Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 6

1. Define the product operation \circ in the set \mathbb{R}^+ , such that $(\mathbb{R}^+, \cdot, \circ)$ is a ring. (The operation \cdot denotes the usual multiplication in \mathbb{R} , here playing the role of addition in the ring).

2. Determine whether the following sets of real-valued functions on [0, 1] are rings, where the operations $+, \cdot$ are taken to be the usual functions' addition and multiplication:

- (i) continuous functions,
- (ii) polynomial functions whose free term is an integer,
- (iii) functions satisfying f(1/2) = 0,
- (iv) functions satisfying f(0) = f(1),
- (v) functions f for whom there exists $k \in \mathbb{Z}$ such that $2^k f(0) = f(1)$.

3. Find all invertible elements in the ring $\mathbb{Z}[\sqrt{-5}]$.

4. Let H_1, H_2 be two normal subgroups of a group (G, \cdot) . Show that $H_1 \subset H_2$ if and only if there exists a surjective homomorphism $h : G/H_1 \to G/H_2$ for which the following diagram commutes:

$$\begin{array}{ccc} G & \stackrel{id}{\longrightarrow} & G \\ \downarrow & & \downarrow \\ G/H_1 & \stackrel{h}{\rightarrow} & G/H_2 \end{array}$$

Above, the down arrows denote the natural surjective homomorphisms $g \mapsto gH_1$ and $g \mapsto gH_2$.

- **5.** Let R be the ring of all functions $f : \mathbb{R} \to \mathbb{R}$ and let $A \subset \mathbb{R}$.
 - (i) Show that the set $\{f \in R; f|_A = 0\}$ is an ideal in R.
 - (ii) Does every ideal in R have the form indicated in (i)?