Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 3

1. Find the explicit representation of the right and left cosets of the indicated subgroups H of $G L(n)$. In each case, determine whether the left and right cosets corresponding to the same $A \in G L(n)$ are equal.
(i) $H=S O(n)$,
(ii) $H=\{c \mathrm{Id} ; c \in \mathbb{R} \backslash\{0\}\}$,
(iii) H consists of $n \times n$ diagonal matrices with nonzero determinant.
2. For any two elements a, b of a finite group G, show that:

$$
\operatorname{order}(a)=\operatorname{order}\left(a^{-1}\right) \quad \text { and } \quad \operatorname{order}(a b)=\operatorname{order}(b a)
$$

3. Prove that a finite group G has exactly three subgroups if and only if G is cyclic and its order is a square of a prime number.
4. Show that the alternating group A_{4} (namely, the subgroup of S_{4} consisting of all even permutations) has order 12.
5. Show that A_{4} has no subgroup of order 6. (This implies that the implication of the Lagrange theorem cannot be reversed.)
