Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 5

1. Let G consist of all nonconstant linear maps $\phi : \mathbb{R} \to \mathbb{R}$, i.e.:

 $\phi(x) = ax + b$ for some $a, b \in \mathbb{R}$, $a \neq 0$.

Consider the group (G, \cdot) with the natural multiplicative operation of function composition. Are the following subgroups normal in G:

 $H_1 = \{x \mapsto x + b\}_{b \in \mathbb{R}}, \qquad H_2 = \{x \mapsto ax\}_{a \in \mathbb{R} \setminus \{0\}} \quad ?$

If they are, what are the quotient groups?

2. Let $H_1 \subset H_2$ be two normal subgroups of a group (G, \cdot) . Show that H_2/H_1 is a normal subgroup of G/H_1 and that the groups $(G/H_1)/(H_2/H_1)$ and G/H_2 are isomorphic.

3. Prove that if the group G is not abelian then G/Z(G) cannot be cyclic (recall that the center of G is given by: $Z(G) = \{h \in G; hg = gh \text{ for all } g \in G\}$).

4. Let *H* be a subgroup of a group (G, \cdot) . Prove that if *N* is a normal subgroup of *G* then $N \cap H$ is a normal subgroup of *H* and the groups (HN)/N and $H/(N \cap H)$ are isomorphic.

5. Let R be a ring and let $f, g \in R[x]$. Assume that the leading coefficient in f is invertible. Prove that there exist unique $q, r \in R[x]$ satisfying:

$$g = fq + r$$
 and $|\deg(r) < \deg(f)$ or $r = 0|$