Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Problem. Show that there exists a maximal ideal in the ring $\mathcal{C}_{(0,1)}$ of continuous real functions on $(0,1)$, which does not have the form:

$$
I^{x_{0}}=\left\{f \in \mathcal{C}_{(0,1)} ; f\left(x_{0}\right)=0\right\}, \quad \text { for some } x_{0} \in(0,1)
$$

Solution. It is easy to check that the following set is an ideal:

$$
J=\left\{f \in \mathcal{C}_{(0,1)} ; f_{\mid(a, 1)}=0 \text { for some } a \in(0,1)\right\}
$$

Since $1 \notin J$, it follows that $J \neq \mathcal{C}_{(0,1)}$ and hence there exists a maximal ideal I in:

$$
J \subset I \subset \mathcal{C}_{(0,1)}
$$

This is the ideal with the claimed property that $I \neq I^{x_{0}}$ for all $x_{0} \in(0,1)$. Indeed, given any $x_{0} \in(0,1)$, we may find a function $f_{x_{0}} \in J$ such that $f_{x_{0}}\left(x_{0}\right)=1$, so in particular: $f_{x_{0}} \in J \backslash I^{x_{0}} \subset I \backslash I^{x_{0}}$.

