Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 9

1. Which of the following numbers are algebraic over \mathbb{Q} ? In each positive case, determine the degree of the algebraic number.

(i) $1 + \sqrt{2} + \sqrt{3}$, (ii) $\sqrt[6]{3} + \sqrt{3}$, (iii) $1 + \sqrt{\pi}$, (iv) $1 + \sqrt{2} + \sqrt{4} + \sqrt{8} + \dots + \sqrt{2^{n-1}}$, (v) $\sqrt[4]{5} + \sqrt{5}$, (vi) $2 + \sqrt[3]{2} + \sqrt[3]{4}$.

2. Let $r \in \mathbb{Z}$ be such that it is not divisible by the square of any prime number. Prove that $K = \mathbb{Q} \times \mathbb{Q}$ with the following operations is a field:

 $(a,b) \oplus (c,d) = (a+c,b+d)$ and $(a,b) \odot (c,d) = (ac+rbd, ad+bc).$ Prove that K is in fact isomorphic with $\mathbb{Q}(\sqrt{r})$.

3. Prove the following:

(a) a complex number z is algebraic over \mathbb{Q} if and only if \overline{z} is algebraic over \mathbb{Q} ,

(b) two real numbers a, b are algebraic over \mathbb{Q} if an only if the complex number a + bi is algebraic over \mathbb{Q} .

4. Give an example of a field extension $K \subset L$ and two elements $a, b \in L$ that are algebraic over K with unequal degrees, and such that:

$$[K(a,b):K] < (\deg_K a) \cdot (\deg_K b).$$

5. Let $K \subset L$ be a field extension and let $a \in L$ be algebraic over K. Prove that if $\deg_K a$ is odd then $K(a) = K(a^2)$. Is the converse implication true?