Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Bonus Problem 1 (two weeks time, worth 15 points)

Consider the set: $G=\left\{e, e^{\prime}, i, i^{\prime}, j, j^{\prime}, k, k^{\prime}\right\}$.
(i) Show that it is possible to define the binary operation in G with the properties: e is the unity elements, $\left(e^{\prime}\right)^{2}=e, i^{2}=\left(i^{\prime}\right)^{2}=j^{2}=\left(j^{\prime}\right)^{2}=k^{2}=\left(k^{\prime}\right)^{2}=e^{\prime}, i j=k$, $j k=i, k i=j, j i=k^{\prime}, k j=i^{\prime}, i k=j^{\prime}$. Show that the above conditions uniquely determine the group (G, \cdot). This group is called the quaternion group.
(ii) Find all subgroups of the quaternion group.

