Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 5

1. Let G consist of all nonconstant linear maps $\phi: \mathbb{R} \rightarrow \mathbb{R}$, i.e.:

$$
\phi(x)=a x+b \quad \text { for some } a, b \in \mathbb{R}, \quad a \neq 0
$$

Consider the group (G, \cdot) with the natural multiplicative operation of function composition. Are the following subgroups normal in G :

$$
H_{1}=\{x \mapsto x+b\}_{b \in \mathbb{R}}, \quad H_{2}=\{x \mapsto a x\}_{a \in \mathbb{R} \backslash\{0\}} \quad ?
$$

If they are, what are the quotient groups?
2. Let $H_{1} \subset H_{2}$ be two normal subgroups of a group (G, \cdot). Show that H_{2} / H_{1} is a normal subgroup of G / H_{1} and that the groups $\left(G / H_{1}\right) /\left(H_{2} / H_{1}\right)$ and G / H_{2} are isomorphic.
3. Prove that if the group G is not abelian then $G / Z(G)$ cannot be cyclic (recall that the center of G is given by: $Z(G)=\{h \in G ; h g=g h \quad$ for all $g \in G\})$.
4. Let H be a subgroup of a group (G, \cdot). Prove that if N is a normal subgroup of G then $N \cap H$ is a normal subgroup of H and the groups $(H N) / N$ and $H /(N \cap H)$ are isomorphic.
5. Let R be a ring and let $f, g \in R[x]$. Assume that the leading coefficient in f is invertible. Prove that there exist unique $q, r \in R[x]$ satisfying:

$$
g=f q+r \quad \text { and } \quad[\operatorname{deg}(r)<\operatorname{deg}(f) \quad \text { or } \quad r=0]
$$

