Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 6

1. Define the product operation \circ in the set \mathbb{R}^{+}, such that $\left(\mathbb{R}^{+}, \cdot, \circ\right)$ is a ring. (The operation • denotes the usual multiplication in \mathbb{R}, here playing the role of addition in the ring).
2. Determine whether the following sets of real-valued functions on $[0,1]$ are rings, where the operations,$+ \cdot$ are taken to be the usual functions' addition and multiplication:
(i) continuous functions,
(ii) polynomial functions whose free term is an integer,
(iii) functions satisfying $f(1 / 2)=0$,
(iv) functions satisfying $f(0)=f(1)$,
(v) functions f for whom there exists $k \in \mathbb{Z}$ such that $2^{k} f(0)=f(1)$.
3. Find all invertible elements in the ring $\mathbb{Z}[\sqrt{-5}]$.
4. Let H_{1}, H_{2} be two normal subgroups of a group (G, \cdot). Show that $H_{1} \subset H_{2}$ if and only if there exists a surjective homomorphism $h: G / H_{1} \rightarrow G / H_{2}$ for which the following diagram commutes:

Above, the down arrows denote the natural surjective homomorphisms $g \mapsto g H_{1}$ and $g \mapsto g H_{2}$.
5. Let R be the ring of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $A \subset \mathbb{R}$.
(i) Show that the set $\left\{f \in R ; f_{\mid A}=0\right\}$ is an ideal in R.
(ii) Does every ideal in R have the form indicated in (i)?

