C∞0 (B3/4), ϕ|B1/2 ≡ 1, and define

w̃(x ′, y) = ϕ(y)x ′ + (1− ϕ(y))u(x ′, y),

λ(y) = 1
|B1/2|

∫

B1/2
det D′w̃(x ′, y) dx ′

w(x ′, y) = λ−1/m(y)w̃(x ′, y).

Then w is as smooth as u and∫

B1/2
det D′w dx ′ = |B1/2|,

w(x ′, y) = x ′ on B2 × B1/2,
w(x ′, y) = u(x ′, y) on B2 × B2 \ B3/4.

Note that λ ∈ C2,α although it may appear at first glance that one deriva-
tive is lost in the definition of λ. Indeed, using the formula div′ cof D′w̃ = 0
we obtain

|B1/2|∂yiλ =
∫

B1/2
(cof D′w̃ : D′∂yi w̃) dx ′

=
∫

∂B1/2
(cof D′w̃ : ∂yi w̃⊗ ν′) dx ′,
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where ν′ is the outer normal of ∂B1/2. This yields the desired regularity
of λ. Further inspection shows that ‖Dw̃ − (id, 0)‖1,α ≤ C δ and ‖Dw −
(id, 0)‖1,α ≤ C δ. In particular all the maps w(·, y) are diffeomorphisms of
B2 if δ > 0 is sufficiently small.

Step 2: Interpolation between w and u.
Let ψ ∈ C∞0 (B1),ψ|B1/2 ≡ 1 and let

u0(x ′, y) = ψ(x ′)w(x ′, y) + (1− ψ(x ′))u(x ′, y).

Then Du0(0) = (id | 0) and ‖Du0 − (id | 0)‖1,α ≤ C δ. In particular all the
maps u0(·, y) are diffeomorphisms of B2. Moreover

u0 =
{

w on ∂B1/2 × B2,
u on ∂B1 × B2,

and
∫

B1\B1/2
det D′u0 dx ′ =

∫

B1
det D′u0 dx ′ −

∫

B1/2
det D′u0 dx ′

=
∫

B1
det D′u dx ′ −

∫

B1/2
det D′w dx ′

= |B1 \ B1/2|.

Step 3: Projection of u0 onto volume preserving maps.
Let

! = B1 \ B1/2.
For fixed y we can apply Lemma 6.4 with U replaced by! (and n replaced
by m) to u0(·, y). Let

ũ(·, y) = Lu0(·, y).
Then for k = 1, 2

‖ũ(·, y)‖k,α,! ≤ C ‖u0(·, y)‖k,α,!

≤ ‖u‖k,α,V .

Moreover by Lipschitz continuity of L

‖ũ(·, y)− ũ(·, ŷ)‖k,α/2,! ≤ C ‖u0(·, y)− u0(·, ŷ)‖k,α,!

≤ C ‖u‖k,α,V |y − ŷ|α/2.

Using the differentiability of L one finds similarly

‖Dl
yũ(·, y)− Dl

yũ(·, ŷ)‖k−l,α/2,! ≤ C ‖u‖k,α,V |y − ŷ|α/2.
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Hence ũ ∈ C2,α/2(!′ × B2).

Step 4:Modification of ũ for |y| > 3/4.
For |y| > 3/4 define

η(·, y) = (u0(·, y))−1 ◦ ũ(·, y) = (u(·, y))−1 ◦ ũ(·, y).
Then η measures the ‘difference’ between ũ and u and

η(·, y) = id on ∂! = ∂B1 ∪ ∂B1/2
det D′η = 1.

Now let ψ ∈ C∞0 (B1),ψ = 1 on B7/8 and let

v(·, y) = ũ(·, y) on !× B3/4
v(·, y) = u(·, y) ◦ exp(ψ(y) exp−1 η(·, y)) on !× B1 \ B3/4
v(·, y) = w(·, y) on B1/2 × B1

v = u elsewhere.

Then v has the desired properties. 01
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Appendix: Proof of Lemma 6.7

Proof. The result is well-known to experts and a detailed proof in a more
general situation is given in [HKMRS 98]. We sketch a proof for the case
at hand for the convenience of the reader. The map exp will be constructed
as the time-one map of the flow generated by a suitable (time-dependent)
vector field v. If we were interested in volume-preserving diffeomorphisms
that satisfy merely ϕ(∂!) = ∂! we could take v as the solution of the
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incompressible Euler equations. To achieve ϕ|∂! = id we use a variant of
the Euler equations where the orthogonal projection onto divergence free
vector fields is taken with respect to the H1

0 scalar product rather than the
L2 scalar product.
Arnold [Ar 66,AK 98] observed that the flow generated by the solutions

of the Euler equations corresponds to geodesics in the group of volume pre-
serving diffeomorphisms, equipped with a translation invariant metric given
by the L2 scalar product on vector fields, see [EM 70] for a detailed analysis.
The flow discussed below corresponds to geodesics with respect to a metric
induced by an H1

0 scalar product. This motivated the notation exp for the
map. We are grateful to J.E. Marsden for pointing out to us that the resulting
equations are known as the averaged Euler equations and that a detailed
study will appear in a series of papers beginning with [HKMRS 98].
To fix the notation let H = H1

0 (!;Rn), with scalar product (u, v) =∫
!
Du Dv, and let Y = {v ∈ H : div v = 0} denote the closed subspace

of divergence free vector fields. The orthogonal complement Y is given by
(see e.g. [GR 86], Chapter I, Cor. 2.3)

Y⊥ = {1−1
D ∇ p : p ∈ L2(!)}

where 1D = H1
0 → H−1 is the Dirichlet Laplacian. For u ∈ H the

orthogonal projection Qu onto Y⊥ is given by

Qu = 1−1
D ∇ p,

where p is the unique solution of

div1−1
D ∇ p = div u.

If we let

T = div1−1
D ∇

then T is an isomorphism of L2av = {p ∈ L2(!) :
∫
!
p = 0} onto itself

(see [GR 86], Chapter I, Cor. 2.3 and 2.4). Moreover by standard regu-
larity arguments one sees that T is also an isomorphism of Ck,α

av = {p ∈
Ck,α(!) : ∫

!
p = 0} and Q is a bounded operator from Ck,α

∂ = {v ∈
Ck,α(!; Rn) : v = 0 on ∂!} onto the subspace Ck,α

∂,div of divergence free
vector fields.
To motivate the definition of the flow consider a one-parameter family

of diffeomorphisms ηt : ! → !, t ∈ I and let v = ( d
dtηt

) ◦ η−1t . For any
function f : I ×! → R define the material time derivative by

ḟ = ∂t f + (v · D) f =
[
d
dt

( f ◦ ηt)

]
◦ η−1t .
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In particular

v̇ =
(
d2

dt2
ηt

)
◦ η−1t . (A.1)

The simplest evolution equation would be v̇ = 0 but this does not preserve
the constraint of being divergence free. To keep the constraint a natural
approach is to look for an equation which yields

v̇ ∈ Y⊥.

Now

Qv̇ = Q ∂tv + Q(v · D)v

= ∂t Qv + (v · D)Qv− [v · D, Q]v
= (Qv)· − [v · D, Q]v. (A.2)

Since we expect v to remain divergence free (i.e. Qv = 0) this suggest to
study the equation

v̇ = −[v · D, Q]v. (A.3)

The key point is now that the commutator [v·D, Q] does not lose derivatives
(although each term in the commutator does).

Claim: The map

(u, v) '→ Cuv := [u · D, Q]v

is a bounded bilinear (and hence smooth) map from Ck,α
∂ × Ck,α

∂ → Ck,α
∂

for k ≥ 2.
Now (A.1) in conjunction with (A.3) yields the following initial-value

problem for ηt

d2

dt2
ηt = N

(
ηt,

d
dt

ηt

)
,

d
dt

ηt = v0, η0 = id,
(A.4)

where

N (q, w) = (
Cw◦q−1w ◦ q−1) ◦ q.

Since composition yields a smooth mapCk,α
∂ × Dk,α

∂ → Ck,α
∂ for k ≥ 1 the

claim implies thatN is smooth and by the general theory of odes in Banach
manifolds the initial value problem (A.4) has a solution for t ∈ (−2, 2) if
‖v0‖k,α is sufficiently small. Moreover the map exp : v0 '→ η1 is smooth in
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a neighbourhood of 0 and D exp|0 = id. It suffices thus to verify that the
ηt are volume preserving or, equivalently, that v remains divergence free,
provided that v0 ∈ Yk (see Lemma 6.7 for the notation). Lemma 6.7 then
follows from the implicit function theorem.
To see that v remains divergence free rewrite (A.3) as

∂tv = −(v · D)v− (v · D)Qv + Q[(v · D)v].
Since Q2 = Q this yields

∂t Qv = Q∂tv = −Q[(v · D)Qv]
and

(Qv)· = ∂t Qv + (v · D)Q Qv

= [v · D, Q] Qv.

Since Qv0 = 0, boundedness of the commutator and Gronwall’s inequality
imply that Qv ≡ 0, hence div v = 0. To see this in detail one can define
the material description (Qv)m := Qv ◦ ηt . Then (Qv)· = ( d

dt (Qv)m
) ◦ η−1t

and hence
d
dt

(Qv)m =
(

[v · D, Q] (Qv)m ◦ η−1t

)
◦ ηt

d
dt

∥∥∥∥(Qv)m

∥∥∥∥
k,α
≤

∥∥∥∥
d
dt

(Qv)m

∥∥∥∥
k,α

≤ C
∥∥∥∥(Qv)m

∥∥∥∥
k,α

and (Qv)m(0) = Qv0 = 0.
It only remains to prove the claim that the bilinear map (u, v) '→

[u · D, Q]v is bounded from Ck,α
∂ × Ck,α

∂ to Ck,α
∂ . Note that Q can be

written as
Q = 1−1

D ∇T−1 div, T = div1−1
D ∇.

The assertion now follows from repeated use of the (formal) commutator
relations

[A, B1B2] = [A, B1]B2 + B1[A, B2],
B[A, B−1] = −[A, B]B−1

and

[u · D, D] f = u j∂ j∇ f −∇(u j∂ j f )
= −(∇u j)∂ j f,

[u · D, div] = u j∂ j(∂ivi)− ∂i(u j∂ j∂ivi)
= −(∂iu j)(∂ jvi).
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We leave it to the courageous reader to verify that for u, v ∈ C∞0 all formal
operations are justified. Note that

∫

!

(u · D) f = −
∫

!

(div u) f

and thus application of (u · D) does not preserve C∞av so that [A, T−1] is
not defined. If π denotes the projection f → f − 1

|!|
∫
!
f , then Q can

be written as Q = 1−1
D ∇πT−1π div, and the commutator π[A, T−1π] is

defined and has the desired properties. 01


