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1 Curvature-driven shape formation. Scaling laws and thin film
models. Geometry and design of materials.

Elastic materials exhibit qualitatively different responses to different kinematic boundary conditions or body
forces. Recently, there has been a growing interest in the study of prestrained elastica. A criterion which singles
out the quality of prestraining in a body is the fact that it assumes non-trivial configurations in the absence
of exterior forces or imposed boundary conditions. This phenomenon has been observed in different contexts:
growing leaves, torn plastic sheets, nematic glass sheets and polymer gels. In all these situations, the shape of
the lamina arises as a consequence of inelastic effects associated with growth, swelling or shrinkage, plasticity,
etc., resulting in a local and heterogeneous incompatibility of strains.

1.1. The growth formalism and non-Euclidean elasticity. An analytical set-up that allows to analyze
the dependence of the residual energy and deformations, on the prestrain incompatibility, is as follows. Let
G : U → R3×3 be a smooth Riemannian metric, given on an open, bounded domain U ⊂ R3. Since the
matrix G(x) is symmetric and positive definite, it possesses a unique symmetric, positive definite square root

A(x) =
√
G(x) ∈ R3×3. We consider the following energy functional:

E(u) =

ˆ
U
W
(
(∇u)A−1

)
dx ∀u ∈W 1,2(U ,R3), (1)

where the energy density W : R3×3 → [0,∞] obeys the principles of material frame invariance (with respect
to the special orthogonal group of proper rotations SO(3)), material consistency, normalisation, and non-
degeneracy 1, valid for all F ∈ R3×3 and all R ∈ SO(3):

W (RF ) = W (F ), W (Id) = 0, W (F ) ≥ c dist2(F, SO(3)), (2)

W (F )→ +∞ as detF → 0+, and ∀detF ≤ 0 W (F ) = +∞. (3)

The model in (1) assumes that the 3d elastic body U seeks to realize a configuration with a prescribed Rieman-
nian metric G, through minimizing the energy, determined by the elastic part Fe = (∇u)A−1 of its deformation
gradient ∇u. Since W (Fe) = 0 if and only if (∇u)T∇u = G and det∇u > 0, it is clear that E(u) = 0 if and only
if u is an orientation preserving isometric immersion of G into R3. Such immersion exists (and is automatically
smooth) when the Riemann curvature tensor RG of G vanishes identically in U . On the other hand, in [LewP2]
we proved that E has strictly positive infimum for all non-immersable metrics G:

RG 6≡ 0 ⇔ inf
{
E(u); u ∈W 1,2(U ,R3)

}
> 0. (4)

1.2. Some experimental connection. In view of (4), the quantity infE measures residual stresses at free
equilibria in the absence of external forces or boundary conditions. We note that (1) postulates the validity of the
decomposition∇u = FeA; this formalism [95] requires that it is possible to separate out a reference configuration.
It is thus relevant for the description of laminae, under inhomogeneous growth, plastic deformation, swelling or
shrinkage driven by solvent absorption, or opto-thermal stimuli in liquid nematic glass sheets.

One of the first efforts to reproduce the effect of the prestrain on the shape of thin films in an artificial setting
was reported in [55]. The authors manufactured thin gel films that underwent nonuniform shrinkage when
activated in a hot bath according to the prescribed radially symmetric prestrain. Both large-scale buckling,
multi-scale wrinkling structures and symmetry-breaking patterns appeared in the sheets, depending on the “pro-
grammed in” metrics. Another approach to controlling of shape through prestrain was suggested in [54], where
a method of photopatterning polymer films yielded the temperature-responsive flat gel sheets that transformed
into prescribed curved surfaces when the in-built metric was activated.

For other experimental results see [100, 99, 56, 4, 84, 107]. Notably, in a recent paper [107], the authors reported
new methods to write arbitrary and spatially complex patterns of directors into liquid crystal elastomers through
using photo-alignment materials. The liquid crystal director controls the inherent prestrain within the material
and hence thermal or chemical stimuli transform flat sheets into surfaces, whose shapes depend on the prestrain.
In several experiments, such programmed shapes were attained by actuated sheets of elastomers through writing
topological defects (singular prestrains) or by introducing nonuniform director profiles through the thickness.

1Simple examples of W satisfying these conditions are: W1(F ) = |(FTF )1/2 − Id|2 + | log detF |q , or W2(F ) = |(FTF )1/2 −
Id|2 +

∣∣(detF )−1 − 1
∣∣q for detF > 0, where q > 1 and W1,2 equal +∞ if detF ≤ 0.
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1.3. Thin films and dimension reduction. Pursuing our interest in understanding the mechanical responses
of laminae to strain incompatibility, we want to reduce the complexity of the minimization problem (1) through
dimension reduction. Consider thin films Ωh = ω × (−h2 ,

h
2 ) with mid-plate Ω ⊂ R2, where the incompatibility

tensors are determined by a family of Riemann metrics Gh = (Ah)2. As in (1), we are concerned with the infima
of the following energies, in the singular limit as h→ 0:

Eh(uh) =
1

h

ˆ
Ωh
W ((∇uh)(Ah)−1) dx ∀uh ∈W 1,2(Ωh,R3). (5)

In the context of standard nonlinear elasticity for thin plates and shells (i.e. whenG = Id), this research direction
has been initiated, using formal asymptotic expansions in [20, 92, 93, 35]) (see [21] for further references and
background), and using the rigorous approach of Γ-convergence in the fundamental papers [63, 64, 39, 40] (and
[1] in the content of 1-dimensional structures), furthered in [26, 38, LewMP3, LewMP2, LewMP1, HLewP]
for thin plates and shells, in [25, 65] for incompressible materials, in [97] for heterogeneous materials, in [37]
for inextensible ribbons, in [76, 77, 79, 78, Lew9, LewL] through convergence of equilibria rather than strict
minimizers, and in [LewMaP3] for shallow shells.

In case when G = Gh is constant along the thickness, the limit theories have been thoroughly discussed in
[LewP2, LewP1, BLewS, LewRaR]. The general case of G = G(x′, x3) and any admissible scaling inf Eh ∼ hβ ,
β ≥ 2 has been resolved in [Lew13]. The paper [LewLu] dealt with a more general class of incompatibilities,
where the transversal dependence of the lower order terms is nonlinear (the “oscillatory” case). When Gh is a
thickness-dependent perturbation of Id3, versions of the small-slope von Kármán theory (first postulated in [69,
33]) were rigorously derived in [LewMaP1], while a linearized Kirchhoff theory with Monge-Ampère constraints
(17) and prestrained shallow shell theories [LewMaP2], each valid in their own range of growth parameters for
the 3d thin sheet, were derived in [LewOP, LewMaP3]. See also the review papers [Lew11, LewP4].

1.4. The energy scaling quantisation. To describe our results in this domain, let us recall that a useful
variational thin limit theory should comprise three essential ingredients. These are: a compactness result which
identifies the asymptotic behavior of the minimizing sequences; two energy comparison results (in terms of
liminf and limsup of energies of converging sequences) which allows to deduce that any converging minimizing
sequence converges to the minimizer of the limiting theory; and a scaling analysis which identifies the range
of validity of the corresponding energy scaling. In what follows, we will detail the results of [LewP2, BLewS,
LewRaR, Lew13]. These results relate the context of dimension reduction in non-Euclidean elasticity with the
analysis of quantitative immersability of Riemann metrics.

1. (Compactness). Let uh ∈ W 1,2(Ωh,R3) be a sequence of deformations such that Eh(uh) ≤ Ch2. Then,
there exist constants ch ∈ R3 and Qh ∈ SO(3) such that the rescaled deformations yh(x′, x3) :=
Qhuh(x′, hx3) − ch converge to some y ∈ W 2,2(Ω1,R3). Moreover, y depends only on the tangential
variable x′ and it is necessarily an isometric immersion of the midplate metric: (∇y)T∇y = G(x′, 0)2×2.

2. (Liminf inequality). Let uh and y be as above. We then have the lower bound:

lim inf
h→0

1

h2
Eh(uh) ≥ I2(y) :=

1

24

ˆ
ω

Q2(x′, (∇y)T∇~b1 −
1

2
∂3G(x′, 0)2×2) dx′, (6)

where Q2(x′, ·) are nonnegative quadratic forms, defined explicitly in terms of W (see [39, BLewS]), and

where ~b1 satisfies:
[
∂1y, ∂2y,~b1

]
∈ SO(3)G1/2(x′, 0)2×2. Equivalently, ~b1 is the Cosserat vector comprising

the appropriate nonzero sheer with respect to the vector ~N that is normal to the immersed surface y(ω):

~b1 = (∇y)G−1
2×2

[
G13

G23

]
+

√
detG√

detG2×2

~N, with: ~N =
∂1y × ∂2y

|∂1y × ∂2y|
.

3. (Limsup inequality). For all y ∈W 2,2(ω,R3) satisfying (∇y)T∇y = G(x′, 0)2×2, there exists a sequence of
deformations uh ∈ W 1,2(Ωh,R3) for which the convergence as in the compactness statement above holds
true with ch = 0, Qh = Id3 and moreover:

lim
h→0

1

h2
Eh(uh) = I2(y).
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4. (Energy scaling). We have: inf Eh ∼ h2 if and only if the following two conditions hold simultaneously:
(a) There exists a W 2,2 isometric immersion of (ω,G(x′, 0)2×2) into R3, (b) At least one of the three
Riemann curvatures R12,12, R12,13 or R12,23 does not vanish identically on the midplate ω × {0}.

In [LewRaR, Lew13] we studied the scaling of Eh of order less than h2. We discovered a gap phenomenon, i.e.
the only scaling possible after the non-zero energy drops below h2, is that of order h4 and the Γ-limit of 1

h4E
h

in this case is a von Kàrmàn-like theory given in terms of the infinitesimal isometries and admissible strains on
the surface isometrically immersing G(x′, 0)2×2, plus an extra curvature term. More precisely:

5. (Energy scaling). If 1
h2 inf Eh → 0 as h→ 0 then in fact: inf Eh ≤ Ch4. In this case, there exists unique

(up to rigid motions), automatically smooth immersion y0 : ω → R3 such that (∇y0)T∇y0 = G(x′, 0)2×2

and
(
(∇y0)T∇~b1

)
sym

= 1
2∂3G(x′, 0)2×2. Further, if 1

h4 inf Eh → 0 then there must be Riem(G) = 0 on

ω × {0}. In particular, when G = G(x′) is constant along the thickness, then this last condition reduces
to G being immersible and hence we then have: minEh = 0 for every h.

6. (Compactness and Γ-limit). Let uh ∈ W 1,2(Ωh,R3) be a sequence of deformations satisfying Eh(uh) ≤
Ch4. Then statements similar in nature to points 1.-3. above, hold for the rescaled deformations yh, with
the limiting 2d energy [LewRaR, Lew13] given by:

I4 =
1

2

ˆ
Ω

Q2(x′, stretching of order h2) dx′ +
1

24

ˆ
Ω

Q2(x′,bending of order h) dx′

+
1

1440

ˆ
Ω

Q2(x′,

[
R13,13 R13,23

R13,23 R23,23

]
) dx′.

The functional I4 is a von Kármán-like energy, consisting of stretching and bending (with respect to the
unique isometric immersion y0 that gives the zero energy in the prior Γ-limit (6)) plus a new term, which
quantifies the remaining three Riemann curvatures: R13,13, R13,23, R23,23 on ω × {0}.

1.5. Sobolev isometric immersions of Riemannian metrics. As a corollary, we obtained new necessary
and sufficient conditions for existence of W 2,2 isometric immersions of (ω,G2×2). In [LewP2] we showed that
G2×2 has an isometric immersion y ∈ W 2,2(ω,R3) iff h−2 inf Eh ≤ C, for a uniform constant C. In particular,
if the Gaussian curvature κ(G2×2) 6≡ 0 in Ω then h−2 inf Eh ≥ c > 0.

Existence of local or global isometric immersions of a given 2d Riemannian manifold into R3 is a longstanding
problem in differential geometry, its main challenge being the optimal regularity. By a classical result of Kuiper
[62], a C1 isometric embedding into R3 can be obtained by means of convex integration. This regularity is far
from W 2,2, where information about the second derivatives is also available. On the other hand, a smooth
isometry exists for some special cases, e.g. for smooth metrics with uniformly positive or negative Gaussian
curvatures on bounded domains in R2 [41]. Counterexamples are largely unexplored. The best result is due to
Pogorelov [88]: there exists a C2,1 metric with nonnegative Gaussian curvature on the unit ball in R2 such that
no neighborhood of the origin admits a C2 isometric embedding.

1.6. The complete hierarchy in the non-wrinkling regimes. The above analysis has been concluded in
[Lew13], where we derived all the remaining thin limit theories, i.e. corresponding to inf Eh ∼ hβ with β > 4.

1. (Energy scaling). For every n ≥ 2, if 1
h2n inf Eh → 0 as h→ 0, then in fact: inf Eh ≤ Ch2(n+1). Further,

the following three statements are then equivalent:

(i) inf Eh ≤ Ch2(n+1).

(ii) R12,12(x′, 0) = R12,13(x′, 0) = R12,23(x′, 0) = 0 and ∂
(k)
3 Ri3,j3(x′, 0) = 0 for all x′ ∈ ω, all k =

0 . . . n− 2 and all i, j = 1 . . . 2.

(iii) There exist smooth fields y0, {~bk}n+1
k=1 : ω̄ → R3 giving raise to frames

{
Bk =

[
∂1
~bk, ∂2

~bk, ~bk+1

]}n
k=1

,

and B0 =
[
∂1y0, ∂2y0, ~b1

]
satisfying detB0 > 0, such that:

m∑
k=0

(
m

k

)
BTk Bm−k − ∂

(m)
3 G(x′, 0) = 0

for all m = 0 . . . n. Equivalently:
( n∑
k=0

xk3
k!
Bk

)T( n∑
k=0

xk3
k!
Bk

)
= G(x′, x3) + O(hn+1) on Ωh as

h → 0. The field y0 is the unique (up to rigid motions), automatically smooth isometric immersion
of ω,G(x′, 0)2×2) for which I2(y0) = 0.
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2. (Compactness and Γ-limit). Let uh ∈ W 1,2(Ωh,R3) be a sequence of deformations satisfying Eh(uh) ≤
Ch2(n+1). Then, there exist constants ch ∈ R3 and Qh ∈ SO(3) such that the displacements:

V h(x′) =
1

hn

 h/2

−h/2
(R̄h)T

(
uh(x′, x3)− ch

)
−
(
y0(x′) +

n∑
k=1

xk3
k!
~bk(x′)

)
dx3

converge as h → 0, strongly in W 1,2(ω,R3), to the limiting displacement: V ∈ Vy0 . The space of first

order isometries on the surface y0(ω) is defined by: Vy0 =
{
V ∈W 2,2(ω,R3);

(
(∇y0)T∇V

)
sym

= 0
}
. The

above condition automatically yields existence of ~p ∈W 1,2(ω,R3) such that
(
BT0
[
∇V, ~p

])
sym

= 0. Then,

statements as in points 2.-3. in 1.4 hold, with the limiting energy of 1
h2(n+1)E

h given by:

I2(n+1)(V ) =
1

24
·
ˆ
ω

Q2

(
x′, (∇y0)T∇~p+ (∇V )T∇~b1 + αn

[
∂

(n−1)
3 Ri3,j3

]
i,j=1...2

)
dx′ (7)

+βn ·
ˆ
ω

Q2

(
x′,PS⊥y0

([
∂

(n−1)
3 Ri3,j3

]
i,j=1...2

))
dx′ + γn ·

ˆ
ω

Q2

(
x′,PSy0

([
∂

(n−1)
3 Ri3,j3

]
i,j=1...2

))
dx′,

where Sy0 stands for the space of finite strains in: Sy0 = closureL2

{(
(∇y0)T∇w

)
sym

; w ∈W 1,2(ω,R3)
}
,

whereas PSy0 and PS⊥y0 denote, respectively, the orthogonal projections onto Sy0 and its orthogonal com-

plement S⊥y0 . The coefficients αn, βn, γn ≥ 0 are calculated explicitly in [Lew13].

3. (Identification of terms in I2(n+1)). When G = Id3, then each functional in (7) reduces to the classical

linear elasticity: I2(n+1)(V ) =
1

24

ˆ
ω

Q2

(
∇2v

)
dx′, which yields the biharmonic energy in function of the

out-of-plane scalar displacement in V = (αx⊥ + β, v).

In the present geometric context, the bending term (∇y0)T∇~p + (∇V )T∇~b1 in (7) is of order hnx3 and

it interacts with the curvature
[
∂

(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

, which is of order xn+1
3 . The interaction occurs

only when the two terms have the same parity in x3, namely at even n, so that αn = 0 for all n odd. The

two remaining terms in (7) measure the (squared) L2 norm of
[
∂

(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

, with distinct

weights assigned to the Sy0 and
(
Sy0
)⊥

projections, again according to the parity of n. The quantity

inf
Vy0
I2(n+1) is precisely the square of a weighted L2 norm of

[
∇(n−1)Rab,cd

]
on ω, namely:

inf
Vy0
I2(n+1) ∼

∥∥[∂(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

‖2L2(ω).

The finite strain space Sy0 can be identified, in particular, in the following two cases. When y0 = id2, then

Sy0 = {S ∈ L2(ω,R2×2
sym ); curlT curlS = 0}. When the Gauss curvature κ((∇y0)T∇y0) = κ

(
G2×2) > 0 on

ω̄, then Sy0 = L2(ω,R2×2
sym ), as shown in [LewMP3].

4. (Viability of all energies I2(n+1)). We note that if Riem(G) = 0 on ω × {0} and for some n ≥ 2 there

holds: ∂
(m)
3

[
Ri3j3(·, 0)

]
i,j=1...2

= 0 on ω, for all m = 0 . . . n− 2, but ∂
(n−1)
3

[
Ri3j3(·, 0)

]
i,j=1...2

6≡ 0, then:

ch2(n+1) ≤ inf Eh ≤ Ch2(n+1), for some c, C > 0

Further, the conformal metrics of the form: G(x′, x3) = e2φ(x3)Id3 provide a class of examples for the
viability of all scalings: inf Eh ∼ h2n if and only if φ(k)(0) = 0 for k = 1 . . . n− 1 and φ(n)(0) 6= 0.

1.7. Coercivity. In [Lew13, LewLu] we showed that the kernel of I2 consists of the rigid motions of a single

smooth deformation y0 that solves: (∇y0)∇y0 = G(x′, 0)2×2,
(
(∇y0)T∇~b1

)
sym

= 1
2∂3G(x′, 0)2×2. Further, I2(y)

bounds from above the squared distance of an arbitrary W 2,2 isometric immersion y of the midplate metric
G(x′, 0)2×2 from the indicated kernel of I2. The parallel statement holds true for I2(n+1) and n > 1, where the
corresponding kernel consists of the linearised rigid motions of y0.
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For the case of I4, we first identify the zero-energy displacement-strain couples (V,S); in particular, the mini-
mizing displacements are the linearised rigid motions of the referential y0. We then prove that the bending term
in I4, which is solely a function of V , bounds from above the squared distance of an arbitrary W 2,2 displacement
obeying

(
(∇y0)T∇V

)
sym

= 0, from the minimizing set in V . On the other hand, the full coercivity involving

both V and S does not hold. We exhibit an example in the setting of the classical von Kármán functional, where
I4(Vn,Sn)→ 0 as n→∞, but the distance of (Vn,Sn) from the kernel of I4 remains uniformly bounded away
from 0. We note that this lack of coercivity is not prevented by the fact that the kernel is finite dimensional.

1.8. Dimension reduction for thin films with transversally oscillatory prestrain. In [LewLu] we
considered the “oscillatory case” where Gh = (Ah)2 in (11) satisfies the following structure assumption:

Gh(x′, x3) = Gh(x′,
x3

h
) = Ḡ(x′) + hG1(x′,

x3

h
) +

h2

2
G2(x′,

x3

h
) + . . . for all x = (x′, x3) ∈ Ωh.

Note that this set-up includes the subcase of Gh = G (“non-oscillatory case”), upon taking: Ḡ1(x′) = G(x′, 0),
G1(x′, t) = t∂G3(x′, 0), G2(x′, t) = t2∂33G(x′, 0), etc. We exhibited connections between the two cases via
projections of appropriate curvature forms on the polynomial tensor spaces and reduction to the “effective non-
oscillatory cases”. Statements like 1.-4. of 1.4. are then still valid, with the Γ-limits at various scaling exponents
in the hierarchy indicated in 1.6, that consists of energies in (7) written for the effective metrics, plus the new
“excess term” that measures the deviation of the given oscillatory metric from the effective non-oscillatory one,
at an appropriate order.

1.9. The von Kármán equations with growth. Another goal of our studies has been to write the
equilibrium equations of a thin elastic body subject to growth-induced finite displacements, as it bifurcates
away from the flat sheet. This set-up relates as well to a small time-step in the dynamic problem of growth.
One expects a hierarchy of limiting theories corresponding to the order of magnitude of the target strain tensor.
In [LewMaP1, LewMaP2] we studied the general situation of weakly and strongly curved shells, with:

Ah − Id ∼ h2.

We assumed that the reference configuration is given as a shell Shγ of small thickness h, around the midsurface

Sγ that is the graph of the function γv0 over a domain Ω ⊂ R2. Given γ = hα and v0 : Ω → R, we define
Sγ = {(x′, γv0(x′)) : x′ ∈ Ω} and study the corresponding 3d prestrained energy Eγ,h. We established that
under suitable curvature constraints on Gh = (Ah)TAh, its infimum scales like h4. Four different regimes for
the Γ-limit of h−4Eγ,h were distinguished:

1. Case α > 1. The Γ-limit for all values of α > 1, i.e. when lim
h→0

γ(h)

h
= 0, coincides with the zero

thickness limit of the degenerate case γ = 0, which is the prestrained von Kármán model. The same
energy can be obtained by taking the consecutive limits in h−4Eγ,h, first in γ and then in h. The resulting
Euler-Lagrange equations are those proposed and experimentally validated in [69]:

∆2Φ = −s
(
−1

2
[v, v] + λg

)
and B∆2v = [v,Φ]−BΩg. (8)

Above, Φ is the Airy stress potential, v the out-of-plate displacement, and [·, ·] is the Airy’s bracket
[21]. Further, s stands for the Young’s modulus, −1/2[v, v] = det ∇2v is the Gaussian curvature of

the deformation, B the bending stiffness, and ν Poisson’s ratio. Finally, λg = curlT curl (εg) and Ωg =

divTdiv(κg + ν cof κg) for the growth tensors εg, κg in: Ah(x′, x3) = Id + h2εg(x
′) + hx3κg(x

′).

2. Case α = 1. This corresponds to lim
h→0

γ(h)

h
= 1. The limit model is an unconstrained energy minimization,

reflecting both the effect of shallowness and that of the prestrain. It corresponds to a simultaneous passing
to the limit (0, 0) of the pair (γ, h) in h−4Eγ,h. The Euler-Lagrange equations (9) of this limit model were
suggested in [69] for the description of the deployment of petals during the blooming of a flower:

∆2Φ = −s(det∇2v − det∇2v0 + λg) and B(∆2v −∆2v0) = [v,Φ]−BΩg , (9)

3. Case 0 < α < 1. This corresponds to the flat limit γ → 0 when the energy can be conceived as a limit of
the von Kármán models I4 for shallow shells Sγ . In other words, this limiting model corresponds to the
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case when: lim
h→0

γ(h)

h
=∞, and it can be also identified as the limit of h−4Eγ,h obtained by choosing the

distinguished sequence of limits, first as the faster variable h → 0 and then when γ → 0. The Γ-limit is
formulated for displacements of a plate but it inherits certain geometric properties of shallow shells Sγ ,
such as the first-order infinitesimal isometry constraint.

4. Case α = 0. The 3d model is that of the prestrained non-linear elastic shell of arbitrarily large curvature
(no shallowness involved). The Γ-limit of h−4Eγ,h in this case leads to a prestrained von Kármán model
I4 for the 2d mid-surface.

1.10. The general von Kármán-like growth tensor. In [JLew] we further provided a complete analysis
of the prestrain tensor that corresponds to a family of Riemann metrics with weak curvatures, where:

Ah(x′, x3) = Id + hα/2εg(x
′) + hγ/2x3κg(x

′).

There are essentially three new contributions in this context:

1. In the regime α ≥ 4, γ ≥ 2, we found the Γ-limits of the rescaled energies, identified the optimal energy
scaling laws, and displayed the equivalent conditions for optimality in terms of both the prestrain com-
ponents and the curvatures of the related Riemannian metrics. Similarly to the case of large prestrain
[LewRaR], we observeed that one such condition is the non-vanishing of the lowest order terms in the
curvatures R12,12, R12,13, R13,23 of Gh = (Ah)TAh along the midplate.

2. In the larger prestrain regime α ∈ (0, 4), γ > 0, we proposed new energy upper bounds, based on the
construction of a sequence of deformations via the Kirchhoff-Love extension of the highly perturbative,
Hölder-regular solutions to the Monge-Ampere equation obtained by convex integration in [LewP3].

3. When the stretching-inducing prestrain is of order lower than that allowed in 1., but carries no in-plane
modes, i.e. α, γ ≥ 2 and S2×2 ≡ 0 we still perform the full dimension-reduction analysis and discover
similarities with both the theories in 1. and the shallow shell models of [LewMaP2].

1.11. The biharmonic energy with Monge-Ampére constrains. In [LewOP], the prestrained 3d plate
model Eh was studied, under the incompatibility scaling:

Ah − Id ∼ hθ, 0 < θ < 2. (10)

The results of this paper are multifold and open the way for posing a range of challenging questions in the
analysis of nonlinear geometric PDEs such as the Monge-Ampère equation. We derive the Γ-limit of h−(θ+2)Eh

where, as before, under suitable non-vanishing curvature conditions, hθ+2 is proved to be the optimal scaling of
the infimum of Eh. The limit model, corresponding to 1 < θ < 2 consists of a biharmonic energy subject to the
Monge-Ampère constraint, i.e. the minimizers of Eh in this regime approach asymptotically the out-of-plate
displacements v : Ω→ R, which are minimizers of:

If (v) =

ˆ
Ω

Q2(∇2v) dx′ where v ∈ Af = {v ∈W 2,2(Ω) : det∇2v = f a.e. in Ω}.

Here, f : Ω → R is a given function which asymptotically depends on the choice of the perturbation Ah − Id.
For the scaling regime 0 < θ < 1, we expect the thin limit to be still generically (i.e. for generic Ah) the same
model. Some steps were already taken in [LewOP] to show this result. The analysis is based on observations:

1. If f ≥ 0 and given v ∈ Af of sufficient regularity, it is possible to isometrically parametrize the graph
of v, modulo suitable uniformly controlled in-plane perturbations of the domain variable. This reparam-
eterization provides a precise way of approximating the energy If (v) by h−(θ+2)Eh computed along the
recovery sequence uh : Ωh → R3. Indeed, for smaller values of θ, one deals with smaller values of error in
the approximation.

2. If f ≡ c > 0, then any v ∈ Af can be approximated by a sequence vk ∈ Af ∩ C∞(Ω̄).
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Combining 1 and 2, the remaining obstacle is to show that smooth functions are dense in Af for any f . Note
that, in [LewMaP3] it is proved that W 2,2 solutions of the Monge-Ampère equation det∇2v = f , are locally
convex and indeed coincide with the classical Alexandrov solutions. This implies that the main difficulty in the
density problem is the mollification of the solution at the boundary while keeping the Hessian intact.

Finally, a partial study of the thin limit If over the admissible function space Af was undertaken in [LewOP].
In particular, we were concerned with the question of multiplicity of solutions in the radially symmetric case.
While the question of the Γ-limit for the scaling (10) is not yet fully settled, many open problems regarding
multiplicity, regularity and even the derivation Euler Lagrange equations of the limiting model stay open.

1.12. A design problem. In [ALewP], we studied a class of design problems in solid mechanics, leading to
a variation on the classical question of equi-dimensional embeddability of Riemannian manifolds. Given two
smooth positive definite matrix fields G̃,G on Ω ⊂ Rn, one can seek an isometry ξ between the Riemannian
manifolds (Ω, G̃) and (ξ(Ω), G ◦ ξ−1). What distinguishes our problem from the classical isometric immersion

problem, where one looks for an isometric mapping between two given manifolds (Ω, G̃) and (U,G), is that
the target manifold U = ξ(Ω) and its metric G = G ◦ ξ−1 are only given a posteriori, after the solution is
found. In this context, we derived a necessary and sufficient existence condition, given through a system of
total differential equations, and discussed its integrability. In the classical context, the same approach yields
conditions of immersibility of a given metric in terms of the Riemann curvatures. In the present case the
equations do not close, and successive differentiation of the compatibility conditions leads to a new algebraic
description of integrability. Taking into account that the non-existence situations could be generic, we also
recast the problem in a variational setting and analyze the infimum of the appropriate incompatibility energy:

E(ξ) =

ˆ
Ω

dist2
(
G1/2(∇ξ)G̃−1/2, SO(n)

)
dx ∀ξ ∈W 1,1

loc (Ω,Rn). (11)

which resembles the non-Euclidean elasticity (1). We then derived a Γ-convergence result for the dimension
reduction from 3d to 2d in the Kirchhoff energy scaling regime.

1.13. Discrete approximation. In paper [LewO] we studied the asymptotic behaviour of discrete elastic
energies in presence of the prestrain metric G, assigned on the continuum reference configuration Ω:

Eε(uε) =
∑
ξ∈Zn

∑
α∈Rξε(Ω)

εnψ(|ξ|)
∣∣∣ |uε(α+ εξ)− uε(α)|

ε|A(α)ξ|
− 1
∣∣∣2, (12)

where Rξε(Ω) = {α ∈ εZn : [α, α + εξ] ⊂ Ω} denotes the set of lattice points interacting with the node α, and
where a smooth cut-off function ψ : R+ → R allows only for interactions with finite range:

ψ(0) = 0 and ∃M > 0 ∀n ≥M ψ(n) = 0.

The energy in (12) measures the discrepancy between lengths of the actual displacements between the nodes
x = α+ εξ and y = α due to the deformation uε, and the ideal displacement length 〈G(α)(x− y), (x− y)〉1/2 =
ε|A(α)ξ|. When the mesh size of the discrete lattice in Ω goes to zero, we obtain the variational bounds on
the limiting (in the sense of Γ-limit) energy. In case of the nearest-neighbour and next-to-nearest-neighbour
interactions, we derive asymptotic formulas, and compare them with the non-Euclidean energy relative to G.

1.14. A model of controlled growth. In paper [BrLew3] we considered an evolutionary free boundary
problem for a system of PDEs, modeling the growth of a biological tissue. In this model, the morphogen
with concentration u, controlling volume growth, is produced by specific cells (with concentration w) and then
diffused and absorbed throughout the time-varying domain Ω(t) ⊂ R3:

minimize: J(u)
.
=

ˆ
Ω(t)

( |∇u|2
2

+
u2

2
− wu

)
dx, (13){

wt + div(wv) = 0 x ∈ Ω(t),
w(0, x) = w0(x) x ∈ Ω(0) = Ω0.

(14)

Then, the geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic
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deformation energy, subject to a constraint on the volumetric growth:

minimize: E(v)
.
=

1

2

ˆ
Ω(t)

|sym∇v|2 dx subject to: div v = g(u), (15)

Ω(t) =
{
x(t) ; x(0) = x0 ∈ Ω0 and x′(s) = v(s, x(s)) ∀s ∈ [0, t]

}
. (16)

The main goal of our analysis was to prove that, given an initial set Ω0 and an initial density w0(x) for x ∈ Ω0,
the equations (13-14-15-16) determine a unique evolution, up to rigid motions. Indeed, for Ω0 with regularity
C2,α, our main result established such local existence and uniqueness of a classical solution.

2 Convex integration for the Monge-Ampère equation. Rigidity and
flexibility.

The work [LewP3] concerns the dichotomy of “rigidity vs. flexibility” for C1,α solutions to the Monge-Ampère

equation. Let Ω ⊂ R2 be an open set. Given a real valued function v ∈W 1,2
loc (Ω) we study its very weak Hessian,

understood in the sense of distributions and given in the following form:

Det∇2v := −1

2
curl curl (∇v ⊗∇v) = f in Ω ⊂ R2. (17)

A straightforward approximation argument shows that if v ∈ W 2,2
loc then (17) coincides with the determinant

of the matrix of second derivatives of v. Let us point out that there are other notions of a weak Hessian than
(17), including the well known notion of the distributional Hessian H. Different notions have different features,
for example contrary to H, the operator Det∇2 is not continuous with respect to the weak topology. Indeed,
one consequence of our results below is that it is actually weakly discontinuous everywhere in W 1,2(Ω). Each
of these notions relates to some analytical context; as we shall see (17) arises naturally in the context of the
isometric immersion problem and its connection to models of elastic prestrained plates.

2.1. The flexibility results. We prove the following. Let f ∈ L7/6(Ω) and fix an exponent: α < 1
7 . Then

the set of C1,α(Ω̄) solutions to (17) is dense in C0(Ω̄). That is, for every v0 ∈ C0(Ω̄) there exists a sequence
vn ∈ C1,α(Ω̄), converging uniformly to v0 and satisfying: Det∇2vn = f . When f ∈ Lp(Ω) and p ∈ (1, 7

6 ), the

same result is true for any α < 1− 1
p . This density result is a consequence of the following statement whose proof

relies on convex integration techniques applied to (17). Let v0 ∈ C1(Ω̄), w0 ∈ C1(Ω̄,R2) and A0 ∈ C0,β(Ω̄,R2×2
sym),

for some β ∈ (0, 1) and assume that:

A0 −
(1

2
∇v0 ⊗∇v0 + sym∇w0

)
> Id2 in Ω̄. (18)

Then, for every exponent α in the range: 0 < α < min
{

1
7 ,

β
2

}
, there exist sequences vn ∈ C1,α(Ω̄) and

wn ∈ C1,α(Ω̄,R2) which converge uniformly to v0 and w0, respectively, and which satisfy:

A0 =
1

2
∇vn ⊗∇vn + sym∇wn in Ω̄. (19)

2.2. Rigidity versus flexibility. Flexibility results as above, that are obtained in view of the convex
integration h-principle, are usually coupled with the rigidity results for more regular solutions. For the Monge-
Ampère equations, we recall two recent statements regarding solutions with Sobolev regularity: following the
well known unpublished work by Šverák [103], we proved in [LewMaP3] that if v ∈ W 2,2(Ω) is a solution to
(17) with f ∈ L1(Ω) and f ≥ c > 0 in Ω, then in fact v must be C1 and globally convex. On the other hand,
if f = 0 then [85] likewise v ∈ C1(Ω) and v must be developable (see also [51, 52, 53]). A clear statement of
rigidity is still lacking for the general f , as is the case for isometric immersions, where rigidity results are usually
formulated only for elliptic [24] or Euclidean metrics [85, 68, 53].

Our results for (17) are as follows. Assume that 2
3 < α < 1. If v ∈ C1,α(Ω̄) is a solution to Det∇2v = 0 in Ω̄,

then v must be developable. More precisely, for all x ∈ Ω either v is affine in a neighbourhood of x, or there
exists a segment lx joining ∂Ω on its both ends, such that ∇v is constant on lx. Likewise, when f is positive
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Dini continuous, then v is convex and, in fact, it is also an Alexandrov solution to det∇2v = f in Ω. In proving
the above results, we used a commutator estimate for deriving a degree formula; similar commutator have been
used in [22] for the Euler equations and in [24] for the isometric immersion problem. This is not surprising,
since the presence of a quadratic term plays a major role in all three cases, allowing for the efficiency of convex
integration and iteration. Let us also mention that it is still an open problem which α is the critical value for
the rigidity-flexibility dichotomy, and it is conjectured to be 1/3, 1/2 or 2/3.

2.3. Connection to the isometric immersion problem. Deformations and displacements. In order
to better understand the results in [LewP3], we point out a connection between the solutions to (17) and the
isometric immersions of Riemannian metrics, motivated by a study of nonlinear elastic plates. Since on a simply
connected domain Ω, the kernel of the differential operator curl curl consists of the fields of the form sym∇w,
a solution to (17) with the vanishing right hand side f ≡ 0 can be characterized by:

∃w : Ω→ R2 1

2
∇v ⊗∇v + sym∇w = 0 in Ω. (20)

The equation in (20) is an equivalent condition for the following 1-parameter family of deformations, given
through the out-of-plane displacement v and the in-plane displacement w in: φε = id + εve3 + ε2w : Ω → R3,
to form a 2nd order infinitesimal isometry (bending), i.e. to induce the change of metric on the plate Ω whose
2nd order terms in ε disappear: (∇φε)T∇φε − Id2 = o(ε2).

In this context, the celebrated work of Nash and Kuiper [81, 62] shows the density of co-dimension one C1

isometric immersions of Riemannian manifolds in the set of short mappings. Since we are now dealing with
the 2nd order infinitesimal isometries rather than the exact isometries, the classical metric pull-back equa-
tion: y∗ge = h, for a mapping y from (Ω, h) into (R3, ge) is replaced by the compatibility equation of the
tensor 1

2∇v ⊗∇v + sym∇w with a matrix field A0 that satisfies: −curl curlA0 = f . This compatibility equa-

tion states precisely that the metric (∇φε)T∇φε agrees with the given metric h = Id2 + 2ε2A0 on Ω, up to
terms of order ε2. The Gauss curvature κ of the metric h satisfies: κ(h) = −ε2curl curlA0 + o(ε2), while
κ((∇φε)T∇φε) = −ε2curl curl

(
1
2∇v⊗∇v+symw

)
+o(ε2), so the problem (17) can also be interpreted as seek-

ing for all appropriately regular out-of-plane displacements v that can be matched, by an in-plane displacement
perturbation w, to achieve the prescribed Gauss curvature f of Ω, at its highest order term.

2.4. Relation to other convex integration results in nonlinear PDEs. The flexibility result in [LewP3]
is the Monge-Ampère analogue of the isometric immersion problem in [24, Theorem 1], where the authors
improved on the Nash-Kuiper methods and obtained higher regularity within the flexibility regime. On the
other hand, rigidity of isometric immersions of elliptic metrics has been shown for C1,α isometries in [11, 24]
with α > 2/3. Recently, these methods were applied as well in the context of fluid dynamics and yielded many
interesting results for the Euler equations: in [31] existence of weak solutions with bounded velocity and pressure
has been proved together with their non-uniqueness and the existence of energy-decreasing solutions; in [32]
existence of continuous periodic solutions of the 3d incompressible Euler equations, which dissipate the total
kinetic energy has been proved; the stationary incompressible Euler equation has been studied in [19] where
existence of bounded anomalous solutions was shown.

These results are to be contrasted with [22, 34], where it was shown that C0,α solutions of the Euler equations
are energy conservative if α > 1/3. There have been several improvements of [31, 32] since, linked with the
Onsager’s conjecture which puts the Hölder regularity threshold for the energy conservation of the weak solutions
to the Euler equations at C0,1/3 [48, 49, 16, 17, 18, 19].

3 Nonlinear PDEs of p-laplacian type and Tug-of-War games.

Nonlinear PDEs, mean value properties, and stochastic differential games are intrinsically connected. In this
section I report on my recent results regarding the random walk representations of the Dirichlet, Robin, and
obstacle problems for the p-Laplace equation. Generally speaking, solutions to certain nonlinear PDEs can be
interpreted as limits of values of specific Tug-of-War games, when the step-size ε determining the allowed length
of move of a token, decreases to 0. This observation allows replacing some classical techniques by relying instead
on suitable choices of strategies for the competing players; indeed it has inspired further studies in different
directions, such as: asymptotic mean value properties, a new proof of Harnack’s inequality for p-harmonic
functions, a new proof of Hölder regularity, connections with the optimal Lipschitz extension problem, control
theory and economic modeling, or semi-supervised machine learning. The approach we follow originated in
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[86, 87] and was furthered in [70, 71]; for the case of deterministic games see the review [57] and [58, 59]. Some
of the basic concepts have also been explained in a short review paper [LewM1], and more recently in the
graduate-level textbook “A Course on Tug-of-War Games with Random Noise” by M. Lewicka [Lew14].

3.1. Tug-of-War with noise, case 1 < p <∞. It is a well known fact that for u ∈ C2(RN ) there holds:

 
Bε(x)

u(y)dy = u(x) +
ε2

2(N + 2)
∆u(x) + o(ε2) as ε→ 0 + . (21)

Indeed, since an equivalent condition for harmonicity ∆u = 0 is the mean value property:
ffl
Bε(x)

u(y)dy = u(x),

the coefficient ∆u(x) above measures the second-order error from the satisfaction of this property.

The next observation is that a similar expansion and its resulting probabilistic interpretation can be also derived,
with appropriate modifications, for nonlinear operators. Note first that when we replace Bε(x) by the ellipsoid
E with radius r, aspect ratio α > 0 and oriented along a unit vector ν, we obtain:

 
E(x,ε;α,ν)

u(y) dy = u(x) +
ε2

2(N + 2)

(
∆u(x) + (α2 − 1)〈∇2u(x) : ν⊗2〉

)
+ o(ε2).

Recalling the interpolation of the normalised (so called game-theoretical) p-Laplacian ∆G
p in:

∆G
p u = |∇u|2−p∆pu = ∆u+ (p− 2)∆∞u,

the mean value expansion becomes:

 
E(x,ε;α,ν)

u(y) dy = u(x) +
ε2

2(N + 2)
∆G
p u(x) + o(ε2), for the choice

α =
√
p− 1 and ν = ∇u(x)

|∇u(x)| . To obtain an expansion where the left hand side averaging does not require

the knowledge of ∇u(x) and allows for the identification of a p-harmonic function that is a priori only bounded,
one needs to average over orientations ν. This is done by superposing “the deterministic average 1

2 (inf + sup)”

with “the stochastic average
ffl

”, as derived in [Lew11]:

1

2

(
inf

z∈Bε(x)
+ sup
z∈Bε(x)

) 
E
(
z, γpε, αp(

∣∣ z−x
ε

∣∣), z−x|z−x|
)u(y) dy = u(x) +

γ2
pε

2

2(N + 2)
∆G
p u(x) + o(ε2). (22)

The above expansion is valid with γp a fixed stochastic sampling radius factor, and αp the aspect ratio in radial
function of the position z ∈ Bε(x). The value of αp varies quadratically from 1 at the center of Bε(x) to ρp at
its boundary, where ρp and γp satisfy the appropriate compatibility condition, depending on N and p. As in
the linear case, one can then show that an equivalent condition for p-harmonicity ∆pu = 0 is the asymptotic
satisfaction of the mean value: 1

2

(
infz∈Bε(x) + supz∈Bε(x)

) ffl
E
(
z,γpε,αp,

z−x
|z−x|

) u(y) dy = u(x) + o(ε2).

The discrete stochastic process modelled on this equation is the two-player Tug-of-War with noise. In this
process, the token is initially placed at a point x0 within the domain Ω ⊂ RN , and at each step it is advanced
according to the following rule. First, either of the two players (each acting with probability 1

2 ) shifts the token
by a chosen vector y = z − x of length at most ε; second, the token is further shifted within the ellipsoid

E
(
z, γpε, 1 + (ρp− 1) |y|

2

ε2 ,
y
|y|
)
. The game is terminated, whenever the token reaches the ε-neighbourhood of ∂Ω.

The value uε(x0) is defined as the expectation of the boundary function F (extended continuously on RN ) at
the stopping position xτ , subject to both players playing optimally. The optimality criterion is based on the
rule that Player II pays to Player I the value F (xτ ), thus giving Player I the incentive to maximize the gain
by pulling towards portions of ∂Ω with high values of F , whereas Player II will likely try to minimize the loss
by pulling towards the low values. Due to the min-max property, the optimality is well posed, i.e. the order of
supremizing over strategies of the first player and infimizing over strategies of the opponent, is immaterial. We
point out that the validity of this property has been posed as an open question in the context of the game first
proposed in [87], where the regularity (even measurability) of the possibly distinct game values was likewise not
clear. Here, uε is proved to be automatically as regular as F is (continuous / Hölder / Lipschitz).

It is expected that the family {uε}ε→0 converges pointwise in Ω to the Perron solution u of the Dirichlet problem
for ∆p with any given continuous boundary data F . Further, it is natural to expect that this convergence is
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uniform for regular boundary, to the effect that u = F on ∂Ω. While the former result is not yet available (for
exponents p 6= 2) at the time of this Research Statement, the latter assertions are proved to hold true.

More precisely, in [Lew11] we address the question of convergence of {uε}ε→0: in view of its equiboundedness,
it suffices to prove equicontinuity. We first observe, that this property is equivalent to the seemingly weaker
property of equicontinuity at the boundary. Our argument is analytical rather than probabilistic, based on
the translation and well-posedness of the mean value equation modeled on (22). We then define the game
regularity of the boundary points, which turns out to be a notion equivalent to the aforementioned boundary
equicontinuity. We prove that any limit of a converging sequence of uε-s must be the viscosity solution to the p-
harmonic equation with boundary data F . By uniqueness of such solutions, we obtain the uniform convergence
of the entire family in case of the game regular boundary. We finally check that domains that satisfy the exterior
corkscrew condition are game regular. One can similarly show (see [Lew12]) that game regularity holds when
p > N and for any p in case of N = 2-dimensional domains that are simply connected.

3.2. Random walks and random Tug-of-War in the Heisenberg group. In paper [LewMR], we
studied the mean value properties of p-harmonic functions on the Heisenberg group H1, in connection to the
dynamic programming principles of stochastic processes. We thus carried out the program described in 3.1.
Firstly, we developed the mean value expansions of the type (22), where the domain of averaging has been one
of the following: the 3-dimensional Korànyi ball in H1; the 2-dimensional ellipse contained in the horizontal
plane; the 1-dimensional boundary of such ellipse; or the 3-dimensional Korànyi ellipsoid that is the image of
the ball under a suitable linear map. Then, we identified solutions uε of the related mean value equations,
as values of corresponding processes with, in general, both random and deterministic components. Finally,
we examined convergence of the family {uε}ε→0 and for domains with game-regular boundary, we showed its
uniform convergence to the viscosity solution of the Dirichlet problem.

3.3. The obstacle problem via optimal stopping and Tug-of-War. In paper [LewM2] we were concerned
with the solutions to the obstacle problem for the p-Laplace operator ∆p in the nonsingular range p ≥ 2:

−∆pu ≥ 0 in Ω,
u ≥ Ψ in Ω,

−∆pu = 0 in {x ∈ Ω; u(x) > Ψ(x)},
u = F on ∂Ω,

(23)

In (23), Ψ : Rn → R is a bounded, Lipschitz function, which we assume to be compatible with the boundary
data: F (x) ≥ Ψ(x) for x ∈ ∂Ω. The function Ψ is interpreted as the obstacle and in (23) we want to find a
p-superharmonic function u taking boundary values F , which is above the obstacle Ψ, and which is actually
p-harmonic in the complement of the contact set {x ∈ Ω: u(x) = Ψ(x)}. The problem (23) has been extensively
studied from the variational point of view; in particular regularity requirements for the domain Ω, the boundary
data F and the obstacle Ψ can be vastly generalized. It is also classical that the solution to (23) exists, it is
unique, and it is the pointwise infimum of all p-superharmonic functions that are above the obstacle.

Our results show how to solve the obstacle problem in the context of the program described in 3.1. The dynamic
programing principle (24) below is similar to the Wald-Bellman equations of optimal stopping. Namely, let
α = p−2

p+N and β = 1− α. Let F : Γ̄→ R and Ψ : RN → R be bounded, Borel functions such that Ψ ≤ F in an

open neighbourhood Γ of ∂Ω in Rn \ Ω. Then there exists a unique uε, satisfying the mean value equation:

uε(x) =


max

{
Ψ(x),

α

2
sup
Bε(x)

uε +
α

2
inf
Bε(x)

uε + β

 
Bε(x)

uε

}
for x ∈ Ω

F (x) for x ∈ Γ.

(24)

Then family {uε}ε→0 converge as ε → 0, uniformly in Ω̄, to a continuous function u which is the unique
viscosity solution to the obstacle problem (23). Since solutions uε are, in general, discontinuous, the key
estimate in [LewM2] bounds the size of discontinuities and oscillations; it uses probabilistic techniques to
write down the representation formulas for uε. For the case of linear equations (that correspond to p = 2)
with variable coefficients, a similar version of the representation formula specified below is due to Pham and
Øksendal-Reikvam. Namely, for the return function G = χΓF + χΩΨ, we define the two values: uI(x0) =
sup
τ,σI

inf
σII

Ex0
τ,σI ,σII [G ◦ xτ ] and uII(x0) = inf

σII
sup
τ,σI

Ex0
τ,σI ,σII [G ◦ xτ ], where sup and inf are taken over all strategies

σI , σII and stopping times τ that keep the process inside Ω. Then: uI = uε = uII where uε satisfies (24).
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3.4. The double obstacle problem. In [CLewM] we extended the results in 3.3 to the problem:
−∆pu ≥ 0 in {x ∈ Ω; u(x) < Ψ2(x)}
−∆pu ≤ 0 in {x ∈ Ω; u(x) > Ψ1(x)}
Ψ1 ≤ u ≤ Ψ2 in Ω

u = F on ∂Ω.

(25)

Here, Ψ1,Ψ2 : RN → R are given Lipschitz functions such that Ψ1 ≤ Ψ2 in Ω̄ and Ψ1 ≤ F ≤ Ψ2 on ∂Ω.

We proved that the viscosity solution to (25) is unique and it coincides both with the variational solution and
with the uniform limit of solutions to the localised discrete min-max problems, that can be interpreted as the
dynamic programming principle for a version of the Tug-of-War game with noise. In this game, both players in
addition to choosing their strategies, are also allowed to choose stopping times. We further proposed a numerical
scheme and tested the Mathlab code results on some chosen examples of obstacles and boundary data.

3.5. A random walk approach to the Robin boundary value problem. In two papers [LewPe2, LewPe3],
we studied the following mean value equations (called the Robin mean value equations):

uε(x) =
(
1− γsε(x)

)  
Bε(x)∩D

uε(y) dy +
ε2

2(N + 2)
f(x), (26)

posed on a bounded C1,1 domain Ω ⊂ RN , with a bounded Borel function f , a constant γ > 0, and where:

sε(x) =
|BN−1

1 |
(N + 1)|BN1,dε(x)|

· ε
(
1− dε(x)2

)N+1
2 , with Bk1,d = Bk1 ∩ {yk < d} and dε(x) = min

{
1,

1

ε
dist(x, ∂Ω)

}
.

The significance of the factor sε(x) ∼ O(ε) will be explained below. We view (26) as the approximation to the
Robin-Laplace problem:

−∆u = f in Ω,
∂u

∂~n
+ γu = 0 on ∂Ω. (27)

The analysis of (26) relies on its probabilistic interpretation as the dynamic programming principle along a
discrete process {Xε

n}∞n=0, which samples uniformly on truncated balls Bε(X
ε
n) ∩Ω, and stops with probability

γsε(X
ε
n) at each Xε

n. The process accumulates values of f until the stopping time τ ε, whereas we define:

uε(x) =
ε2

2(N + 2)
E
[ τε,x−1∑

n=0

(
f ◦Xε,x

n

)]
. (28)

In [LewPe2, LewPe3], we related the three individual problems (26), (27) and (28), combining the analytical
and probabilistic techniques in their study. We now describe the main results of these manuscripts.

1. (The role of the coefficient sε). To motivate the formula on sε(x), we average the Taylor expansion of u on
the truncated ball Bε(x)∩Ω. When d = dist(x, ∂Ω) ≥ ε, this procedure leads to the familiar formula (21),
coinciding with (26) upon replacing −∆u with f and setting sε(x) = 0. In case of d < ε when x ≈ x̄ ∈ ∂Ω,
the same reasoning requires calculating the possibly nonzero average

ffl
Bε(x)∩Ω

y − x dy. With sufficient

regularity, one can approximate this term by the average on the ball Bε(x) truncated with the tangent
plane to ∂Ω at x̄, rather than by the surface ∂Ω. This simpler average may be then directly computed

as: −sε(x)~n(x̄) ∼ −ε
(
1−

(
d
ε

)2)N+1
2 ~n(x̄). Under the boundary condition u(x̄) + γ ∂u∂~n (x̄) = 0, the first two

terms of Taylor’s expansion thus become:

u(x)−
〈
∇u(x), sε(x)~n(x̄)

〉
= u(x)− sε(x)

∂u

∂~n
(x̄) +O(εsε(x)) = u(x) + γsε(x)u(x) +O(εsε(x)).

Since (1 + γsε)
−1 = (1− γsε) +O(s2

ε), we conclude (26) at its leading order terms.

2. (Well posedness and the limiting behaviour of (26)). The first main result in [LewPe2] is that each problem
(26) has a unique solution uε = uε, coinciding with the value of (28), that is Borel, bounded with a bound
independent of ε, and obeys the comparison principle. For f continuous / Hölder continuous / Lipschitz,
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uε inherits the same regularity. Further, when f ∈ C(Ω̄), then {uε}ε→0 converges uniformly on Ω̄ to
u ∈ C(Ω̄) that is the unique viscosity solution to (27). In fact, u coincides with the unique W 2,p(Ω)
solution to (27). Since the range of p covers (1,∞), it follows that u ∈ C1,α(Ω̄) for any α ∈ (0, 1). In
the companion paper [LewPe3] we showed that {uε}ε→0 converges uniformly on Ω̄ to the unique W 2,p(Ω)
solution to (27), for any bounded Borel right hand side f . To this end, we used probability techniques
involving various couplings of random walks and yielding approximate Hölder regularity of uε in (28)
(Lipschitz in the interior and C0,α up to the boundary of Ω, for any α ∈ (0, 1)).

3. (The lower bound). By further martingale techniques we deduced the lower bound on uε in the general
case of nonnegative bounded f , in function of γ and the radius r of the inner supporting balls at ∂Ω:

uε(x) ≥ r̄

γN
· inf

Ω̄
f for all x ∈ Ω̄.

Clearly, uniform convergence of {uε}ε→0 to u implies that u ≥ r
γN infΩ̄ f . This bound is optimal and for

(27), it may be obtained directly via the maximum principle.

3.6. Non-local Tug-of-War with noise for the geometric fractional p-Laplacian. In the recent papers
[DELew, Lew15], we were concerned with the following fractional operator introduced in [10]. For p ≥ 2,
s ∈ ( 1

2 , 1), and for a given bounded function u : Rn → R of regularity C1,1(x) with ∇u(x) 6= 0, one defines:

∆s
pu(x)

.
= Cn,p,s

ˆ
T 0,∞
p (

∇u(x)
|∇u(x)| )

u(x+ z) + u(x− z)− 2u(z)

|z|n+2s
dz. (29)

Above, Cn,p,s is a specific constant depending on n, p, s, whereas the integration occurs on the infinite cone

T 0,∞
p ( ∇u(x)

|∇u(x)| ) ⊂ Rn whose centerline is aligned with the vector ∇u(x)
|∇u(x)| and whose aperture angle α depends on

N, p. In particular, for p = 2 we have α = π
2 so that the said cone becomes the half-space and (29) is consistent

with the familiar formula: −(−∆)su(x) = Cn,s
´
Rn

u(z)−u(x)
|x−z|n+2s dz. On the other hand, when p→∞ then α→ 0

and the cone reduces to a line, consistently with the parallel definition for fractional infinity Laplacian ∆s
∞u(x)

in [9]. We now describe the main results of [Lew15]; some of them were extended to the case p =∞ in [DELew].

Define the following non-local and non-linear averaging operator:

Aεu(x)
.
=

1

2

(
sup
|y|=1

 
T ε,∞p (y)

u(x+ z)

|z|n+2s
dz + inf

|y|=1

 
T ε,∞p (y)

u(x+ z)

|z|n+2s
dz
)
,

where the integration takes place on the truncated infinite cones T ε,∞p (y) = T 0,∞
p (y) \ Bε(0), each oriented

along its indicated unit direction vector y and having the aperture angle α as in (29). The integral averagesffl
are taken with respect to the singular measure |z|−n−2s dz. Note that Aεu is well defined for any bounded,

Borel function u, and in particular it does not necessitate the existence or the knowledge of ∇u(x), which was
essential in (29). The following asymptotic expansion is then valid for functions u that are C2 in the vicinity of
a given x ∈ Rn with ∇u(x) 6= 0, and uniformly continuous away from x:

Aεu(x) = u(x) +
s

(2− 2s)(n+ p− 2)
ε2s ·∆s

pu(x) + o(ε2s) as ε→ 0 + . (30)

The error quantity o(ε2s) blows up to ∞ as s → 1−. In [Lew15] we also propose another nonlinear average
of a combined local - non-local nature, which is superior to (30), because the said error term is then be made
uniform in the whole considered range s ∈ ( 1

2 , 1).

The second set of results concerns the operator Aε and the truncated version of the expansion (30), aiming at
an approximation scheme for solutions to the problem:

∆s
pu = 0 in Ω, u = F in Rn \ Ω, (31)

posed on a given an open bounded domain Ω ⊂ Rn and with a bounded Borel data function F : Rn \ Ω → R.
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Consider the following family of non-local averaging problems:

uε(x) =

{
Aεuε(x) for x ∈ Ω
F (x) for x ∈ Rn \ Ω.

(32)

Then, for every ε > 0 there exists exactly one solution uε which is bounded Borel on Rn (and continuous in
Ω). For Ω satisfying the exterior cone condition and for uniformly continuous F , any sequence {uε}ε→0 has a
further subsequence converging uniformly in Rn to a continuous limit u that is a viscosity solution to (31). To
this end, each uε(x) is shown to be the value of the following zero-sum two-players game, which is a non-local
version of the Tug-of-War with noise introduced in [87].

In this game, each Player chooses a unit direction vector according to their own strategy, based on the knowledge
of all prior moves and random outcomes. With equal probabilities, direction from Player I or Player II is picked;
this resulting direction is called y. The current game position x is then updated to a next position within the
shifted and truncated cone x + T ε,∞p (y), randomly according to the probability-normalisation of the measure

|z|−n−2sdz on T ε,∞p (y). Such process, started at x0 ∈ Rn is stopped the first time τ when xτ 6∈ Ω, whereas
Player I collects from their opponent the payoff given by the value F (xτ ). The expected value of the payoff,
under condition that both Players play optimally has the min-max property, yielding the solution uε to (32).

Convergence as ε → 0 is obtained by showing the approximate equicontinuity of {uε}ε→0, for which the suffi-
cient condition is expressed via “game-regularity” of the boundary points. This general condition, implied in
particular by the exterior cone condition on ∂Ω, is similar in spirit to the celebrated Doob’s boundary regularity
criterion for Brownian motion. We also prove uniqueness of viscosity solutions to (31) under a more restrictive
assumption which necessitates extending ∆s

p to include the case ∇u(x) = 0. It is not clear if solutions to (31)
as posed originally, are unique.

3.7. Lipschitz regularity of graph Laplacians on random data clouds. In [CGLew] we study Lipschitz
regularity of elliptic PDEs on geometric graphs, constructed from random data points. The data points are
sampled from a distribution supported on a smooth manifold. The family of equations that we study arises
in data analysis in the context of graph-based learning and contains, as important examples, the equations
satisfied by graph Laplacian eigenvectors. In particular, we prove high probability interior and global Lipschitz
estimates for solutions of graph Poisson equations. Our results can be used to show that graph Laplacian
eigenvectors are, with high probability, essentially Lipschitz regular with constants depending explicitly on
their corresponding eigenvalues. Our analysis relies on a probabilistic coupling argument of suitable random
walks at the continuum level, and an interpolation method for extending functions on random point clouds to
the continuum manifold. As a byproduct of our general regularity results, we obtain high probability L∞ and
approximate C0,1 convergence rates for the convergence of graph Laplacian eigenvectors towards eigenfunctions
of the corresponding weighted Laplace-Beltrami operators.

Of a possible independent interest is the following continuum Lipschitz estimate for functions f : M → R
defined on a m-dimensional manifoldM, equipped with the geodesic distance dM and the volume form dVolM:

|f(x)− f(y)| ≤ C
(
‖∆εf‖L∞(M) + ‖f‖L∞(M)

)
· (dM(x, y) + ε) (33)

The continuum non-local Laplacian ∆ε operator is given by with respect to the probability density ρ of the
point cloud Xn ⊂M and a nonnegative, nonincreasing kernel η : [0, 1]→ R satisfying

´
B(0,1)⊂Rm η(|w|) dw = 1:

∆εf(x)
.
=

1

εm+2

ˆ
M
η

(
dM(x, y)

ε

)(
f(x)− f(y)

)
ρ(y) dVolM(y) for all x ∈M. (34)

We remark that the non-local Laplacian ∆ε can be thought of intuitively as the n→∞, ε > 0 counterpart of the
graph Laplacian on Xn. The estimate parallel to (33) in the graph setting is proved by using an interpolation
map that extends functions on Xn to functions onM in such a way that the non-local Laplacian ∆ε is controlled
by the graph Laplacian, and then applying (33) to the interpolated function.

The Lipschitz estimate (33) is proved with a probabilistic argument, not related to the randomness of the data
points, but using techniques in [LewPe2]. For an arbitrary pair of points x, y ∈ M we consider discrete time
random walks {Xk}∞k=1 and {Yk}∞k=1 with state space M starting at x and y respectively, both of which have
as generator an operator closely related to ∆ε. These walks are coupled to encourage coalescence; we consider
a stopping time τ , defined as the first time at which either the walks have gotten sufficiently close to each
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other or have drifted apart a certain order-one distance. For the appropriately coupled walks, we provide basic
quantitative estimates for τ , show that τ is not expected to be too large, and also that the probability of
the walks being close to each other at τ is close to one (i.e. the walks do coalesce). We then use martingale
techniques to bound the difference |f(x) − f(y)| in terms of |f(Xτ ) − f(Yτ )|, the point being that while x, y
may be of order-one apart, the points Xτ and Yτ will be closer together (with high probability), thus allowing
to estimate |f(x)− f(y)| in terms of |f(x̃)− f(ỹ)| for x̃, ỹ that are closer together than the original x, y. From
there, we follow an iteration argument to eventually obtain the desired regularity bound (33).

4 Calculus of variations on thin elastic shells.

Elastic thin objects (such as rods, plates, shells) of various geometries are ubiquitous in the physical world and
the understanding of laws governing their equilibria has many applications. Until recently, in the main focus of
mathematical elasticity, there has been the linear theory which deals with relatively small scale deformations.
The situation becomes more complicated once the deformations are large, and different theories have been
proposed based on empiric observations. The strength of the variational approach lies in the fact that it can
predict the appropriate model together with the response of the elastic body for the given scaling of forces or
kinematic boundary conditions without any a priori assumptions other than the general principles.

4.1. The analytical set-up. Let S be a compact, connected, oriented 2d surface in R3, whose unit normal
vector is denoted by ~n(x). Consider a family {Sh} of shells of small thickness h around S:

Sh = {z = x+ t~n(x); x ∈ S, − h/2 < t < h/2}, 0 < h < h0 << 1, (35)

The elastic energy (scaled per unit thickness) of a deformation uh ∈W 1,2(Sh,R3) is then given by:

Eh(uh) =
1

h

ˆ
Sh
W (∇uh), (36)

with the stored-energy density W obeying (2). The objective is now to describe the limiting behavior, as h→ 0,
of critical points (or directly, of the minimizers) uh of the following total energy functionals, subject to applied
external forces fh ∈ L2(Sh,R3):

Jh(uh) = Eh(uh)− 1

h

ˆ
Sh
fhuh, (37)

The classical approach is to propose a formal asymptotic expansion for the solutions (in other words an Ansatz)
and derive the corresponding limiting theory by taking the leading order terms of the 3d Euler-Lagrange
equations of (37). The more rigorous variational approach of Γ-convergence was more recently applied in this
context (see section 3.3, also the review paper [Lew10]). Among other features, such approach provides a
rigorous justification of convergence of minimizers of (37) to minimizers of suitable lower dimensional limit
energies, under the sole assumption that fh obey a prescribed scaling law.

It can be shown [40, LewMP1] that if fh ≈ hα, then the minimizers uh of (37) automatically satisfy:

Eh(uh) ≈ hβ (38)

with β = α if 0 ≤ α ≤ 2 and β = 2α− 2 if α > 2. The main part of the analysis consists therefore of identifying
the Γ-limit Iβ of the energies h−βEh as h → 0, for a given scaling β ≥ 0, but without making any a priori
assumptions on the form of the minimizing deformations uh.

4.2. Conjecture on the infinite hierarchy of shell models. If the deformations uh as above are compatible

with the Kirchhoff-Love Ansatz uh(x+t~n) = uh(x)+t ~Nh(x) (here, ~Nh denotes the unit normal to the deformed
surface uh(S)), then formal calculations show that:

Eh(uh) ≈
ˆ
S

|δgS |2 + h2

ˆ
S

|δΠS |2 as h→ 0. (39)

Above, δgS and δΠS stand for, respectively, the change in metric (first fundamental form) and the shape operator
(second fundamental form), between the image surface uh(S) and the reference mid-surface S. The two terms
in (39) correspond, in order of appearance, to the stretching and bending energies, while the factor h2 in the
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second term points to the fact that a thin body undergoes bending more easily than stretching. For a plate (i.e.
S ⊂ R2) the energy (39) is known in the material science literature as the Föppl-von Kármán functional [21],
and in all instances when the 2d theory has been rigorously derived, the validity of both the Kirchhoff-Love
Ansatz and of the asymptotic formula (39) have been always confirmed.

Writing the expansions of uh, δgS , δΠS and equating terms of same orders, we arrived [LewP1] at formulating
the following conjecture, consistent with all the so far established results; for plates in [40, 21] and for shells
in [38, LewMP1, LewMP2, LewMP3, 21]. Namely, the limiting functional Iβ corresponding to the scaling (38)
with β > 2, is defined on the space VN of N -th order infinitesimal isometries, where:

β ∈ [βN+1, βN ), with βi = 2 +
2

i− 1
∀i ≥ 2.

The space VN consists of N -tuples (V1, . . . , VN ) of displacements Vi : S −→ R3 such that the resulting defor-

mations uε = id +
∑N
i=1 ε

iVi of S preserve its metric up to order εN . Further:

(i) When β = βN+1 then Iβ =
´
S
Q2 (x, δN+1gS) +

´
S
Q2 (x, δ1ΠS) where δN+1gS is the change of metric on

S of the order εN+1, generated by the family of deformations uε and δ1ΠS is the first order change in the
second fundamental form. The quadratic forms Q2(x, ·) are nondegenerate, positive definite, derived from
D2W (Id).

(ii) When β ∈ (βN+1, βN ) then Iβ =
´
S
Q2 (x, δ1ΠS).

(iii) The constraint of N -th order infinitesimal isometry VN may be relaxed to that of VM , M < N , if S
has the following matching property. For every (V1, . . . VM ) ∈ VM there exist sequences of corrections
V εM+1, . . . V

ε
N , uniformly bounded in ε, such that ũε below preserve the metric on S up to order εN :

ũε = id +

M∑
i=1

εiVi +

N∑
i=M+1

εiV εi (40)

4.3. The generalized von Kármán model (N = 1). In [LewMP1, LewMP2], the desired limiting model
has been identified in the above framework for β ≥ 4 and for an arbitrary surface S. Confirming the conjecture,
the limiting admissible deformations u of S are only those whose first order term (modulo a rigid motion) in
the expansion of u− id with respect to h, is an element V of the class V1 of infinitesimal isometries of S. The
space V1 consists of vector fields V ∈ W 2,2(S,R3) with skew-symmetric covariant gradient (denoted by A).
Equivalently, the change of metric on S induced by id + hV is at most of order h2 for each V ∈ V1.

When β > 4 (so that N = 1) the Γ-limit of h−βJh in (37) is given by J(V, Q̄) = Iβ(V )−
´
S
f · Q̄V defined for

V ∈ V1 and Q̄ ∈ SO(3), where:

Iβ(V ) =
1

24

ˆ
S

Q2

(
x, (∇(A~n)−AΠ)tan

)
dx, (41)

measuring the first order change, produced by V , in the second fundamental form Π of S.

For β = 4 the Γ-limit (which is the generalization of the von Kármán functional [40] to shells), contains also a
stretching term, measuring the total second order change in the metric of S:

I4(V,Btan) =
1

2

ˆ
S

Q2

(
x,Btan −

1

2
(A2)tan

)
+

1

24

ˆ
S

Q2

(
x, (∇(A~n)−AΠ)tan

)
. (42)

It involves a symmetric matrix field Btan belonging to the finite strain space: B = clL2(S)

{
sym∇wh; wh ∈

W 1,2(S,R3)
}
. The two terms in (42) are stretching and bending energies of a sequence of deformations vh =

id + hV + h2wh of S which is induced by a first order displacement V ∈ V1 and second order displacements
wh satisfying limh→0 sym∇wh = Btan. The crucial property of (42) or (41) is the one-to-one correspondence
between the minimizing sequences uh of the total energies Jh, and their approximations (modulo rigid motions
Q̄x+ c) given by vh as above with (V,Btan, Q̄) minimizing J and f = limh→0 1/h3fh.
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The functional (42) (natural from the energy minimization point of view) was so far absent from the literature.
We stress the ansatz-free nature of our results. Indeed, we prove (through a compactness argument) that any
deformation satisfying the corresponding energy bound must be of the form vh above.

4.4. The matching property and density of Sobolev infinitesimal isometries. In [LewMP1] we
introduced the class of “approximately robust” surfaces, defined by the property that any V1 ∈ V1 can be
matched, through a lower order correction as in (40), with an element of V2. Hence the stretching term (42) can
be dropped and I4 reduces to the linear functional (41) for all β ≥ 4. The class of approximately robust surfaces
includes surfaces of revolutions, convex surfaces and developable surfaces, but excludes any surface with a flat
part. Instead, for plates, any member of a dense subset of V2 can be matched with an exact isometry [40]. As
a consequence, the plate theory for any β ∈ (2, 4) reduces to minimizing bending energy constrained to V2.

Towards analyzing more general surfaces S and the scaling exponent β < 4, in [LewMP3] we derived a matching
property for elliptic S (when Π is strictly definite up to the boundary). Let S and ∂S be of class C3,α for some
α ∈ (0, 1). Then, given V ∈ V1 ∩ C2,α(S̄), there exists a sequence wh equibounded in C2,α(S̄,R3), such that
for all small h > 0 the map vh = id + hV + h2wh is an (exact) isometry. Clearly, this result fulfills only
partially the requirement in (iii) of the conjecture 4.2., as the elements of V1 are only W 2,2 regular. Indeed, in
most Γ-convergence analyses, a key step is to prove density of suitable more regular mappings in the space of
admissible mappings for the limiting problem. Results in this direction, for Sobolev spaces of isometries and
infinitesimal isometries of flat regions, have been established [85, 80, 45].

In the general setting of S with nontrivial geometry, even though V1 is a linear space and assuming S to be C∞,
the mollification techniques do not guarantee that elements of V1 can be approximated by smooth infinitesimal
isometries. An interesting example, discovered by Cohn-Vossen [102], gives a closed smooth surface of non-
negative curvature for which C∞ ∩ V1 consists only of trivial fields with constant gradient, whereas C2 ∩ V1

contains non-trivial elements. We however proved [LewMP3] that on elliptic S of class Cm+2,α with Cm+1,α

boundary (α ∈ (0, 1) and m > 0), for every V ∈ V1 there exists a sequence Vn ∈ V1 ∩ Cm,α(S̄,R3) such that
limn→∞ ‖Vn−V ‖W 2,2(S) = 0. Here we adapted some techniques of Nirenberg [82], used previously in the context
of the Weyl problem (on the immersability of all positive curvature metrics on a 2d sphere).

In a similar spirit, in [HLewP] we performed a detailed analysis of first order W 2,2 Sobolev-regular infinitesimal
isometries on developable surfaces without affine regions; we addressed their compensated regularity, rigidity,
density and matching properties. Our results depend on the regularity of the surface and a convexity property:
we proved that any C2N−1,1 regular first order infinitesimal isometry on a developable C2N,1 surface with a
positive lower bound on the mean curvature, can be matched to an Nth-order infinitesimal isometry.

4.5. Intermediate theories for 2 < β < 4 (N ≥ 2) and elliptic/developable shells. Ultimately, the
main result of [LewMP3] states that for elliptic surfaces of sufficient regularity, the Γ-limit of (36) for the
scaling regime 2 < β < 4 is still given by the energy functional (41) over the linear space V1.

Likewise, combining the results of [HLewP] with a density result for W 2,2 first order isometries on developable
surfaces, we proved that the limit theories for the energy scalings of the order lower than h2+2/N collapse all into
the linear theory. Our method is to inductively solve the linearized metric equation sym∇w = B on the surface
with suitably chosen right hand sides, a process during which we lose regularity: consequently, if the surface is
C∞ we can establish the total collapse of all small slope theories, as in the elliptic mid-surface scenario.

4.6. Convergence of equilibria. When β ≥ 4, also the equilibria of (37) converge to solutions of the
Euler-Lagrange equations of the functional (42) or (41), as the thickness h → 0 [Lew9]. Notice that the same
statement for minimizers follows directly from the earlier Γ-convergence result, while here the novelty is that
the same convergence holds for possibly non-minimizing equilibria as well. The definition of ”an equilibrium
of the 3d energy” may be understood in two apparently different manners, corresponding to passing with the
scaling of the variation to 0 outside or inside the integral sign in (36). The main convergence result of [Lew9]
(which covers also the plate case, discussed earlier in [80]) follows with either of these definitions of equilibria.

In the same vein, in [LewL] we prove convergence of critical points to the nonlinear elastic energies Jh of 3d thin
incompressible plates, to critical points of the 2d energy obtained as the Γ-limit of Jh in the von Kármán scaling
regime. The presence of incompressibility constraint requires to restrict the class of admissible test functions
to bounded divergence-free variations on the 3d deformations. This poses new technical obstacles, which we
resolve by means of introducing 3d extensions and truncations of the 2d limiting deformations.
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5 The Korn inequality. Dimension reduction in fluid dynamics.

Thin domains are also encountered in the study of many problems in fluid mechanics, with examples coming from
lubrication, meteorology, blood circulation or ocean dynamics. The study of global existence and asymptotic
properties of solutions to the Navier-Stokes system in thin 3d domains began with Raugel and Sell [91, 90]. In
particular, they proved global existence of strong solutions for large initial data and in presence of large forcing,
for the sufficiently thin 3d product domains Ωh = T 2× (0, h), where T 2 is the 2d torus. Further generalizations
for various boundary conditions followed (see the references in [47]).

In order to study the dynamics of the Navier-Stokes system and the long time existence of its solutions, under
the Navier boundary conditions and in thin shells around a given mid-surface S:

Sh =
{
x+ t~n(x); x ∈ S, − h/2 < t < h/2

}
, 0 < h� 1,

one necessitates the rely on the Korn-Poincaré inequality [61, 60]:

‖u‖W 1,2(Sh) ≤ Ch‖sym ∇u‖L2(Sh). (43)

Indeed, in order to define the relevant Stokes operator one uses the symmetric bilinear form B(u, v) =
´

sym∇u :

sym∇v rather than the usual
´
∇u : ∇v. The energy methods give then bounds for the quantity: ‖sym∇uh‖L2(Sh)

of a solution flow uh in Sh, while, in order to establish compactness in the limit as h → 0, one needs bounds
for the W 1,2 norm of uh, with constants independent of h. Hence (43) with uniform Ch, provides a necessary
uniform equivalence of the norms ‖uh‖W 1,2 and ‖sym∇uh‖L2 on Sh. Starting with the original papers of Korn
[61], Korn’s inequality has also been widely used as a basic tool for the existence of solutions of the linearized
displacement-traction equations in elasticity [44, 21].

5.1. The uniform Korn-Poincaré inequality. In the paper [LewM1] we studied (43) under the tangential
boundary conditions for u. It is a classical result that on each open domain Sh, the inequality (43) is valid
under the condition of perpendicularity to the appropriate kernel, given in this case by the linear maps with
skew gradient that are themselves tangential at the boundary of Sh. We proved sharp results about the blow-up
of Korn’s constant Ch in this setting, as h goes to 0. Namely, the constants Ch remain uniformly bounded for
vector fields u in any family of cones (with angle < π/2, uniform in h) around the orthogonal complement of
extensions of Killing fields on S. We also showed that this condition is optimal, as every Killing field admits a
family of extensions uh, for which the ratio Ch = ‖uh‖W 1,2(Sh)/‖sym ∇uh‖L2(Sh) blows up as h→ 0.

5.2. The optimal constants in Korn’s and the geometric rigidity estimates. In paper [LewM2] we
were concerned with the optimal constants: in the Korn inequality under tangential boundary conditions on
bounded sets Ω ⊂ Rn, and in the geometric rigidity estimate on the whole R2. We proved that the latter
constant equals

√
2, and we discussed the relation of the former constants with the optimal Korn’s constants

under Dirichlet boundary conditions and in the whole Rn, which are well known to equal
√

2. We also discussed
the attainability of these constants and the structure of deformations/displacement fields in the optimal sets.

5.3. A rigorous justification of the Euler and Navier-Stokes equations with geometric effects. In
paper [BFLewN] we derive the 1d isentropic Euler and Navier-Stokes equations describing the motion of a gas
through a nozzle of variable cross-section as the asymptotic limit of the 3d isentropic Navier-Stokes system in
a cylinder, the diameter of which tends to zero. The method is based on the relative energy inequality satisfied
by any weak solution of the 3d Navier-Stokes system and a further variant of the Korn-Poincaré inequality on
thin thin channels (with crossections of arbitrary geometry).

6 Topics in viscoelasticity.

The evolutionary equations of isothermal viscoelasticity are given by the balance of linear momentum:

utt − div
(
DW (∇u) + Z(∇u,∇ut)

)
= 0. (44)

Indeed, the Euler-Lagrange equations of (36) yield precisely the inviscid static version of (44). Here u : Ω ×
R+ −→ R3 denotes the deformation of a reference configuration Ω ⊂ R3 which models a viscoelastic body
with constant temperature and density. The flux DW : R3×3 −→ R3×3 is the Piola-Kirchhoff stress tensor
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equal, in agreement with 2nd law of thermodynamics, to the derivative of elastic energy density W with
properties as in section 1. The viscous stress tensor Z : R3×3 ×R3×3 → R3×3 is compatible with the principles
of continuum mechanics: balance of angular momentum, frame invariance, and Claussius-Duhem inequality.
Namely: skew

(
F−1Z(F,Q)

)
= 0 for every F,Q ∈ R3×3 with detF > 0, Z(RF,RtF + RQ) = RZ(F,Q) for

every path of rotations R : R+ → SO(3), and Z(F,Q) : Q ≥ 0.

6.1. Existence and stability of viscoelastic shock profiles. In [BLewZ] we carried out the analytical
and numerical study of the existence and stability of viscous shock profiles to (45) below. Following [3] in the
incompressible shear flow case, we restrict our attention to the subclass of planar solutions, which are solutions
depending only on a single coordinate direction: u(x) = x+ v(x3). Denoting V = (v1

x3
, v2
x3
, 1 + v3

x3
, v1
t , v

2
t , v

3
t ),

the system (44) can be equivalently written in the canonical first order hyperbolic-parabolic form:

Vt +G(V )x = (B(V )Vx)x, (45)

where we now write x := x3 and where B is a symmetric, semi-positive definite tensor. We proved that the
resulting equations fall into the class of symmetrizable hyperbolic–parabolic systems studied in [73, 74, 75, 89,
112], hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. This important
point was previously left undecided, due to a lack of the necessary abstract stability framework.

We further considered a simple prototypical elastic energy density and viscous tensors:

W0(F ) = |FTF − Id|2, Z1(F,Q) = 2F sym(FTQ), Z2(F,Q) = 2(detF )sym(QF−1)F−1,T .

The rationale for Z2 is that the Cauchy stress tensor T2 = 2(detF )−1Z2F
T = 2sym(QF−1) is the Lagrangian

version of 2sym∇ν written in terms of the velocity ν = ut in Eulerian coordinates. For incompressible fluids we
have: 2div(sym∇ν) = ∆ν, giving the usual parabolic viscous regularization.

The new contributions of [BLewZ] beyond [3] were: treatment of the compressible case, consideration of large-
amplitude waves, formulation of a rigorous nonlinear stability theory including verification of stability of small-
amplitude Lax waves, and the systematic incorporation of numerical Evans function computations determining
stability of large-amplitude or nonclassical type shock profiles. In the numerical study, we sampled from a broad
range of parameters and checked stability of the Lax and over-compressive profiles, whenever their endstates fell
into the hyperbolic region of (45). All the over 8,000 Evans function calculations, were consistent with stability.

6.2. A local existence result for a system of viscoelasticity withphysical viscosity. In [LewMu3] we
proved the local in time existence of regular solutions to the system of equations of isothermal viscoelasticity
with clamped boundary conditions. We deal with a general form of viscous stress tensor Z(F, Ḟ ), assuming

a Korn-type condition on its derivative DḞZ(F, Ḟ ). This condition is compatible with the balance of angular
momentum, frame invariance and the Claussius-Duhem inequality. We give examples of linear and nonlinear
(in Ḟ ) tensors Z satisfying these required conditions.

6.3. The stress-assisted diffusion systems. In paper [LewMu4] we are concerned with two systems of
coupled PDEs in the description of stress-assisted diffusion. The main system below:

utt − div
(
DFW (φ,∇u)

)
= 0

φt = ∆
(
DφW (φ,∇u)

)
.

(46)

consists of a balance of linear momentum in the deformation field u : R3 × R+ → R3, and the diffusion law
of the scalar field φ : R3 × R+ → R representing the inhomogeneity factor in the elastic energy density W .
The field φ may be interpreted as the local swelling/shrinkage rate in morphogenesis at polymerization, or the
localized conformation in liquid crystal elastomers. We proved the local and global in time existence of the
classical solutions to (46) and its quasistatic counterpart. Our results are also applicable in the context of the
non-Euclidean elasticity.

7 Topics in combustion. Traveling fronts in Boussinesq equations.

The Boussinesq-type system of reactive flows is a physical model in the description of flame propagation in a
gravitationally stratified medium [111]. The system is given as the reaction-advection-diffusion equation for the
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reaction progress T (interpreted as temperature), coupled to the fluid motion through the advection velocity,
and the Navier-Stokes equations for the incompressible flow u driven by the temperature-dependent force term.
In non-dimensional variables [7, 105], the system takes the form:

Tt + u · ∇T −∆T = f(T )

ut + u · ∇u− ν∆u+∇p = T~ρ (47)

div u = 0.

Here ν > 0 corresponds to the Prandtl number and the vector ~ρ = ρ~g is the non-dimensional gravity ~g scaled by
the Rayleigh number ρ > 0. The reaction rate is given by a nonnegative ignition type Lipschitz function f . The
recent numerical results, motivated by the astrophysical context [105, 106], suggest that the initial perturbation
in T in a channel with heat-impermeable boundary, either quenches or develops a curved front, which eventually
stabilizes and propagates as a traveling wave. We hence consider the system (47) in an infinite cylinder D ⊂ R3

with a smooth, connected crossection Ω ⊂ R2, and look for the traveling waves in (u, T ) connecting (0, 1) to
(0, 0) and satisfying the Neumann boundary conditions in T .

7.1. Some related results. For the single temperature equation in (47), when u is an imposed flow of shear
type (uni-directional and incompressible), the existence and uniqueness of a multidimensional traveling wave,
stable in both linear and nonlinear sense, has been proved in [6, 96] (see also [110]). For the coupled system
(47) in a 2d infinite vertical strip, it has been showed in [23] that non-planar traveling fronts cannot exist if the
aspect ratio (the ratio of the width of the domain and the thickness of the planar front) is sufficiently small.
In the same regime, the planar wave (u ≡ 0) which corresponds to a traveling solution of the reaction-diffusion
equation in T , is nonlinearly stable: it attracts all solutions of the Cauchy problem, asymptotically in time.
For large aspect ratios, the planar fronts are linearly unstable and there as a bifurcation at a critical Rayleigh
number ρc > 0; for any ρ > ρc there exist non-planar fronts whose Rayleigh number belong to (ρc, ρ) [104].

7.2. Existence of traveling waves in non-vertical domains. The situation is different when the channel
D is not aligned with ~g. As shown in [7], a (necessarily non-planar) traveling front exists for all aspect rations, in
n = 2 dimensional channels, under the no-stress boundary conditions in u. In papers [CLewR, Lew8, LewMu2]
we extended this result for the Dirichlet (no-slip) conditions, and in the following situations. In [CLewR]
existence was established for all n = 2 dimensional strips; in [Lew8] for channels of arbitrary dimension n,
any crossection Ω and any Rayleigh number, but for a simplified system corresponding to the infinite Prandtl
number ν =∞, when the Navier-Stokes part of (47) is replaced by the Stokes system. In [LewMu2] we treated
n = 3 dimensional channels with any crossection Ω, Prandtl and Rayleigh numbers, but again for a simplified
system, with the advection term u · ∇u neglected. In [LewMu2] we also proved the same result for the full 3d
system, under an explicit thinness condition involving ν, ~ρ and |Ω| (essentially, Ω is thin in the direction of ~g).

7.3. A weak Xie’s estimate. A method for showing the existence of a traveling wave is to apply Leray-
Schauder degree on compactified domains Ra = [−a, a] × Ω, where one solves the reaction equation, while the
flow equations are solved in the full channel D. The main task is then to obtain uniform bounds, which are
independent of a, in order to recover the traveling wave in the limit as a→∞. The crucial estimate one needs
to achieve in this setting is for the supremum of the solution u to Stokes system in D.

The known proofs of the inequality ‖u‖L∞ ≤ CΩ‖∇u‖1/2L2 ‖P∆u‖1/2L2 (P being the Helmholtz projection), are
based on the a-priori estimates in [2] which hold for smooth domains. Therefore the constant CΩ depends
strongly on the boundary curvature, and becomes unbounded as Ω tends to any domain with a reentrant corner.
This is not enough for closing the bounds, as one does not know whether a complicated relation involving CΩ and
various other parameters can actually be realized, and if it can then for which class of channels. It has been con-
jectured by Xie [109] that CΩ is actually an independent constant, equal to 1/

√
3π. This is still an open question

(a related estimate has been established in [108] for the Laplacian). However, using a recent commutator esti-

mate in [67] we noticed [LewMu2] that one can have: ‖u‖L∞(D) ≤ 2√
2πν
‖∇u‖1/2L2(D)‖P∆u‖1/2L2(D) +CΩ‖∇u‖L2(D).

Despite involvement of the lower order terms, the constant at the highest order is uniform, as needed.

7.4. Stability of the Stokes-Boussinesq system. In [LewR] we considered, as above, the Stokes-Boussinesq
(and the stationary Navier-Stokes-Boussinesq) equations in a slanted, i.e. not aligned with the gravity’s direc-
tion, 3d channel and with an arbitrary Rayleigh number. For the front-like initial data, under the no-slip
boundary condition for the flow and no-flux boundary condition for the reactant temperature, we derived uni-
form estimates on the burning rate and the flow velocity, interpreted as stability results for the laminar front.
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7.5. Temporal asymptotics for the p’th power viscous gas. In my two early papers [LewW, LewMu1] we
studied the Navier-Stokes equations of a compressible, viscous and heat-conducting gas, written in Lagrangian
coordinates, and with the pressure law P = eξp/cv (here e is the internal energy, cv > 0 the specific heat, ξ the
specific volume and p ≥ 1):

ξt = vx, vt = (−P + µvx/ξ) ,

cvθt = (−P + µvx/ξ) vx + (κθx/ξ)x + δf(ξ, θ, z),

zt = (σzx/ξ
2)x − f(ξ, θ, z).

In [LewW] the reaction rate δ was 0, while in [LewMu1] the dynamic combustion was allowed, through the

intensity function of the form f(ξ, θ, z) = zmf̃(ξ, θ, z), where m ≥ 1 is an integer and f̃ is positive and bounded
(locally in 1/ξ, globally in other variables). Under the Dirichlet boundary condition in v, and Dirichlet or
Neumann homogeneous boundary conditions in θ, we proved that the global solution tends to the equilibrium
at an exponential rate when δ = 0 or m = 1 [LewW], or at an algebraic rate when we admit the nonlinearity in
the combustion term [LewMu1].

8 Well posedness of systems of conservation laws.

Following my Ph.D. thesis, I have studied the Cauchy problem for n × n hyperbolic systems of conservation
laws in one space dimension. These are the first order nonlinear PDEs of the form:

ut + f(u)x = 0, u(0, x) = ū(x). (48)

Here u = u(x, t) ∈ Rn, x ∈ R, and f : Rn −→ Rn is a smooth flux, satisfying the usual assumptions of
strict hyperbolicity and genuine nonlinearity/linear degeneracy of the characteristic fields [101, 28, 12]. Several
fundamental laws of continuum mechanics take form of (48) [28]. In the setting of one space dimension, it has
been established, thanks to Bressan et all., that (48) is well-posed in the class of initial data ū ∈ L1 ∩BV with
sufficiently small total variation [14, 8, 12]. The entropy solutions of (48) constitute then a semigroup S(t, ū)
which is Lipschitz continuous with respect to both time and initial data. The semigroup S with these properties
is unique and its trajectories are the limits of piecewise constant approximate solutions, obtained e.g. by the
method of wave front tracking or Glimm’s scheme. As proved in [8], they are also the vanishing viscosity limits,
that is limits as ε→ 0 of unique smooth solutions to ut + f(u)x = εuxx satisfying the initial condition in (48).

8.1. Uniqueness of solutions to the Cauchy problem. Within the framework of small total variation,
in a work with Bressan [BrLew2], we proposed a sufficient condition under which any BV solution to (48)
automatically coincides with a trajectory of the unique semigroup S. Namely, we proved that every Lax
admissible weak solution of (48) has this property if and only if it has locally bounded variation along the
family of space-like curves, whose Lipschitz constant is smaller than a fixed positive number. By uniqueness of
the semigroup, there followed a uniqueness result for (48), within the class of solutions having the mentioned
property. It remains an open question if the validity of this condition is automatically implied by other regularity
properties of solutions, for example by the entropy or Lax admissibility itself.

8.2. Well-posedness of systems with L∞ data. In [Lew1], a system of a balance and transport laws:

ut + f(u)x = g(u), θt + h(u)θx = 0, (49)

was studied, using the theory of generalized characteristics and ODEs with discontinuous right hand side. Under
the condition of strict hyperbolicity, which implies the transversality condition on the related ODE:

x′ = h(u(x, t)), (50)

the Hölder well-posedness of the system (49) was proved, with initial data ū ∈ L1 ∩ L∞, θ̄ ∈ C0. Nonetheless,
the problem (50) may be ill posed, due to the unboundedness of the total variation of u.

8.3. The Riemann problem with large data. In this project, the main concern was the existence and
stability of solutions to (48) in the vicinity of a self-similar entropy solution u0(t, x) = u0(x/t) to a given
Riemann problem (ul, ur), without any restriction on the strength of the discontinuity ‖ur−ul‖. Because of the
finite propagation speed, these issues are related to the local in time well posedness of the Cauchy problem (48)
with initial data having bounded (but possibly large) total variation. As noted in [50], there are examples of
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systems and initial data, for which solutions blow up in finite time, due to the interaction of a number of large
waves. In our analysis, all large waves are traveling apart from each other and never interact. Still, however,
it is possible that the control on the time dependent amount of perturbation (measured in the BV or the L1

norms) is lost. Well-posedness can hence be achieved only under additional assumptions on the waves in u0.
Generalizing the works [15, 98, 13], which analyzed several particular patterns of waves, we introduced such
conditions which are (in order of strength): Finiteness Condition, BV Stability Condition and L1 Stability
Condition [LewT, Lew6, Lew7, Lew2, Lew4, Lew5, LewZ].

Roughly speaking, these conditions require that in some norm (provided by a set of weights), the total amount
of the scattered waves v(t, x), evolving according to the linear hyperbolic system:

vt +
[
Df(u0) · v

]
x

= 0, (51)

supplemented by appropriate boundary conditions across the jumps in u0, is smaller that the total weight of
the scattered incoming waves. A review paper [Lew3] explains our results in the case of multiple large shocks.

8.4. Stability results. In papers [LewT, Lew2, Lew3, Lew6, Lew5] we proved that if the Finiteness Condition
for the wave pattern u0 holds, then any Riemann problem (u−, u+) in the vicinity of the original one (ul, ur),
has a unique self-similar solution, attaining n+ 1 states, consecutively connected by (n−M) weak waves and
M strong waves. This essentially follows by the implicit function theorem.

Further, if the BV Stability Condition holds, then there exists δ > 0 such that for every ū in the set:

clL1
loc

{
w : R −→ Rn; ||w ◦ φ− u0(1, ·)||L∞ + TV (w ◦ φ− u0(1, ·)) < δ (52)

for some increasing diffeomorphism φ : R −→ R
}
, (53)

the Cauchy problem (48) has a global entropy weak solution u(t, x).

In case the L1 Stability Condition is satisfied, there exists a semigroup S : D × [0,∞) −→ D, defined on a
closed domain D ⊂ L1

loc(R,Rn), containing the set in (52) (for some δ > 0), such that the following holds. (i)
||S(ū, t) − S(v̄, s)||L1 ≤ L(|t − s| + ||ū − v̄||L1) for all ū, v̄ ∈ D, all t, s ≥ 0 and a uniform constant L, (ii) for
all ū ∈ D, the trajectory t 7→ S(ū, t) is the entropy admissible solution to (48). As a corollary, we obtained the
local existence and stability for arbitrarily large BV initial data [Lew5]. The uniqueness is also achieved within
a class of functions having locally bounded total variation, as in [BrLew2].

8.5. Stability conditions. In [Lew4, Lew7, Lew5, LewZ], we further discussed the three conditions and found
their equivalent forms, requiring that, roughly speaking, the eigenvalues of suitable matrices related to wave
transmissions - reflections are smaller than 1 in absolute value, or that they evolve in a prescribed way along a
continuous rarefaction wave in u0. We also validated the conditions for particular systems (notably, the Euler
system of γ-gas-law) and compared with other stability conditions.

In [LewZ] we compared our inviscid conditions for large-amplitude shock wave patterns with the “slow eigen-
value”, or low-frequency, stability conditions obtained by Lin and Schecter [66] through a vanishing viscosity
analysis of the Dafermos regularization. Under the structural assumption that scattering coefficients for each
component wave are positive, we showed that BV and L1 inviscid stability is equivalent to respective versions
of low-frequency Dafermos-regularized stability. We gave examples demonstrating the role of cancellation (in
linearized behavior) in the presence of negative scattering coefficients.

9 Multiplicity results for forced oscillations on manifolds.

In my early works [LewS1, LewS2, LewS3], we considered the system of second order ODEs:

ẍπ = h(x, ẋ) + λf(t, x, ẋ), λ ≥ 0 (54)

on a manifold M , where (x, ẋ) ∈ TM and ẍπ(t) is the orthogonal projection of ẍ(t) on Tx(t)M . The vector
fields f and h are tangent to M , with f of period T > 0 in t. In [LewS1] we discussed the case of M compact,
and extended known results on the structure of the set of T -periodic solutions to (54). Using degree (of tangent
vector fields) argument we proved existence of a global branch of T -periodic solutions, bifurcating from the set
of constant solutions of ẍπ = h(x, ẋ). We showed that for a generic class of vector fields h = h(x) there are at
least the Euler-Poincaré |χ(M)| solutions of period T for λ > 0 sufficiently small. This result can be refined
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when h is the gradient of a functional on M ; then, for a generic family of functionals, there are at least a number
of periodic solutions equal to the sum of the Betti numbers of M .

In [LewS2] we discussed the case of noncompact M , generalized the results of [LewS1] to all h in an open dense
(in appropriate topology) subset of Cr tangent vector fields. In [LewS3], M is the product of two differentiable
manifolds M1 ×M2 and the vector fields h and f have the form h = (h1, 0) and f = (f1, f2). In this situation,
we proved the existence of a global branch of T -periodic solutions bifurcating from the set of zeros of the vector

field (p, q) 7→
(
h1(p, q), 1

T

´ T
0
f2(t, p, q) dt

)
. This result extends and unifies previous results obtained in [36].

10 Current research interests

In this section, I will briefly indicate my research plans for the near future.

In connection with Tug-of-War related topics (section 3), I would like to solve the conjecture that, regardless of
the boundary regularity of Ω, the family {uε}ε→0 of game values converges pointwise in Ω to the Perron solution
u of the Dirichlet problem: ∆pu = 0 in Ω and u = F on ∂Ω. This claim is supported by the Wiener resolutivity,
valid for every continuous F : ∂Ω → R. Further, I would like to show that such pointwise limit obeys u = F
precisely at boundary points that are game-regular. In the same vein, there should be an independent proof
that game-regularity is equivalent to the nonlinear potential theoretic p-Wiener regularity criterion.

I plan to further study asymptotic mean value formulas with varying dimensionality, in the Heisenberg group
and other subriemannian geometries. I would also like to look at the non-local version of the Tug-of-War games
with noise, in connection to the fractional p-Laplacian. Another topic of interest is pursuing the interpretation
of the Robin boundary conditions via discrete walks (and games in the context of p 6= 2) for less regular
boundaries. In particular, the Reifenberg flat domains, which are fractal but satisfy both interior and exterior
tubular entry criterion, seem to be suitable for this analysis.

The game-theoretical approach developed so far should have its counterparts in the discrete setting of random
graphs. I would like to further study the random Tug-of-War on random geometric graphs, where many questions
and notions are relevant to problems encountered in the mathematical theory of machine learning. This is a
rapidly emerging field: while we have recently seen successful applications of machine learning and data science,
the results are largely empirical and we do not understand when algorithms work or fail. There is an opportunity
for new mathematical theory to play an important role to better understand existing algorithms, and aid in the
development of faster and more effective ones.

In connection with the topic of convex integration (section 2), I would like to consider the rigidity and flexibility
questions in presence of boundary conditions. For the Monge-Ampr̀e equation, there are two types of boundary
conditions: either constraining only the leading variable v (similarly to the incompressible Euler’s equations),
or both v and the auxiliary “Lagrange-multiplier” variable w (similar to the compressible case). In the latter
formulation, one should first find natural compatibility conditions between the two boundary value functions.

I would like to use techniques developed for the Monge-Ampère equations posed in two space dimensions,
to study higher-dimensional problems. In particular, questions of rigidity and flexibility of the two-Hessian
equation in RN seem to be likely tractable.

In connection with the curvature-driven shape formation (section 1), I would like to fully understand the
implications of the flexibility thresholds in both the isometric immersion and the Monge-Ampère problems, on
the scalings of the non-Euclidean elasticity energy infima. It should be possible to prove rigorously, that the
low regularity solutions to the effective constraint equation, i.e.: (∇y)T∇y = G2×2 for arbitrary prestrain G, or

det∇2v = curlT curlG2×2 for G that is a perturbation of Id3, can be lifted to construct the three-dimensional
deformations with the energy scaling exponent (less than 2 but bigger than 5

3 ) related to the regularity exponent.

Other projects consist of: developing the complete hierarchy of the singular limits in the regimes of small
curvatures, corresponding to metrics departing from Id3 at various orders of parameter thickness; completing
the full hierarchy of Γ-limits in the “oscillatory case”; generalizing the recently completed “non-oscillatory case”
hierarchy to submanifolds of Riemannian manifolds of arbitrary dimensions and codimensions; obtaining new
constrained models via dimension reduction in plasticity; and addressing the time-dependent problems, at least
in some partial cases of parameter ranges of interest. I would also like to study the non-Euclidean elastic
energies, both in the bulk and via dimension reduction, in the context of numerical analysis and compare the
obtained results with the available experimental data.
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Comm. Partial Differential Equations, 33 , Issue 6 (2008), 1018–1032.

[81] J. Nash, C1 isometric imbeddings, Ann. Math., 60, (1954), 383–396.

31



[82] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure
Appl. Math., 6 (1953), 337–394.

[83] J.A. Nitsche, On Korn’s second inequality, RAIRO Anal. Numer. 15 (1981) 237–248.

[84] M. Ortiz and G. Gioia, The morphology and folding patterns of buckling-driven thin-film blisters, J.
Mech. Phys. Solids, 42 (1994), pp. 531–559.

[85] M. Pakzad, On the Sobolev space of isometric immersions, Journal of Differential Geometry, 66
(2004), 47–69.

[86] Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer.
Math. Soc. 22 (2009), 167–210.

[87] Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the p-Laplacian, Duke
Math. J. 145(1) (2008), 91–120.

[88] A.V. Pogorelov, An example of a two-dimensional Riemannian metric admitting no local realisation
in E3, Dokl. Akad. Nauk SSSR 198 (1971), No.1, 729–730.

[89] M. Raoofi and K. Zumbrun, Stability of undercompressive viscous shock profiles of hyperbolic-
parabolic systems, J. Differential Equations, (2009) 1539–1567.

[90] G. Raugel, Dynamics of partial differential equations on thin domains, in CIME Course, Montecatini
Terme, Lecture Notes in Mathematics, 1609 (1995), Springer Verlag, 208–315.

[91] G. Raugel and G.R. Sell, Navier-Stokes equations on thin 3D domains. I: Global attractors and
global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503–568.
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