Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 8

1. Show that every maximal ideal in the ring $\mathcal{C}_{[0,1]}$ of continuous real functions on $[0,1]$, has the form:

$$
I^{x_{0}}=\left\{f \in \mathcal{C}_{[0,1]} ; f\left(x_{0}\right)=0\right\}, \quad \text { for some } x_{0} \in[0,1] .
$$

2. Show that there exists a maximal ideal in the ring $\mathcal{C}_{(0,1)}$ of continuous real functions on $(0,1)$, which does not have the form:

$$
I^{x_{0}}=\left\{f \in \mathcal{C}_{(0,1)} ; f\left(x_{0}\right)=0\right\}, \quad \text { for some } x_{0} \in(0,1)
$$

3. Let $K=\mathbb{Q} \times \mathbb{Q}$. Determine whether (K, \oplus, \odot) is a field, where:
(i) $(a, b) \oplus(c, d)=(a+c, b+d) \quad$ and $\quad(a, b) \odot(c, d)=(a c-b d, a d+b c)$,
(ii) $(a, b) \oplus(c, d)=(a+c, b+d) \quad$ and $\quad(a, b) \odot(c, d)=(a c+2 b d, a d+b c)$.

In each case (i) and (ii) answer the same question if \mathbb{Q} is replaced by \mathbb{R}.
4. Let $a, b \in \mathbb{Q} \backslash\{0\}$. Prove that the fields $\mathbb{Q}(\sqrt{a})$ and $\mathbb{Q}(\sqrt{b})$ are isomorphic if and only if $\frac{a}{b}$ is a square of a rational number.
5. Define $R=\left\{z \in \mathbb{C} ; z^{\left(2^{n}\right)}=1\right.$ for some $\left.n \in \mathbb{N}\right\}$ and consider the ring $(R,+, \cdot)$ where + is the multiplication of complex numbers and \cdot is the trivial product, namely: $r_{1} \cdot r_{2}=0$ for all $r_{1}, r_{2} \in R$. Then R is a ring without unity element. Prove that R has no maximal ideal.

