Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

MIDTERM 2

Problem 1. (5pts)
Give the following definitions and statements of theorems:
(i) the Correspondence Theorem for rings,
(ii) the definition of equivalence relation;
(iii) the definition of degree of field extension.
(i) Given a surjective ring homomorphism $\phi: R_{1} \rightarrow R_{2}$, there exists a bijection between the set of all ideals in R_{2} and the set of ideals in R_{1} that contain ker ϕ.
(ii) An equivalence relation in a set S is a binary relation \sim such that for all $a, b, c \in S$ there holds: 1. $a \sim a$ 2. $a \sim b \Rightarrow b \sim a$ 3. $a \sim b \sim c \Rightarrow a \sim c$.
(iii) The degree of the field extension $F \subset K$ is the dimension of the vector space K over the field of scalars F.

Problem 2. (10pts)
Let R be a ring. Prove that $I=\left\{r \in R ; \exists k \in \mathbb{N}\right.$ such that $\left.r^{k}=0\right\}$ is an ideal.
Let $r_{1}, r_{2} \in I$ so that $r_{1}^{k_{1}}=0$ and $r_{2}^{k_{2}}=0$ for some $k_{1}, k_{2} \in \mathbb{N}$. Then:

$$
\left(r_{1}-r_{2}\right)^{k_{1}+k_{2}}=\sum_{i=0}^{k_{1}+k_{2}}\binom{k_{1}+k_{2}}{i} r_{1}^{i} r_{2}^{k_{1}+k_{2}-i}(-1)^{k_{1}+k_{2}-i}
$$

We observe that either $i \geq k_{1}$ in which case $r_{1}^{k_{1}}=0$, or otherwise $k_{1}+k_{2}-i>$ k_{2} in which case $r_{2}^{k_{1}+k_{2}-i}=0$. Thus each term in the sum above is zero, so $\left(r_{1}-r_{2}\right)^{k_{1}+k_{2}}=0$ and thus $r_{1}-r_{2} \in I$.

Let $r \in I$ so that $r^{k}=0$ and let $a \in R$. Then $(a r)^{k}=a^{k} r^{k}=0$ so $r a \in I$.

Problem 3. (10pts)
Let $F \subset K \subset L$ be finite field extensions. Prove that:

$$
[L: F]=[L: K] \cdot[K: F] .
$$

Let $\left\{\alpha_{i}\right\}_{i=1}^{p} \subset K$ be the basis of K over F and let $\left\{\beta_{j}\right\}_{j=1}^{s} \subset L$ be the basis of L over K. We first check that $L=\operatorname{span}_{K}\left\{\alpha_{i} \beta_{j} ; i=1 \ldots p, j=1 \ldots s\right\}$. Indeed, for any $x \in L$ we have: $x=\sum_{j=1}^{s} b_{j} \beta_{j}$ with some $\left\{b_{j}\right\}_{j=1}^{s} \subset K$. For each b_{j}, we also have: $b_{j}=\sum_{i=1}^{p} a_{j i} \alpha_{i}$ for some $\left\{a_{j i}\right\}_{j=1}^{s} \subset F$. Consequently:

$$
x=\sum_{j=1}^{s} \sum_{i=1}^{p} a_{j i}\left(\alpha_{i} \beta_{j}\right)
$$

We now prove that $\left\{\alpha_{i} \beta_{j} ; i=1 \ldots p, j=1 \ldots s\right\} \subset L$ are linearly independent over K. If $\sum_{j=1}^{s} \sum_{i=1}^{p} a_{j i}\left(\alpha_{i} \beta_{j}\right)=0$ for some $\left\{a_{j i} ; i=1 \ldots p, j=1 \ldots s\right\} \subset K$ treated as scalars, then there must be $\sum_{i=1}^{p} a_{j i} \alpha_{i}=0$ for all $j=1 \ldots s$, because $\left\{\beta_{j}\right\}_{j=1}^{s}$ are linearly independent over K. But then each $a_{j i}=0$ because $\left\{\alpha_{i}\right\}_{i=1}^{p}$ are linearly independent over F.

This proves that $\left\{\alpha_{i} \beta_{j} ; i=1 \ldots p, j=1 \ldots s\right\} \subset L$ is a basis of L over K. Thus:

$$
[L: F]=p \cdot s=[K: F] \cdot[L: K]
$$

Problem 4. (10pts)
(a) Given an arbitrary triangle, is it possible to construct a square with the same area?
(b) Given an arbitrary tetrahedron, is it possible to construct a cube with the same volume?
[By "construct" we mean "construct with ruler and compass".]
(a) Given three points in the plane, which are viewed as the vertices of a triangle T, both the length a of a chosen side and the length of the corresponding hight h are constructible. This is clear for a, while for h it follows by the constructability of a line perpendicular to a given line and passing through a given point.

The area of T equals ah/2, so the side of a square S with the same area as T equals $b=\sqrt{a h / 2}$. This number is constructible, because products, ratios and square roots of constructible numbers are constructible.

Finally, constructibility of S follows from the constructability of segments with with contructible lengths, with one endpoint at a chosen point and perpendicular to other constructible lines.
(b) A tetrahedron T with length of one of its sides a, length of the planar hight of the base triangle containing the chosen side h, and the hight perpendicular to that base H, equals ahH/6. Hence the side of a cube C with the same volume as T, is $b=(a h H / h)^{1 / 3}$. In general, b is algebraic over $\mathbb{Q}[a, h, H]$ with degree 3 which is not a pure power of 2 . Hence b and so C is not constructible.

