Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

MIDTERM 1 SOLUTIONS

Problem 1. (5pts)

- (i) State the definition of a group.
- (ii) State the definition of a homomorphism.
- (iii) State the First Isomorphism Theorem.

A group (G, \cdot) consists of a set G and a function $\cdot : G \times G \to G$, such that:

- there exists $e \in G$ such that: $e \cdot g = g \cdot e = g$ for all $g \in G$,
- for each $g \in G$ there exists $h \in G$ such that: $h \cdot g = g \cdot h = e$, where e is uniquely defined by the previous condition,
- for all $g, h, k \in G$ there holds: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$

A homomorphism $\phi: G_1 \to G_2$ is a function from a group (G_1, \cdot) to another group (G_2, \cdot) such that: $\phi(g \cdot h) = \phi(g) \cdot \phi(h)$ for all $g, h \in G_1$.

The First Isomorphism Theorem: Let $\phi : G_1 \to G_2$ be a surjective group homomorphism. Then G_2 is isomorphic to the quotient group $G_1/(Ker \phi)$.

Problem 2. (10pts)

Let (G, \cdot) be a finite group whose order is a product of two prime numbers. Let $H_1 \neq H_2$ be two subgroups of G, satisfying $H_1 \neq G$ and $H_2 \neq G$. Prove that $H_1 \cap H_2 = \{e\}$.

We have $|G| = p_1p_2$ where p_1 and p_2 are prime numbers (not necessarily distinct). By Lagrange's theorem and since $H_1, H_2 \neq G$, we get: $|H_1|, |H_2| \in \{1, p_1, p_2\}$. In particular, both H_1 and H_2 are cyclic. We argue by contradiction: let $x \in (H_1 \cap H_2) \setminus \{e\}$. Then H_1 and H_2 are generated by x, as cyclic groups whose order is a prime number (or 1), which implies $H_1 = H_2$. This contradicts the assumption and proves that $H_1 \cap H_2 = \{e\}$.

Problem 3. (10pts)

Let (G, \cdot) be a group and consider the homomorphism $d: G \to G \times G$ given by d(g) = (g, g). Prove that G is abelian if and only if Im(d) is a normal subgroup of $G \times G$.

If G is abelian, then so is $G \times G$ and consequently its any subgroup (here, Im(d)) is normal in $G \times G$. Vice versa, if Im(d) is normal, then:

 $\forall (g_1, g_2) \in G \times G \quad \forall (g, g) \in Im(d) \qquad (g_1, g_2)(g, g)(g_1, g_2)^{-1} \in Im(d).$

This means that:

 $\forall g_1, g_2, g \in Im(d)$ $g_1gg_1^{-1} = g_2gg_2^{-1}.$

Taking $g_2 = e$, we get: $g_1gg_1^{-1} = e$, i.e.: $g_1g = gg_1$, valid for all $g, g_1 \in G$. Hence G is abelian.

Problem 4. (10pts)

Let H_1, H_2 be two subgroups of a group (G, \cdot) . Define $\phi : H_1 \times H_2 \to G$ by: $\phi(h_1, h_2) = h_1 h_2$ and assume that ϕ is surjective. Prove that:

(i) ϕ is injective if and only if $H_1 \cap H_2 = \{e\}$,

(ii) ϕ is an isomorphism if and only if $H_1 \cap H_2 = \{e\}$ and both H_1, H_2 are normal subgroups of G.

(i) If ϕ is injective then for every $h \in (H_1 \cap H_2)$ we have: $\phi(h, e)\phi(e, h) = h$, implying that (h, e) = (e, h). This means that h = e, proving $H_1 \cap H_2 = \{e\}$. On the other hand, if $H_1 \cap H_2 = \{e\}$, then $\phi(h_1, h_2) = \phi(\bar{h}_1, \bar{h}_2)$ for some $h_1, \bar{h}_1 \in H_1$ and $h_2, \bar{h}_2 \in H_2$ reads: $h_1h_2 = \bar{h}_1, \bar{h}_2$ or, equivalently: $(\bar{h}_1)^{-1}h_1 = \bar{h}_2h_2^{-1} \in H_1 \cap H_2$. This yields $(\bar{h}_1)^{-1}h_1 = \bar{h}_2h_2^{-1} = e$, implying that $h_1 = \bar{h}_1$ and $h_2 = \bar{h}_2$. This ends the proof of injectivity of ϕ .

(ii) If ϕ is an isomorphism then $H_1 \cap H_2 = \{e\}$ by (i). Further, $H_1 \times \{e\}$ and $\{e\} \times H_2$ are normal subgroups of the group $H_1 \times H_2$, because:

$$\forall h_1, \bar{h}_1 \in H_1 \quad \forall h_2, \bar{h}_2 \in H_2 \quad (h_1, h_2)(\bar{h}_1, e)(h_1, h_2)^{-1} = (h_1\bar{h}_1h_1^{-1}, e) \in H_1 \times \{e\}$$

and $(h_1, h_2)(e, \bar{h}_2)(h_1, h_2)^{-1} = (e, h_2\bar{h}_2h_2^{-1}, e) \in \{e\} \times H_2.$

Since $\phi(H_1 \times \{e\}) = H_1$ and $\phi(\{e\} \times H_2) = H_2$, we conclude that H_1 and H_2 are normal subgroups of $\phi(H_1 \times H_2) = G$.

Conversely, if H_1 and H_2 are normal in G, then:

$$\begin{aligned} \forall h_1, \bar{h}_1 \in H_1 \quad \forall h_2, \bar{h}_2 \in H_2 \quad \phi(((h_1, h_2)(\bar{h}_1, \bar{h}_2)) = \phi(h_1\bar{h}_1, h_2\bar{h}_2) = h_1\bar{h}_1h_2\bar{h}_2 \\ &= h_1(\bar{h}_1h_2(\bar{h}_1)^{-1}(h_2)^{-1})h_2\bar{h}_1\bar{h}_2 = h_1h_2\bar{h}_1\bar{h}_2 \\ &= \phi(h_1, h_2)\phi(\bar{h}_1, \bar{h}_2). \end{aligned}$$

where in the second line above we used that $\bar{h}_1 h_2 (\bar{h}_1)^{-1} (h_2)^{-1} \in H_1 \cap H_2$ in view of normality of H_1 and H_2 , resulting in: $\bar{h}_1 h_2 (\bar{h}_1)^{-1} (h_2)^{-1} = e$. Thus ϕ is a homomorphism. It is also surjective by assumption and injective by (i), hence an isomorphism.