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Abstract 

We prove partial regularity of minimizers of certain functionals in the cal- 
culus of variations, under the principal assumption that the integrands be uni- 
formly strictly quasiconvex. This is of interest since quasiconvexity is known in 
many circumstances to be necessary and sufficient for the weak sequential lower 
semicontinuity of these functionals on appropriate Sobolev spaces. Examples 
covered by the regularity theory include functionals with integrands which are 
convex in the determinants of various submatrices of the gradient matrix. 

1. Introduction 

This paper establishes the partial regularity of minimizers for certain func- 
tionals in the calculus of variations, described as follows. Let n, N be positive 
integers, denote by M "• the space of all real n •  matrices, and suppose 

(B,"  is open, bounded, and smooth. Then, for v : ~ 2 - + R  N, consider the 
functional 

(1.1) I[vl - -  f F(Dv) dy, 
a 

where 

is the gradient matrix of v and 

F: MnxN--> R 

is given. Two principal tasks of the calculus of variations are (a) to prove the 
existence of minimizers of I[.] subject to given, but here unspecified, boundary 
conditions and (b) to study the smoothness of such minimizers. 
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For n, N > 1 the real breakthrough regarding problem (a) was MORREY'S 
paper [14], which isolated a property of  F which is necessary and sufficient, in 
many circumstances, for the weak sequential lower semicontinuity of  I[.] on 
certain Sobolev spaces. This condition is that F be quasiconvex, * namely 

(1.2) f F(A) dy < f F(A + O*) dy 
0 0 

for all smooth, bounded, open domains 0 ~ R " ,  all matrices A E M "• and 
all @ E C1(0; R N) with @ ----- 0 on ~O. MORREY'S techniques have recently been 
refined by ACERBI & Fusco,  who proved the following. 

Theorem 0 ([I]). Assume F: M"• is continuous and 

(1.3) 0 <= F(P) <= C(1 + IPI q) (PE M "• 

for some constant C and 1 <= q < co. Then I[.] is weakly sequentially lower 
semicontinuous on the Sobolev space WI'q(I'2, R N) if and only if F is quasiconvex. 

When 1 < q < oo, Theorem 0 and an additional coercivity assumption of  
the form 

(1.4) F(P) >= b IPI q, (b > O, PE M "• 

imply the existence of at least one minimizer of I[.] for given Dirichlet boundary 
conditions (cf. MORREY [15, Thm. 4.4.7]). This result and its various extensions 
provide a fairly satisfactory understanding of  problem (a). Additionally, BALL 
[4], [5] has modified MORREY'S ideas and derived important existence assertions 
for several problems in nonlinear elasticity. A related paper concerning quasi- 
convexity and uniqueness is KNOPS & STUART [12]; see also MEYERS [13] for higher 
order problems. 

Progress concerning the regularity problem (b) has to date been less definitive. 
When q = 2, and F is a uniformly strictly convex C 2 function with bounded 
second derivatives, GIUSTI & MIRANDA [I1], using a blow-up argument, and 
GIUSTI & GIAQU1NTA [9], using direct methods, have shown that any minimizer 
u has H61der continuous first derivatives on some open set ~o C D, with 
H'-P( t2 \ -Qo) = 0 for some p > 2 (of. also MORREY [16]). This in turn implies 
that u is C ~ on ,(2 o provided F is C ~176 though examples (of. [8, p. 51-63]) demon- 
strate that the singular set may be nonempty. Furthermore, these regularity 
proofs require that F be convex, a hypothesis which is strictly stronger than quasi- 
convexity and so not satisfied by many interesting examples to which the existence 
theorems apply. 

This paper partly closes the gap between the existence and regularity theorems 
by demonstrating the partial regularity of  minimizers of  I[.] under the principal 
assumption that F be uniformly strictly quasiconvex, that is, 

(1.5) f (F(A) + Y [Dr 2) ay <= f F(A + D4,) dy 
0 0 

* The reader should be warned that this is M o ~ Y ' s  original terminology, which 
he changed in writing section 4.4 of his book [15]. 
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for some 7, > 0 and all smooth, bounded open domains O Q R", all matrices 
A E M  "• and all ~ E C I ( O ; R  u) with + = 0  on ~O. Stated succinctly, the 
advance here is to take quasiconvexity, the primary hypothesis of the lower 
semicontinuity theorems, and to show that, slightly strengthened, it forces partial 
regularity. The basic new technical observation is that (1.5) permits the proof 
of a so-called "CAccIoPPOLI inequality" for a minimizer, after which the partial 
regularity follows easily from a variant of the blow-up method of GIUSTI & 
MIRANDA [11]. 

Full statements of the hypotheses and theorems may be found in section 2 
below. As the proof of the main Theorem 2 is rather complicated, I have also 
chosen to present a simpler case, Theorem 1, whose proof displays the main ideas; 
this is given in sections 3-4. Sections 5-7 contain the proof of Theorem 2, while 
the concluding section 8 describes a broad class of interesting examples covered 
by Theorem 2 but beyond the scope of previous theory. These include functionals 
with integrands which are convex in the determinants of various submatrices 
of Dr. 

Remarks on connections with geometric measure theory. After this work was 
substantially completed I looked at the survey paper [2] of ALLARD & ALMGREN 
and realized the strong similarities between the results described above and 
various lower semicontinuity and partial regularity theorems in geometric measure 
theory, especially in the work of ALMGREN, FEDERER and BOMBIERI. Indeed, if 
S is an n-rectifiable subset of R "+N we may define 

I[S] ~ f F(S) dH", 
s 

where _r = S(y) denotes the approximate tangent n-plane to S at (H") almost 
all y E S, 

F: G(N + n,n)---~R 

is given, and G(N + n, n) denotes the Grassmann manifold of n-plane directions 
in R "+N. By definition, I[.] is elliptic provided there exists y > 0 such that 

(1.6) ~,[H"(S) -- H"(D)] ~ I[S] -- I[D] 

for each flat n-disk D in R "+N and each n-rectifiable S with OS = ~D. Then 
basic theorems of geometric measure theory assert (i) that I(.) and its various 
generalizations to more complicated n dimensional "surfaces" are lower semi- 
continuous with respect to appropriate topologies (cf. FEOERER [7, 5.1.5]) and (ii) 
that minimizers of I[.] are in fact C 1 manifolds except possibly for a "small" 
singular set (cf. ALMGREN [3], ALLARD & ALMGREN [3, 7-10], and FEDERER [7, 
5.3.14--5.3.17]). These regularity proofs likewise use blow-up arguments (intro- 
duced originally by DE GIORGI, whose work was historically the inspiration for 
GIUSTI & MIRANDA Ill  D. 

I am not sufficiently versed in geometric measure theory to understand fully 
the connections, but it is clear that the regularity theorems in this paper are 
analogues for nonparametric calculus of variations problems of the results for 
parametric problems discovered by ALMGREN [3]. Note in particular that since 
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4' = 0 on OO we can rewrite (1.5) in the form 

(1.7) ~, f ( I  A § D~I 2 - ]Al2)dy <= f ( r ( A  § D4,) -- F(A)) dy, 
0 0 

and this is certainly analogous to the ellipticity condition (1.6). More to the 
point, a recent paper of BOMBIERI [6], which gives a new proof  of  partial regularity 
for minimizing and almost minimizing currents, seems to have some technical 
points in common with this paper; compare, in particular, Lemmas 10 and 11 
in [6] with the Caccioppoli inequalities, Lemmas 3.1 and 5.1, derived below. 
All this being said, I should also note that the calculus of variations--partial 
differential equations conclusions and the geometric measure theoretic results 
remain dissimilar in several important ways: for example, in the latter theory 
there are difficulties in showing that the minimizer is locally a graph, whereas in 
the former theory there are problems concerning the growth of  F and its deriv- 
atives at infinity. 

In any case, it is certainly clear that the accomplishments of geometric measure 
theory outshadow the current state of  non-parametric calculus of  variations and 
nonlinear elliptic systems. I hope that this paper, although none of  its results will 
surprise geometric measure theory experts, will nonetheless prove interesting to 
others. In particular, whereas the analogy between uniform strict quasiconvexity 
(1.7) and ellipticity (1.6) is obvious, I have not been able to find any explicit men- 
tion of  this in print. 

Notation. For the most part I have adopted the notion of GIAQUINTA [8]. 
In particular I use the summation convention that Latin indices run from 1 to 
N and Greek indices from 1 to n, while the letter C throughout denotes various 
constants depending only on known quantities. 

Other notational conventions are these: 

B(x, r) ~ (y E R" : Ix -- Y l < r), B(r) ~ B(O, r), B ~ B(1). 

' '  (A "• 

1 

f u ay, =-- f dy. 
B(x,r) B(x,r) 

(U)r = (U)o,. (Du)r = (Du)o,r. 

Co~(s ~ (,/, E C'(s : 4' = 0 on O.Q}. 

Acknowledgment. I am very grateful to JOHN BALL for stimulating my interest in 
this problem and for many comments. I have incorporated some simplifications sug- 
gested by MICHEL CHIPOT in the proofs of Lemmas 3.1, 5.1; he has also noted that a 
simple alternative proof of Lemma 8.1 follows from a homogeneity and compactness 
argument. 

This work was partly supported by NSF Grant MCS-8301265 and ONR Grant 
01-S-28708. 



Quasiconvexity in the Calculus of Variations 231 

2. Hypotheses and statements of theorems 

Throughout we assume that the function F:  M"xN---> R is at least twice 
continuously differentiable. 

As noted in the introduction it seems best first to present the proof for a 
special case. Accordingly let us now suppose t, > 0 and that 

(HI) f (F(a)+ ylD~b[ 2) dy<= f F(A + Dcb) dy 
B( x,r ) B( x,r ) 

for all xER",  r > 0, A E M "• and ~E C~(B(x, r);RN). Assume also that 

(H2) ID2F(P) I <= C 

for some constant C and all PE M "• 
Hypothesis (H2) implies that 

(2.1) IF(P)I ~ C(1 + ]PI2), [DF(P)I ~ C(1 + IPi) (PE M "• 

for some appropriate constant C, and thus (H1) is valid also for thE 
Hg(B(x, r); RN). 

We now call uE HI(f2;R, N) a minimizer of I[.] provided 

(2.2) I[u] <= I[u + 4,] 

for every fiE Hol(O;RN). 

Theorem 1. Suppose F satisfies (HI), (H2) and let u E Wl'~ R N) 
minimizer of I[.]. Then there exists an open subset Oo of ~ such that 

1 \ ol = 0  
and 

DuE C~(,Qo; M n• 

for each 0<r162  1. 

be a 

Remark. If, in addition, FE C~(MnXN;R), a standard bootstrap argument 
shows that u E C~176 RN). 

The proof of Theorem 1 is fairly straightforward, but unfortunately the 
hypotheses that u be Lipschitz and D2F be bounded are too restrictive and ex- 
clude many interesting examples (see section 8). We therefore next modify our 
approach to allow for polynomial growth of D2F; this in turn requires a modifica- 
tion of the quasiconvexity hypothesis. Thus assume that q, 2 ~ q < c~, is given 
and that F satisfies, for some ~, :> 0, 

(H3) f (F(A) +t,(1 + IO41q-2)lO412)dy =< f F(A + Ocb)dy 
B(x,r) B(x,r) 

for all xEB",  r >  0, AE M "• and ~bE CI(B(x, r);Rn). Suppose also that 

(H4) I D2F(p)] <= C(1 + I vlq-2) 

for some constant C and all PE M "• 
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Assumption (H4) implies 

(2.3) IF(P)I < C(1 + IPlq), IDF(P)] <= C(1 + ]PI q- ')  (P~ M "• 

for some appropriate constant C, and so (H3) is valid also for 4,E 
WJ'q(S(xo, r); RN). 

We call uE WI'q(T2;R N) a minimizer of I[.] provided 

(2.4) I[u] <~ I[u + 4,] 

for every 4' 6 wl'q(~'~; AN). 

Theorem 2. Assume that 2 ~ q < c~, the function F satisfies (H3), (H4), 
and uE wI'q(g2;R N) is a minimizer of  I[.]. Then there exists an open subset 
s of  Y2 such that 

and 

for each 0 < o~ < 1. 

IO \ t2ol = 0 

Du E C~'(g2o; M n • N) 

Remark. As before if also FE C~~215 then uE C~176 

In section 8 we shall discuss a class of examples satisfying (H3), (H4), and 
in particular demonstrate the following 

Theorem 3. Assume 2 <= q < oo. Suppose that the C 2 function 

G: Mn• R 

is quasiconvex and satisfies 

ID2G(P)I <= C(1 + Iel q--2) 

for some constant C and all P E M n• Then 

F(P) ~ a Iel 2 + b [P] q + G(P), (PE M "• 

verifies (H3), (H4), provided a, b > O. 

PART I. PROOF OF THEOREM 1 

3. A Caccioppoli inequality 

For this section we assume that Fsatisfies (HI), (H2) and that u E WI'~(-(2;R u) 
is a minimizer of/[.]. First we give a "Caccioppoli type" inequality (of. GIAQUINTA 
[8, p. 76-77]). 
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Lemma 3.1. There exists a constant C1 such that 

< G - 12 (3.1) f [Du -- Al2 d y : - ~  J [u -- a -- A ( y - -  x) dy 
B(x,r]2) B(x,r) 

for all B(x ,r)  C s a E R  ~, and A E M  n • 

Proof. We may assume x : 0. Let r/2 ~ t < s <: r and choose r E C~(f2; R) 
so that 

~ 1 on B(t), r  0 on / 2 \  B(s) 

C 
0 _ ~ < 1 ,  Io~l < ~  

- -  = = s - - t "  

Define 

cb:~ ~(u -- a -- Ay), ~ v ~ ( l - -  ~) (u -- a -- Ay); 

then 

(3.2) 

Since 

Dcb + Dy) = Du -- A .  

= 0 on OB(s), the hypotheses (HI) and (H2) imply 

f [F(A) + 7  [Ocb[2ldy<= f F ( A  + Dcb)dy 
B(s) B(s) 

(3.3) = f F(Du -- D~o) dy by (3.2) 
B(s) 

<= f IF(On) -- OF(On)OW + C IOw121 dy. 
B(s) 

Since u is a minimizer, we have by (3.2) 

r F(Du) dy <= f F(Du -- D~) dy = f F(A + DW) dy 
B'(s) B(s) B(s) 

f [F(A) + DF(A) Dy) + CIDwl 2] dy. 
B(s) 

This inequality combined with (3.3) gives 

9' f Io~l ~ dy <= f {[OF(A) -- OF(On)] By 2 + C Iowl ~} dy. 
B(s) B(s) 

Then (H2) and the definition of 4) imply 

f ] D u - - A l 2 d y < =  C f ( [ D u - - A  I IDv~I + [Dv;i2) dy. 
B(t) B(s) 

y ~ 0  o n B ( t )  and 

Io91 = I(I - $)(Du -- A) -- De | (u -- a -- Ay)l 

C 
~: CIDu  -- AI + s _---S-/I u - a - .4yl 

(3.4) 

Now 
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on B(s) \  B(t). Hence (3.4) yields 

(3.5) 
C 

f tOu--AI2dy~C f [Ou--Al2dY-C (s_t,z flu--a--Ayl2dy. 
B(t) B(s)\B(t) ] B(r) 

We add C f [Du[ 2 dy to both sides, thus obtaining 
B(t) 

C 
f lOu--Al~dY~ 0 f [Du--Al2dY-t-(s t,"-""'~ f[ 

B(t) Bts) - -  ] B(r) 
u -- a -- Ay[ 2 dy 

for 

C 
0 ~ - - < I .  

C + I  

This inequality is valid for r/2 ~ t < s ~ r. We may therefore apply Lemma 
V.3.1 of GIAQUINTA [8] (cf. also Lemma 5.2 below) to derive 

C 
f IOu--.412dY~-~jlu--a--AYl2dY, 

B(r/2) 

as required. [] 

Remark. The proof  from (3.5) onward uses a technique due to GIAQUINTA &; 
GIOSTI [10]. 

4. Blow-up procedure 

Next we adapt the blow-up technique of  GIUST! & MIRANDA [11] to obtain 
a basic estimate for the mean squared oscillation of  Du over small balls. Since 
we have no control on D2u, we must use Lemma 3.1 to modify the concluding 
steps of their argument. 

Let us write 

(4.1) U(x, r) ~ f [ Du --  (DU)x., 12 dy. 
B(x, r) 

Lemma 4.1. There exists a constant C2 with the property that for each 
0 < ~r < 1/4 there exists e(z) ~ 0 such that, for every B(x, r) ~ ~ ,  the relation 

(4.2) 

implies 

(4.3) 

U(x, r) <= e(z) 

U(x, zr) <: C2z '2 U(x, r). 

Proof. Let C 2 be a constant, which will be determined later, and fix 
0 < T <  1/4. 
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Were the assertion of  the lemma false, there would exist for 
balls B(Xm, rm) ~ s such that 

(4.4) 

but 

U(Xm, r~) ~ 2 2 ---> 0 as m ---> oo, 

(4.5) 

Define 

U(xm, "['rm) > C21"222m (m = 1, 2 , . . . ) .  

(4.6) 
a m ~ ( U ) x m ,  rm , 

A m ~ ( D U ) x m , r m  , 

b m ~ (U)xm,2rrm, 

B m ~ (DU)xm,2Trm, 

cm==----(U)xm:rm 

c m ~ ( D U ) x m : r m  , 

and then set 

(4.7) 

Thus 

(4.8) 

and also 

:(z) 
U(X m q- rmZ ) - -  a m _ rmAmz 

2mrm 

D v m ( z )  : 
D u ( x m  + rmZ) - -  A m 

m 

(z E B). 

(0m)l = 0, (D~)m)l : 0 .  

Define 

(4.9) 

Now (4.4) implies 

(4.1o) 

Since (vm)t = 0, we have 

a m ~ (/)m)2t, e m ~ (0m)t 

D m = ( D v m ) 2 .  E m : ( D v m ) t .  

f [Dvml 2 dz : 1. 
B 

(4.11) fl:12dz C, ( m =  1,2 . . . .  ) 
B 

On the other hand, (4.5) gives 

(4.12) f l Dr  m --  zml 2 dx > C2v 2, (m = 1, 2 , . . . )  
B(O 

Now, since u is Lipschitz continuous, we have 

I:1 c (m = 1, 2 . . . .  ). 

235 

m =  1, 2, ... 
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In view of this estimate, (4.10) and (4.11), there exists a subsequence, which 
upon relabeling we index also by m, such that 

A m -'+ A in M n• 

(4.13) v m -+ v strongly in L2(B; R N) 

Dv m --~- Dv weakly in L2(B; M n• 

for some ,4 E M ~• and v E H i ( B ;  RN). 
For  future reference we set 

d ~- (o)2, e ~ (v), 
(4.14) 

D ~ (Dv)2~, E ~ (Dv)~. 

We now claim that v is a weak solution of  the linear elliptic system 

d i' (4.15) ~ \Op~ ep-----~ (A) = 0 (i = 1 , . . . ,  N )  

in B. Indeed, since u is a weak solution of the Euler-Lagrange equations 

dy~, (Du) = 0 (i = 1 . . . . .  N )  

in .(2, we observe from (4.8) that v m satisfies 

1 ml 
(~m D :  + Am) -- ~ ( a ) ]  *~ d z  ---- 0 

2m JL~pL 
for all $ E C~(B; N). Hence 

:[/ op ] 
02F 

v~# 4)~ & = O. (4.16) Op~(S2m Dv m -t- A m) ds m,: i 

Since we may assume 2m Dv m -+ 0 a.e., the hypothesis (H2) and (4.13) together 
give 

! 

f D2F(slm DV m + A m) ds ~ D2F(A) 
o 

strongly in L 2. We can now pass to limit in (4.16) and complete the proof  of 
(4.15). 

We next recall from MORREY [15, Theorems 4.4.3 and 4.4.1] or FEDERER 
[7, Theorem 5.1.10] that (HI)  implies the strong Legendre-Hadamard condition 

02F 
i j(~4)~i~J~]a~fl > r I~l ~ I~l ~ ( ~ R  ~, ~R"). 

8P~, OPp 

Thus from the theory of  linear elliptic partial differential equations (cf. MORREY 
[15], GIAQUINTA [8]) it follows that v is smooth and 

sup ID=vl ~ =< c f ID,,I ~ dz <= c .  
~ 0 / 2 )  
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Consequently 

and so 
B(2r) 

IDv - D] 2 dz  <: C z  2, 

lim lC IVm -- dm -- Dmz]2 dz = jC Iv --  d - -  Dzl2 d2 
m~ oo B['20 B(20 

(4.17) <= Cr 2 f ]Dv -- 312 dz <= Cz*. 
B(20 

But Lemma 3.1 provides the estimate 

C1 f I u -- b m -- Bm(y -- Xm)[ 2 dy, f I D u  - Bm[ 2 dy ~ (2Trm) 2 B(xm,2~rm) B(xm,~r m) 

which upon dividing by 22 and rescaling gives 

: I D v m - - D m l 2 d z ~ - ~  : I v m - - d m - - D m z l 2 d z .  
B(r) B(2z) 

This and (4.17) imply 

lim sup f ]Dr m - -  Em[ 2 dz ~ lim sup f [Dv m - -  Din] 2 dz 
a(o B(z) 

C 
limoo - ~  B(~2r)I vm -- d m - -  Drag[ 2 dz ~ C3 T2 , 

contradicting (4.12) provided we choose C 2 > C 3. [ ]  

Proof of Theorem 1. This is now a routine consequence of Lemma 4.1; see 
GIAQUINTA [8, p. 95-96] or the analogous argument in section 7 below. [ ]  

PART II. PROOF OF THEOREM 2 

5. A CaccioppoH inequality 

We devote the next three sections to a proof of Theorem 2, following the 
general lines of the proof of Theorem 1. For these sections we therefore suppose 
2 =< q < oo, the function Fsatisfies (H3), (H4), and uE wl'q(f2;R N) is a mini- 
mizer of I[.]. 

Lemma 5.1. For each L > 0 there exists a constant CI(L) such that 

(5.1) 

f (1 + I D u  - -  A I q-2) I O u  - -  .4 [2 a y  
B(x,r/2) 

<=CI(L) [ u - - a - - A ( y - x ) 1 2 a y + - ~  f lu-a-A(y-x)l" 
B( ) B(x,r) 
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for  all B(x , r )  Q g2, a E R  N, and A E  M n• with 

(5.2) IAI ~ L .  

Proof. We may assume x : O. 
C~(~2; R) satisfying 

~ 1 on B(t), 

Let r/2 <: t < s ~ r 

Define 

then 

(5.3) 

~ 0  on g2\B(s) 

C 
0 ~ C < I ,  IDCI < -  

- -  = ~ S - - t "  

dp ~ ~(u --  a -- Ay), ~v ~ (1 -- ~) (u -- a -- Ay); 

D~ + DW = D u - -  A .  

Since ~ ----- 0 on aB(s), the hypotheses (H3) and (H4) imply 

f [F(A) + 9,(1 + IDr ~-~) IDOl 2] dy 
B(s) 

(5.4) 

and choose CE 

f F(A + Dcb) dy 
BCs) 

= f F(Du --  D r )  dy by (5.3) 
B(s) 

<= f [F(Du) -- DF(Du) D~o -}- C(1 + l Du I q-z + l D~o I '-z) ]Dw 121 dy. 
B(s) 

Since u is a minimizer, we have 

f F(Du) dy <= f F(Du -- D~) dy 
B(s) Bts) 

= f F(A + D~) dy by (5.3) 
Bts) 

f [F(A) + DF(A) D r + C(1 + IDwl ~-~) IDwl 2] dy, 
B(s) 

according to (H4) and (5.2). This inequality combined with (5.4) gives 

(5.5) 

9, f (1  + IOg~lq-=)lO~12dy 
B(s) 

< f { [ D F ( A ) -  DF(Du)] D~p + C(l + [Dul~-z+ [D~pl q-2) [Dv, I 2} dy 
B(s) 

=< c f [(1 + IOul ~ =)lOu -- hi lOw[ + (1 + [D.I ~-2 + lOw[ ~-2) IDwl 2] ay, 
B(s) 

where we have once again used (H4) and (5.2). 
Now (5.2) implies 

(5.6) [Dul q-2 ~ C(1 + lDu --  Alq-m). 
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Furthermore D $ = D u - - A  on B(t) and ~p~-0 on B(t). 
elementary inequalities 

(5.7) od-lfl ~ od + flq, od-2fl 2 ~ ~q + flq (~, fl >= 0), 

and inequality (5.5), we obtain the estimate 

Recalling the 

f ( l  + I D u - - A I  q - : ) l D u - A I  zdy  
BCt) 

(5.8) < C  f [(l + lDu--A[q-Z)  lDu--AlZ + ( l  +lDwlq-2)[n~oleldy. 
B(s)\B(t) 

Since 

IDwl _--< C l O u -  AI + -  

from (5.8) it follows that 

f ( 1  + ] D u -  At q-2) I D u -  AI2dy 
B(t) 

C 
t) lu -- a -- Ay], (s 

=< c f (1 -t- I Du -- h [q-Z) ]Du -- A I 2 dy 
B(s)~B(t) 

+ c  f [ L u - a - ' 4 Y [  2 lu--a--AYl~]dy" 
nC,) ( s  - -  0 2 -~ ( s -  t) q 

Consequently 

f ( 1  + l D u - - A [ q - 2 )  lD u _ A I  2dy 
B(t) 

0 f (1  + IDu- -A]q -2 )  l D u _ A I  2dy 
Bts) 

C 
+ ( s -  t)--------sBf) lu - a - Ay[ 2 dy + 

for 
C 

0 - - - - < 1 .  
C + I  

C 
t)q ~ f(r) lu --  a -- Aylq dy ( s - -  

We now use the following lemma to complete the proof of (5.1). [] 

Lemma 5.2. Let 

be bounded and satisfy 

f :  Jr/2, r] ~ [0, oo) 

A B 
(5.9) f ( t )  <= Of(s) + (s -- t) --'----''~ + 

for  some O <  1 and all r/2 <= t < s <= r. 

(S - -  t )  q 
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Then there exists a constant C : C(O, q) such that 

(5.10) f ~ C + . 

Remark. This is a variant of as result of  GIAQIUNTA & GIUSTI [10], whose proof  
we adapt to the case q > 2 .  

Proof. Set 

where ~ ( <  1) is a constant which will be selected Iater. Then 

r 
lim tk : r, to = ~ - ,  k - ~  

According to (5.9) we have 

A 
f(tk) <= Of(tk+l) + (tk+ 1 __ tk)2 + 

<: Of(tk+,) + --~ --7s + 

Iterate this inequality to obtain 

Choose ~r < 1 

r 
t k + l  - t~ = - T  (1 - ~ )  r ~ .  

B 

( t k + l  - tk)  q 

qc = 0, 1 . . . .  ) .  

so that 0 < ~ < 1 and then send k to infinity. 

This completes the proof. [ ]  

6. Blow-up 

We next modify the argument of section 4 for q _> 2. The main difficulties 
here arise from the nonhomogeneity of  estimate (5.1). 

Define 

(6.1) U(x, r) ~- f (1 + IDu - (Du)x.,I) q-z [Du - (Du)x.r] 2 dy. 
B( x,r ) 

Lemma 6.1. For each L ~ 0 there exists a constant C2(L) with the property 
that for each 0 <  ~ <  1/4 there exists e(L, ~) > 0 such that for every 
B(x, r) C t2, 

(6.2) 1 (Du)x,, I =< L, I (Du)x.~, I <= L, 

and 

(6.3) U(x, r) <= e(L, T) 



Quasiconvexity in the Calculus of Variations 241 

imply 

(6.4) 

Proof. Given L > 0, 
mine later. Also fix 0 < lr < 1/4. 

Were the assertion of the lemma false, there would exist balls B(xm, rm) Q f2, 
m : 1, 2 . . . . .  such that 

(6.5) 

(6.6) 

but 

(6.7) 

Define 

(6.8) 

U(x, Tr) :< Cz(L) zz U(x, r). 

we let C2(L) > 0 be a constant which we shall deter- 

Set 

(6.11) 

Now (6.6) implies 

(6.12) 

D u ( x  m ~- rmZ ) - -  A m 
Dvm(z )  ---~ Am 

(Vm)l = O, (DVm)t  = O. 

d m = (vm)2r, e m ~ (vm)~ 

D m = (Dvm)2~, E m = (Dv~)~ .  

f (1 -[- ~Lqm -2 [Dv  ml q-2) [Dv  ml 2 dz  : l 
B 

and, since (v~n)l = 0, we also have 

(6.13) f i rm]  2 dz <: C (m = 1, 2 , . . . ) .  
B 

Furthermore (6.7) gives 

(6.14) 

f (1 + ,~q-2 l o o m  __ E mjq -2 )  I Dl)m __ E ml2 dz  > C2(Z ) ~ r2 
BOO 

a m = (U)Xm,rm , a m = (U)xm.2rrm , 

Am ~ (DU)xm.rm, B m ~ (DU)xm.2~rm, 

U(Xm, V:rm) > C2(L) 2 2 "K,~ m (m = 1,2 . . . .  ). 

and then set 

(6.9) 

Thus 

(6.10) 

and 

C m ~ (U)Xm.rrm, 

C m = (DU)xm:rm , 

U(Xm JI- FmZ) - -  a m - -  rmAmz 
vm(z)  ~ ~mrm (Z ~ B ) .  

(m : 1, 2 . . . .  ) .  

] (DU)xm:m [ ~ L, [ (DU)xm:rm ] ~ L, 

U(xm, rm) =~ A2m --> 0 as m -+ c~, 
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NOW in view of (6.5) 

IA"[ ~ L  (m = 1,2, ...). 

This hound, together with (6.12) and (6.13), implies the existence of a subsequence, 
which upon relabeling we continue to index by m, such that 

(6.15) 

for some 

(6.16) 

Am'--~ A 

van--+ v 

Dv m ~ Dv 

A E M n •  and 

For future reference, set 

in M n x N  

strongly in L2(B; R N) 

weakly in L2(B; M n• 

v E H~(B; RN), with 

IAI<=L. 

d ~- (V)2~, e ~ (v)~ 
(6.17) 

D ~- (Dr)2. E ~ (Dr),. 

In view of Lemma 6.2 below, v is a weak solution of the linear elliptic system 

d / 02F - \  
d z ' - - ~ ( ~ ( A )  v~p) ----0 ( i =  1, ..., N) 

in B. Furthermore, hypothesis (H3) implies (H1), which in turn, as seen in section 4, 
gives the strong Legendre-Hadamard condition 

Finally note from (H4) and (6.16) that 

ID2F(A)I <= c(1 + [Z]q-:) .  

Consequently, standard estimates for linear elliptic partial differential equations 
show v to be smooth and provide the estimate 

sup ID~vl ~ =< C(L) f IDvl = dz <= C(L). 
B0/2) B 

Hence 

(6.18) f [Dr -- El2dz~ C(L) ~; 
B(2~) 

the reader should note carefully here (of. (6.17)) that E is the average of Dv over 
B(v), not B(2z). 

Therefore 

lim (. ]v" -- d'~ -- Emzl2 dz = f [v -- d - -  EzlZ dz 
m-+ oo B(2t) B(2~) 

(6.19) <~ Cv 2 f ]Dv--  E[ 2dz<=C(L)T ~. 
B(2~) 
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We next claim that if q > 2, then 

(6.20) l im2~ -2 Jr ] V m - - d m - - E m z l q d z = O .  
m-+ co B(2r) 

To see this, fix any q < r  and set 

q * ~  

Then 2 < q < q *  and so 

for some 0 < o ~ <  1. 

q n  
i f 2 < q < n  

n - - q  

r if n ~ q < c ~ .  

1 1 - - 0 6  06 
q ---y- + ~ 

Consequently 

~q--2 

(6.21) 

(,; C(L, 3) 2~ -z Ivm --  dm - -  Emz [q* dz ~" 
) 

(,; < c(L,  3) ;t~ -2 I o r  m - E m [~ az , 
) 

according to the Sobolev-Poincar6 inequality. 
Now 

and so 

f I v m - - d m - - E m z l  qdz  
B(2z) 

( ," , 
<_2~-2 f iv , , ,_d , ._g , . z l2dz)  2 ;)lvm dmEmzlq  * "~ 

B(2~) B 

f I D v ' - - E m [ q d z ~  c(~) f [Dv'lqdz.  
B(21r) B(2~:) 

by (6.19) 

Insert this inequality into (6.21) to obtain 

2qm -2 f Ivm --  dm --  Emzlq dz ~ C(Z,'r) Aqm -2 [Ovmlq dz 
B(2z) 

< c(L, 3) ~(qm -2~1-~) ;~-2 [ovm [q d~ 

< C(L, 3) ~(qm -2~(1-~) 

by (6.12). The last term goes to zero as m - + ~ ,  since 2m-+0, 0 < 0 ~ <  1 
and q > 2, proving (6.20). 
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f 
B(xmVr m) 

We now recall Lemma 5.1, which provides the estimate 

(1 + I Du - C m I q-z) [Du -- C m 12 dy 

l 1 
CI(L) I - -  r2,. [. x2 f lU - -  b m - -  C m ( y  - -  Xm)] 2 d y  

\~  rm) B(xm,2~r m) 

1 b m ) ,  
+ (2~r,~)----~ f l u - - c " ( y  - x~)[q ay �9 

B(xm,2~r m) 

note from (6.5) and (6.8) that I cm[ <= L, as required, We divide the inequality 
above by 22 and rescale to obtain 

f (1 -~ aqm - 2  I Dv m - -  E m I q-2) ]Dr m - -  E m 12 dz 
B(O 

~ C(L) f lvm -- dm -- Emzl2 dz +---~ -- J I v -- dm -- Emz[~ dz �9 
\ B(20 B(2~) 

In view of (6.19) and (6.20) we have 

limm_Su p f (1 + Mm -2 [Dv m -- E m ]q-2) [Dv m __ E m [2 dz ~ Ca(L) z 2, 
B(z) 

contradicting (6.14) provided we choose C2(L ) > Ca(L). [] 

Lemma 6.2. The function v E Hi(B; R N) 
elliptic system 

d I 02F j \  

inB .  

is a weak solution o f  the linear 

(i = 1 . . . .  , N) 

Proof. It is not difficult to prove from (H4) that u is a weak solution of the 
Euler-Lagrange equations 

) dy~ (Du) = 0 (i = 1, . . . ,  N) 

in ~.  Thus, for each ~b6 CI(B;RY), the relation (6.10) implies 

o = ~  (~m Dvm + A~) -- e-~(Am) ~'~az 

= vz~ ~ dz ~ ( s a m D v m  + A )ds  

(6.22) 
e 02F m 

/ [ /  ap~OZFop~ O~O2F~ m j]vm~ "~ d z ~  I +  II. + (Sam Dv m + A m) ( A )  dsl J 
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Clearly (6.15) implies 

: t32F ] t 
(6.23) I--~ s.l ~ (A) vzsbz~ dz as m --* oo. 

We furthermore claim that 

(6.24) //--~ 0 as m --~ oo. 

To see this, fix e > 0. Owing to (6.15), we may assume 2m Dv m -+ 0 
m--~ oo. Hence there exists a measurable subset E ( B  such that 

(6.25) I EI < E2 

and 

(6.26) 2,n Dr" ~ 0 uniformly on B \ E.  

From hypothesis (H4) we obtain the estimate 

1 
IHI <= f f ID2F(SAmOv m + A m) - -  D2F(Am)[ ds [Ovm[ lDqb[ dz 

B\E  0 

+ C f ( 1  + 2qm -z [Dvml ~-2) I O : l  IO~l d z - - A  + s .  
E 

Using (6.26), we see that 

(: )"' A <= ~ [Dr" 12 dz < e for m > ml(e). 

On the other hand, if q > 2, 

B < c f IOvml az + O~ -2 f ID:I  ~-' d~ 
E g 

(: < CIEI ~/~ IDvm?dz + C ~  -~ f(c(e)+~IDv"lO)dz 
B 

< c~ + c(~) a,.. -~ + ~ f aq-~ I o :  I ~ at  
B 

<= Ce + C(e) ;t~ -2 by (6.12) 

<= Ce for m ~ m2(e). [ ]  

245 

a.e. as 

7. Proof  of  Theorem 2 

Lemma 7.1. For each L > 0 and each ~ satisfying 

(7.1) 0 < 77 < C2(2L) -1/2 

there exists a number ~(L, 77) > 0 such that, for every B(x, r) ~ [2, the inequal- 
ities 

(7.2) [(DU)x,,] <= L, [(On) .... I =< L, 

and 

(7.3) U(x, r) ~ ~(L, 3) 
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imply 

(7.4) U(x, Tlr) <: C2(2L) 32 U(x, r) (1 = 1, 2 . . . .  ). 

Here C2(2L) is the constant from Lemma 6.1, with 2L replacing L, land U(x, r) 
is defined by (6.1). 

Proof. Given L > 0, we fix 0 < 3 < C2(2L) - m  and then define 

(7.5) ,/(L, 3) min {e(2L, 3 ) , - - ~  [I -- I/C2(2L) 312}, 
~nL2 

where e(2L, 3) is the constant from Lemma 6.1, with 2L replacing L. 
Assume that (7.2) and (7.3) hold. We shall prove by induction that (7.4) is 

valid for l---- 1 ,2 , . . .  The case l =  1 is immediate from Lemma 6.1, since 
U(x, r) ~ ~I(L, 3) <: e(2L, 3). 

Now assume that (7.4) holds for l = 1 . . . . .  k. We claim that 

(7.6) I(Ou)x:k, I <= 2L, 

(7.7) I(Du)x:*+lrl <= 2L, 

(7.8) U(x, zkr) <: e(2L, 3). 

Once these relations are verified, Lemma 6.1 (with 2L replacing L and zkr re- 
placing r) yields 

U(x, ~ +lr) <: C2(2L) 32U(x, ~r) <= (C2(2L) za) k +l U(x, r), 

and this proves (7.4) for l = k + 1. 

Proof of (7.6). For l : 0, 1, ... we have 

(7.9) 

I (DU)x,:§ -- (DU),,,:,I <= f I DU -- (D")x,:,l dy 
B(x,TI + 1 r) 

Consequently, 

I(Du)x:kr I 

(7.10) 

k- - I  

<= ~ [ (Du)x.d+ I, -- (Du)x,d, I + ] (Du)x.r ] 
I = i  

1 k-1 
<: -~ l~=l U(x, z'tr) 1/2 + L 

1 k-I 
"~t_~l [(C2(2L) 32) t U(x, 0] I/2 + L 

l r / ( L ,  ~)'I2 (1 -- 1/C2(2L) ~)- '  + L 

3L < ~  

= 2  

by (7.9), (7.2) 

by (7.3) 

by (7.5). 
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Proof  of  (7.7). According to (7.9), 

I (Du)x:k +l, -- (nuL:k,l  <= 
1 

-~ U(x, ~r) 1/2 

1 
"~- (C2(2L) z2)k/2 U(x, r) 112 

Hence (7.10) implies 

~(L, ~)l/z 
C by (7.3) 

L 
- ~  by (7.5). 

I (Du)x:k + t, I <: I (Du)x:k+ t, -- (DU)x:kr I + I (Du)x:kr ] <: 2L. 

Proof  of  (7.8). From (7.3) and (7.5) it follows that 

U(x, : r )  <: (C2(2L) ~:z)k U(x, r) 

<= V(x, r) <= r/(L, 3) =< e(2L, 3). [] 

The basic idea of this proof is taken from GIUSTI & MIRANDA [11, Lemma 6]. 

Proof  of  Theorem 2. Set 

{xE 12: lim (Du)x, = Du(x), lim f IDu --(Du)x.,lqdy = 0}. t2o 
r"~O ' r".~O B(x,r) 

Since u E W l'q(O; R N) it follows that ] s \ s [ ---- 0. 
We shall prove that Oo is open and that Du E C~(Qo) for each 0 < ~ < 1. 

Indeed, for each x E f2o there exists a number L : L(x) such that 

(7.11) ] (Du)s.x [ < L for all 0 < s < dist (x, a,Q). 

Fixar 0 < ~ <  1, and then select3, 0 < T <  C;(2L) -112, so that 

(7.12) C2(2L) rz-z~ ~ 1. 

Next choose r, 0 < r < dist (x, 0~), such that 

f I Du - (DuL, I ~ dy < [~(L, ~)~ q[2 
~r ' ~ , - - Y - !  

this is possible since x E s Then 

U(x,r)---- f IDu--(Du)12dy+ f [Du--(Du)x.,lqdy 
B(x,r) B(x,r) 

(7.13) f \2/~ <: [Du -- (Du)I q dy) + f I Du - (Du)x: I q dy 
~a(x,r ) B(x,r ) 

- - T - -  + ~ __<~(L, 3). 
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Also (7.11) implies 

(7.14) t(Ou)x, rl < L, 

Furthermore, since the mappings 

x ~  U(x, r), 

are continuous, we have 

(7.15) 

and 

(7.16) [ (Du)z,r I < L,  

for each z E B ( x , s )  for some s > 0 .  

L. C. EVANS 

[ (D.)x:,l < L. 

(Ou)x,r , (Du) .... 

u(z, 0 < ~(z, 0 

I(Ou) .... I < L 

Consequently Lemma 7.1 implies 

U(z, "dr) ~ (C2(2L) z2) t U(z, r) (1 : 1, 2 , . . . )  

for each zE B(x, s). In view of (7.12), we have 

(7.17) U(z, ztr) <: vZt~U(z, r) <= (zlr) 2~162 C(r, 7:) 

for l = 1, 2 . . . .  and z E B(x, s). Finally, since 

U(z, t) >: f ]Du -- (Du)z,tl 2 dy, 
B(z,t) 

the estimate (7.17) and the standard theory of partial differential equations 
(cf. GIAQUINTA [8, p. 70-72]) imply 

Du ~ C~(B(x, s/2)) . 

In particular, therefore, B(x, s/2)C-(20 and so g2o is open. [ ]  

PART III. PROOF OF THEOREM 3 

8. A class of examples 

In this section we shall consider a fairly broad class of  non-convex examples 
satisfying hypotheses (H3) and (H4) of  the partial regularity Theorem 2, as well 
as the existence hypotheses described in section 1. We assume henceforth 
2 < q < ~ .  

Lemma 8.1. There exists a constant ~ > 0 such that 

1 

(8.1) a([A[ q-z + IB[ q-z) <= f (1 - s)IA + sBlq-2 as 
0 

for  all A, BE M nxN. 
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Proof. Let A be a positive constant, which will be explicitly determined later. 
We treat two cases. 

Case 1. I BI >= A 1.4 I. We have 

1 

= min I A + s B [ q - 2 .  (8.2) f ( l  -- S)1.4 Dr._ sBlq -2 dx > ~f 1/25~sKl 
o 

Now, for 1/2--<s--<1, we have 

Igl ~-2 _--< CIs~l ~-~ <= C(I.4 + sBI ~-~ + 1.4[ ~-~) 
(8.3) 

< c I-4 + sB[ q-2 + Ao_2 ] .  

Since q > 2 we may choose A so large that 

C 
(8.4) Aq_ ~ ~ �89 

Then (8.3) implies 

IBI q-:  _-< c IA + ssI q-2 

and so (8.12) gives 

1 

( 1 / 2 ~ s ~  1), 

(8.5) 

where 2, 

(8.6) 

Fix 2 so small that 

f (1 - -  s)IA q- sB[ q-2 ds ~ C IB[ q-2 ~ a(]A] q-2 -t- IB[ q-z) 
0 

for some a > 0, since [BI >_-- A I A 1. 

Case 2. I BI _-< A I A I- We have 

1 

f (1 -- s)IA + sB[ q-2 ds >= 2(1 -- 2) min IA + sB[ q-2, 
0 < s ~ .  0 

0 < 2 < 1, Vr be chosen later. Then for 0 ~ s ~ 2, 

]A[ q-z__ C(IA + sB[ q-z + Isnl q-2) <= C(Ia + sB[ ~-2 + 2 q-~ [nlq-2) 

=< c ( I a  + sBI q-2 + 2"-2A q-2 IAI~-~). 

then (8.6) implies 

C2q-2A q-2 ~ 1/2; 

I a l q - 2 ~  C I A  -Jl-sn[ q-2 ( 0 ~ s ~ 2 ) .  

Thus (8.5) yields 

1 

f (1 --s)Ih -}- sBI q-z as >= c Ih] q-z >= ~([A[ q-= + Inl q-=) 
0 

for some a > 0, since I nl --<_ A [A[. [ ]  
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Lemma 8.2. There exists u > 0 such that 

(8.7) f (I A I q + x I Dr I q) dy ~ f I A + Dcb I q de 
B(x,r) B(x,r) 

for all x E R  ~, r > O, A E  M n• and $E Cto(B(x, r);RN). 

Proof. Define 

then 

(8.8) 

and 

(8.9) 

for P 6  M nxN, 
and set 

Then 

(8.10) 

(8.11) 

and 

(8.12) 

H(P)-~ IPI ~ (PE M'• 

~H 
Op~ (P) = q [P [q-2 p~, 

i j 
82H 9~ P~Pi~ 

ap'~ ~p6 (P) = q IPIq-2 ~,:~a + (q -- - ,  iP l2 ] ,  

1 ~ x ,  f l ~ n ,  and 1 ~ i ,  j ~ N .  Fix any A, P E M  n • 

h(s) ~ H(A + sP) (0 <_ s <-- 1). 

h'(s) : DH(A + sP) P, 

h"(s) ---- prD2H(A + sP) P,  

I 

h(1) = h(0) + h'(0) + f (1 -- s) h"(s) ds. 
0 

Using (8.9), (8.11), we see that 

1 i 

f (1 - s) h"(s) ds >= q [PI 2 f (1 - s ) IA + sPI q-2 ds > ~ IPff 
0 0 

for some u > 0, according to Lemma 8.1. Hence setting P ~ D4~ in (8.12) 
and recalling (8.8) and (8.10) gives 

IJ  + D4,I q ~ IAI q + q IAIq-~ A O~ + ~ lOCI q. 

Integrating over B(x, r) and recalling that 4~ = 0 on OB(x, r) completes the 
proof. [ ]  

Proof of Theorem 3. Assume that G is quasiconvex and that 

ID2G(P)I <= C(1 + I P U  2) 

and 

F ( P ) : _ a l P I 2 + b I P I q + G ( P )  ( P E M  "• 

for some constants a, b > 0. Then clearly (H4) is valid. 
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f F(A § Dd~)dy = 
B( x,r ) 

We check (H3) by fixing x6  R", r > O, A 6 M n x N ,  ~ -  Cg(B(x, r);RN), and 
calculating 

f [alA+O4,1 ~+bl A§ q+G(A§ 
B(x,r) 

>= f [alal: +alO+l: +blAl++bglDq'l~+G(A)ldy; 
B( x,r ) 

here we have used Lemma 8.2 and the quasiconvexity of  G. Thus 

f [F(A) § ~, (1 + Io~l ~-2) IO~l 2] dy <= f F(A W D4~) dy 
B(x,r ) B(x,r) 

for 7 --~ min (a, ub) > O. [] 

In order to construct specific applications, we recall that a form of  degree k, 
1 _~ k ~-- min (n, N), 

a(i~) _= A.~l""~k i, i, ~k (P  = ( (P3)  ~ Mn• n...,k P~"P~'~ "'" Pc'k ' 

is called alternating if 1 ~ o~, ~ n, 1 ~ is ~ N (1 ~ r, s ~ k), and 

a(P) : C det Q, 

where C is a constant and Q is the k • k submatrix ((p~f)). BALL in [4] has called 

a function G polyconvex if it can be expressed in the form 

G(P) ~ g(al(P), ..., al(P)) 

where g : R I - * R  is convex and the a~(.) are alternating forms of  (perhaps 
different) degrees k ,  1 < ki < min (n, N), 1 _< i -<- l. MORREV proved in [14] 
that polyconvexity implies quasiconvexity. 

Accordingly it is easy to construct specific nonconvex examples satisfying 
the hypotheses of  both the existence theory described in section 1 and the partial 
regularity result of Theorem 2. An important case here is the function 

F(P) =-- a [p[2 + b [P[q + /3  (det P) ,  

where n = N, q = n(k + 2), a, b > 0, and/3 : R ~ [0, co) is a convex C 2 func- 
tion satisfying /3"(r)<= C(1 + ]rl k) for rEl:t.  
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