Introduction to Abstract Algebraic Systems MATH-430-1070 (11365), Fall 2022

Exercise Set 9

1. Which of the following numbers are algebraic over \mathbb{Q} ? In each positive case, determine the degree of the algebraic number.
(i) $1+\sqrt{2}+\sqrt{3}$,
(ii) $\sqrt[6]{3}+\sqrt{3}$,
(iii) $1+\sqrt{\pi}$,
(iv) $1+\sqrt{2}+\sqrt{4}+\sqrt{8}+\ldots+\sqrt{2^{n-1}}$,
(v) $\sqrt[4]{5}+\sqrt{5}$,
(vi) $2+\sqrt[3]{2}+\sqrt[3]{4}$.
2. Let $r \in \mathbb{Z}$ be such that it is not divisible by the square of any prime number. Prove that $K=\mathbb{Q} \times \mathbb{Q}$ with the following operations is a field:

$$
(a, b) \oplus(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \odot(c, d)=(a c+r b d, a d+b c)
$$

Prove that K is in fact isomorphic with $\mathbb{Q}(\sqrt{r})$.
3. Prove the following:
(a) a complex number z is algebraic over \mathbb{Q} if and only if \bar{z} is algebraic over \mathbb{Q},
(b) two real numbers a, b are algebraic over \mathbb{Q} if an only if the complex number $a+b i$ is algebraic over \mathbb{Q}.
4. Give an example of a field extension $K \subset L$ and two elements $a, b \in L$ that are algebraic over K with unequal degrees, and such that:

$$
[K(a, b): K]<\left(\operatorname{deg}_{K} a\right) \cdot\left(\operatorname{deg}_{K} b\right)
$$

5. Let $K \subset L$ be a field extension and let $a \in L$ be algebraic over K. Prove that if $\operatorname{deg}_{K} a$ is odd then $K(a)=K\left(a^{2}\right)$. Is the converse implication true?
