Prestrained Elasticity: Curvature Constraints and Differential Geometry with Low Regularity

Marta Lewicka

University of Pittsburgh

– 6 January 2016, Seattle –
 AMS MAA Joint Mathematics Meetings

Prestrained Elasticity: Curvature Constraints and Differential Geometry with Low Regularity

Key connection: Rigidity and flexibility of solutions to nonlinear problems at low regularity

Key role: Energy functional in the description of elastic materials with residual stress at free equilibria

An old story: isometric immersions (equidimensional)

Assume that $u : \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n$ satisfies: $\nabla u(x)^T \nabla u(x) = Id_n$

Equation of isometric immersion: ⟨∂_iu,∂_ju⟩ = δ_{ij} = ⟨e_i, e_j⟩
 (For u ∈ C¹, this is equivalent to u preserving length of curves)

• Equivalent to: $\nabla u \in O(n) = \{R; R^T R = Id\} = SO(n) \cup SO(n)J$

Liouville (1850), Reshetnyak (1967): u ∈ W^{1,∞} and ∇u ∈ SO(n)
 a.e. in Ω ⇒ ∇u ≡ const ⇒ u(x) = Rx + b rigid motion

• $u \in W^{1,\infty}$ and $\nabla u \in SO(n)J$ a.e. in $\Omega \Rightarrow \nabla u \equiv const$

An old story: isometric immersions (equidimensional)

• Friesecke-James-Muller (2006): Rigidity estimate:

$$\forall u \in W^{1,2} \; \exists R \in SO(n) \quad \int_{\Omega} |\nabla u - R|^2 \leq C_{\Omega} \int_{\Omega} \operatorname{dist}^2(\nabla u, SO(n))$$

• Gromov (1973): Convex integration: $\exists u \in W^{1,\infty}$ such that $(\nabla u)^T \nabla u = Id$ a.e. in Ω , and ∇u takes values in SO(n) and in SO(n)J, in every open $U \subset \Omega$.

Even more: $\exists u$ arbitrarily close to any u_0 with $0 < (\nabla u_0)^T \nabla u_0 < Id$

Example: Given $u_0 : (0,1) \to \mathbb{R}$ with $(u'_0)^2 < 1$ want: $u_k \xrightarrow{\text{uniformly}} u_0$ with $(u'_k)^2 = 1$ more oscillations as $k \to \infty$

Isometric immersions of Riemann manifold (Ω, G)

Hevea project: Inst. Camille Jordan, Lab J. Kuntzmann, Gipsa-Lab (France) Let $G \in C^{\infty}(\Omega, \mathbb{R}^{n \times n}_{sym, +})$. Look for $u : \Omega \to \mathbb{R}^n$ so that $(\nabla u)^T \nabla u = G$ in Ω

Theorem (Gromov 1986)

Let $u_0 : \Omega \to \mathbb{R}^n$ be smooth short immersion, i.e.: $0 < (\nabla u_0)^T \nabla u_0 < G$ in Ω . Then: $\forall \varepsilon > 0 \quad \exists u \in W^{1,\infty} \quad \|u - u_0\|_{\mathcal{C}^0} < \varepsilon$ and $(\nabla u)^T \nabla u = G$.

Theorem (Myers-Steenrod 1939, Calabi-Hartman 1970)

Let $u \in W^{1,\infty}$ satisfy $(\nabla u)^T \nabla u = G$ and $\det \nabla u > 0$ a.e. in Ω . (For example, $u \in C^1$ enough). Then $\Delta_G u = 0$ and so u is smooth. In fact, u is unique up to rigid motions, and: $\exists u \Leftrightarrow \operatorname{Riem}(G) \equiv 0$ in Ω .

Crystal microstructure

Energy
$$E(u) = \int_{\Omega} W(\nabla u(x), \theta) dx$$

 $u: \mathbb{R}^3 \supset \Omega \rightarrow \mathbb{R}^3$ deformation; $\theta \in \mathbb{R}$ temperature; *W* energy density

- Given θ, find u minimizing E, under some boundary conditions
 First attempt: look for ∇u ∈ energy well K(θ) (change of shape in crystal lattice)
- Ball-James (1987): *u* ∈ *W*^{1,∞} and ∇*u* ∈ *K* = {*A*, *B*} a.e. in Ω. Then: (i) *rank*(*B* − *A*) ≥ 2 ⇒ ∇*u* ≡ *A* or ∇*u* ≡ *B*

(ii) $B - A = \mathbf{a} \otimes \mathbf{n} \Rightarrow$ laminate pattern of the form:

 $u(x) = Ax + f(\langle x, \mathbf{n} \rangle)\mathbf{a} + c$ where $f' \in \{0, 1\}$ a.e.

no rank-1 connections!

many rank-1 connections!

<u>Remark:</u> 4 matrices, no rank-1 connections \Rightarrow rigidity BUT: 5 matrices, no rank-1 connections may admit flexible solutions! (Chlebik, Kirchheim, Preiss)

Martensitic phase transformation

Energy
$$E(u) = \int_{\Omega} W(\nabla u(x), \theta) dx$$

Energy well structure in $Zn_{45}Au_{30}Cu_{25}$: $W(F, \theta) = \min \Leftrightarrow$

$$\mathsf{F} \in \mathcal{K}(\theta) = \begin{cases} \alpha(\theta) SO(3) & \theta > \theta_c \text{ austenite} \\ SO(3) \cup \bigcup_{i=1}^N SO(3) A_i(\theta_c) & \theta = \theta_c \\ \bigcup_{i=1}^N SO(3) A_i(\theta) & \theta < \theta_c \text{ martensite} \end{cases}$$

Successive heating/cooling cycles. $\theta_c \sim -37C$ The total width of the sample $\sim 0.5mm$ Courtesy of R. James. $\begin{array}{l} \mbox{Critical temperature } \theta_{c} \sim 40 \mbox{C}. \\ \mbox{Alloy: } Cu_{82} \mbox{Al}_{14} \mbox{Ni}_{4} \\ \mbox{Courtesy of C. Chu.} \end{array}$

Non-Euclidean elasticity

$$E(u) = \int_{\Omega} W((\nabla u) A^{-1}(x)) \, \mathrm{d}x$$

 $W(F) \sim \operatorname{dist}^2(F, SO(3))$ $A \in \mathcal{C}^{\infty}(\Omega, \mathbb{R}^{3 \times 3}_{sym, +})$ incompatibility tensor

•
$$E(u) = 0 \Leftrightarrow \nabla u(x) \in K(x) = SO(3)A(x) \quad \forall a.e. x$$

 $\Leftrightarrow (\nabla u)^T \nabla u = A^2 = G \text{ and } \det \nabla u > 0$

Lemma (L-Pakzad '09)

 $\inf_{u \in W^{1,2}} E(u) > 0 \Leftrightarrow \operatorname{Riem}(G) \neq 0.$

Thin non-Euclidean plates: $\Omega = \Omega^h = \omega \times (-h/2, h/2), \quad \omega \subset \mathbb{R}^2$

- <u>As $h \rightarrow 0$ </u>: Scaling of: inf $E^h \sim h^{\beta}$? argmin $E^h \rightarrow \text{argmin } I_{\beta}$?
- Hierarchy of theories I_{β} , where β depends on $Riem(A^h)^2$ Bhattacharya, Li, L., Mahadevan, Pakzad, Raoult, Schaffner
- When A = Id: dimension reduction in nonlinear elasticity seminal analysis by LeDret-Raoult 1995, Friesecke-James-Muller 2006

Manufacturing residually-strained thin films

 Shaping of elastic sheets by prescription of Non-Euclidean metrics (Klein, Efrati, Sharon) Science, 2007

More prestrain-activated materials

- *Half-tone gel lithography* (Kim, Hanna, Byun, Santangelo, Hayward) Science, 2012
- *Defect-activated liquid crystal elastomers* (Ware, McConney, Wie, Tondiglia, White) Science, 2015

Dimension reduction

$$\begin{array}{l} G(x', x_3) = G(x') \\ \Omega^h = \omega \times (-\frac{h}{2}, \frac{h}{2}) \end{array} \qquad E^h(u^h) = \frac{1}{h} \int_{\Omega^h} W((\nabla u^h) G^{-1/2}(x)) \, \mathrm{d}x \end{array}$$

Theorem (L-Pakzad 2009, Bhattacharya-L-Schaffner 2014)

If $E^{h}(u^{h}) \leq Ch^{2}$, then $\exists c^{h} \in \mathbb{R}^{3}$ such that the following holds for: $y^{h}(x', x_{3}) := u^{h}(x', hx_{3}) - c^{h} \in W^{1,2}(\Omega^{1}, \mathbb{R}^{3}).$

•
$$y^h(x', x_3) \to y(x')$$
 in $W^{1,2}$

• $y \in W^{2,2}(\omega, \mathbb{R}^3)$ and $(\nabla y)^T \nabla y = G_{2 \times 2}$ on the midplate ω

• $\frac{1}{h^2}E^h(u^h) \xrightarrow{\Gamma} I_2(y) = \frac{1}{24}\int_{\omega} \left|sym((\nabla y)^T \nabla \mathbf{b})\right| dx'$

Cosserat vector $\mathbf{b} \in W^{1,2} \cap L^{\infty}(\omega, \mathbb{R}^3)$ so that:

 $\begin{bmatrix} \partial_1 y & \partial_2 y & \mathbf{b} \end{bmatrix}^T \begin{bmatrix} \partial_1 y & \partial_2 y & \mathbf{b} \end{bmatrix} = G$

• DeGiorgi (1975): Γ -convergence is a "variational" convergence, which "implies" that: $Limits\left(\operatorname{argmin}_{h^2}E^h\right) = \operatorname{argmin} I_2$

3d energy upper bound and the isometric immersions

Corollary

$$\inf E^h \leq Ch^2 \ \Leftrightarrow \ \exists y \in W^{2,2}(\omega,\mathbb{R}^3) \quad (\nabla y)^T \nabla y = G_{2\times 2}$$

- Nirenberg (1953): $\forall G_{2\times 2}, \kappa > 0 \exists$ smooth isometr. embed. in \mathbb{R}^3
- Poznyak-Shikin (1995): Same true for $\kappa < 0$ on bounded $\omega \subset \mathbb{R}^2$.
- Nash-Kuiper (1956): $\forall n$ -dim $G \exists C^{1,\alpha}$ isometr. embed. in \mathbb{R}^{n+1}

 $\label{eq:G2x2} \begin{array}{c} \underline{\text{Case } G_{2\times 2}}: \text{Borisov (2004), Conti-Delellis-Szekelyhidi (2010) } \alpha < \frac{1}{7} \\ \hline \\ \text{Delellis-Inaunen-Szekelyhidi (2015) } \alpha < \frac{1}{5}. \end{array}$

Corollary

- $\forall G_{2\times 2}$: inf $E^h \leq Ch^{2/3}$. $|\kappa(G_{2\times 2})| > 0 \Rightarrow \inf E^h \leq Ch^2$.
- Best to expect from convex integration: $\alpha < \frac{1}{3} \Rightarrow \inf E^h \leq Ch$.
- Conti-Maggi (2008): Example of origami-like folding pattern with E^h ≤ Ch^{5/3}

Assume: $\exists y \in W^{2,2} \ (\nabla y)^T \nabla y = G_{2 \times 2}$, or equivalently: inf $E^h \leq Ch^2$. Then only 3 scenarios are possible:

• $\inf E^h \sim Ch^2$ • $\inf E^h \sim Ch^4$ • $\min E^h = 0 \quad \forall h$

Theorem (L-Raoult-Ricciotti 2015)

(i) Assume that $\frac{1}{h^2}$ inf $E^h \to 0$. Then:

• inf $E^h \leq Ch^4$, and: $\exists ! y_0 \ (\nabla y_0)^T \nabla y_0 = G_{2 \times 2}$ with $I_2(y_0) = 0$.

•
$$R_{1212} = R_{1213} = R_{1223} \equiv 0$$
 in Ω .

•
$$\frac{1}{h^4} E^h \xrightarrow{\Gamma} I_4 = \int_{\omega} \left| \begin{array}{c} change in metric \\ departing from y_0 \end{array} \right|^2 + \int_{\omega} \left| \begin{array}{c} change in curvature \\ departing from y_0 \end{array} \right|^2 + \int_{\omega} \left| \begin{array}{c} R_{1313} & R_{1323} \\ R_{1323} & R_{2323} \end{array} \right] \right|^2$$

(ii) If $\frac{1}{h^4}$ inf $E^h \to 0$, then $Riem(G) \equiv 0$ so in fact: min $E^h = 0$.

The Monge-Ampere constrained energy

Energy
$$E^h(u^h) = \frac{1}{h} \int_{\Omega^h} W((\nabla u^h)(A^h)^{-1}(x)) dx$$

Theorem (L-Ochoa-Pakzad 2014)

Let: $A^h(x', x_3) = Id_3 + h^{\gamma}S(x')$ and $\gamma \in (0, 2)$. Then:

• $\inf E^h \leq Ch^{\gamma+2} \Leftrightarrow \exists v \in W^{2,2}(\Omega), \ \det \nabla^2 v = - \operatorname{curl} \operatorname{curl} S_{2 \times 2}$

•
$$\frac{1}{h^{\gamma+2}}E^h \xrightarrow{I} I$$
, where I is the 2-d energy:

 $I(v) = \int_{\Omega} |\nabla^2 v|^2$ for $v \in W^{2,2}(\Omega)$, $\det \nabla^2 v = - curl \ curl \ S_{2 imes 2}$

Structure of minimizers to E^h : $u^h(x', 0) = x' + h^{\gamma/2} v e_3$

• $\kappa(\nabla(id + h^{\gamma/2}ve_3)^T\nabla(id + h^{\gamma/2}ve_3)) = \kappa(Id_2 + h^{\gamma}\nabla v \otimes \nabla v)$

 $= -\frac{1}{2}h^{\gamma} \text{curl curl } (\nabla v \otimes \nabla v) + O(h^{2\gamma}) = h^{\gamma} \det \nabla^2 v + O(h^{2\gamma})$

• Gauss curvature: $\kappa(ld_2 + 2h^{\gamma}S_{2\times 2}) = -h^{\gamma}$ curl curl $S_{2\times 2} + O(h^{2\gamma})$

The Monge-Ampère constraint = existence of second order infinitesimal isometry $id + \varepsilon v e_3 + \varepsilon^2 w$ of the metric $Id_2 + 2\varepsilon^2 S_{2\times 2}$

Back to convex integration: the Monge-Ampère equation

det
$$\nabla^2 v = f$$
 • existence of $W^{2,2}$ solutions is not guaranteed

$$Det \nabla^2 v = -\frac{1}{2} \operatorname{curl} \operatorname{curl} (\nabla v \otimes \nabla v) \qquad v \in W^{1,2}(\Omega)$$
Need to solve: curl curl $(\nabla v \otimes \nabla v) = \operatorname{curl} \operatorname{curl} S_{2\times 2}$
where $S_{2\times 2} = \lambda \operatorname{ld}_2$ with $\Delta \lambda = -2f$ in Ω .

Equivalently:

$$\nabla v \otimes \nabla v + \operatorname{sym} \nabla w = S_{2 \times 2}$$

• Many "laminate compatible connections" available! Case similar to *O*(2,3)...

Theorem (L-Pakzad 2015)

 $\begin{array}{l} \text{Let} \left(v_0, w_0 \right) : \omega \to \mathbb{R} \times \mathbb{R}^2 \text{ be a smooth short infinitesimal, i.e.:} \\ \nabla v_0 \otimes \nabla v_0 + sym \nabla w_0 < S_{2 \times 2}. \end{array} \\ \text{Then } \exists (v_n, w_n) \in \mathcal{C}^{1, \frac{1}{7}-} \quad (v_n, w_n) \xrightarrow{\text{uniformly}} (v_0, w_0) \quad \text{and} \\ \nabla v_n \otimes \nabla v_n + sym \nabla w_n = S_{2 \times 2}. \end{array}$

• Counterintuitive: 3 equations in 3 unknowns. Low regularity serves as a replacement for "higher dimensionality".

Corollary ("Ultimate flexibility")

Let $f \in L^2(\omega)$ and $\alpha < \frac{1}{7}$. The set of $C^{1,\alpha}(\bar{\omega})$ solutions to the Monge -Ampère equation: Det $\nabla^2 v = f$ is dense in the space $C^0(\bar{\omega})$.

- For $f \in L^{p}(\omega)$ and $p \in (1, \frac{7}{6}]$, the density holds for any $\alpha < 1 \frac{1}{p}$.
- Det ∇^2 is weakly discontinuous everywhere in $W^{1,2}(\omega)$.

Rigidity of the Monge-Ampère equation

- Consequences for the energy scaling: flexibility at C^{1, 1/7−} ⇒ inf E^h ≤ Ch^{7/4}γ+^{1/2}. (If we had flexibility at C^{1, 1/3−} which is optimal using Nash-Kuiper technique, then inf E^h ≤ Ch^{3/2}γ+¹).
- MA eqn.: fully nonlinear, 2nd order PDE, ellipticity ⇔ convexity
 - Alexandrov (1958), Bakelman (1957): existence, uniqueness of generalized (convex) solutions for *f* > 0, convex boundary data.
 - Heinz (1961): $C^{2,\alpha}$ interior estimates for $f \in C^{0,\alpha}$ in 2 dimensions.
 - Cheng-Yau (1977), Pogorelov (1978): general regularity results
 - regularity of convex generalized solutions in higher dimensions: Caffarelli, Caffarelli-Nirenberg-Spruck, Krylov, Trudinger-Wang.

Rigidity at Hölder regularity (very weak solutions, no convexity assumpt.):

Theorem (L-Pakzad 2015)

Let $v \in C^{1,\alpha}$, $\alpha > 2/3$. If $\text{Det}\nabla^2 v = 0$, then v is developable. If $\text{Det}\nabla^2 v \ge c > 0$ is Dini continuous, then v is locally convex and an Alexandrov solution in ω .

The flexibility-rigidity dichotomy

- Monge-Ampère eq: flexibility below $C^{1,1/7}$; rigidity beyond $C^{1,2/3}$
 - rigidity of W^{2,2} solutions in the developable f = 0 (Pakzad) and convex f > c > 0 (Sverak, L-Mahadevan-Pakzad) cases.
- Isometric immersions of $G_{2\times 2}$ in \mathbb{R}^3 : flexibility below $\mathcal{C}^{1,1/5}$

(Delellis-Inaunen-Szekelyhidi); rigidity beyond $C^{1,2/3}$ (Borisov);

- rigidity of $W^{2,2}$ immersions in the developable $\kappa = 0$ (Pakzad) and convex $\kappa > c > 0$ (Hornung-Velcic) cases.
- Expected threshold: $\frac{1}{3}$ or $\frac{1}{2}$ or $\frac{2}{3}$.
- 3d incompressible Euler equations: flexibility below C^{0,1/5} (Delellis-Szekelyhidi, Isett: existence of L[∞](0, T; C^α(T³)) solutions compactly supported in time) (Buckmaster-Delellis-Isett-Szekelyhidi: existence of solutions with arbitrary temporal kinetic energy profile); rigidity beyond C^{0,1/3} (Constantin-E-Titi, Eyink: every L[∞](0, T; C^α(T³)) solution is energy conserving);
 Expected threshold: ¹/₂ (Onsager's conjecture)

- non-Euclidean elasticity
- dimension reduction
- Γ-convergence
- Effective constraints in the form of Monge-Ampère eqn

- microstructure formation
- matrensitic phase transition
- prestrain-activated materials

Thank you for your attention.