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Abstract. We consider the Stokes-Boussinesq equations in a slanted (that is, not
aligned with gravity’s direction) cylinder of any dimension and with an arbitrary
Rayleigh number. We prove the existence of a non-planar traveling wave solution,
propagating at a constant speed, and satisfying the Dirichlet boundary condition in
the velocity and the Neumann condition in the temperature.

1. Introduction

In this paper we study the existence of traveling wave solutions to the system of
reactive Boussinesq equations. This system is given as the advection-reaction-diffusion
equation for the temperature T coupled with the Stokes equation for the incompressible
flow u driven by T . After passing to non-dimensional variables [BCR], the system takes
the form:

Tt + u · ∇T − ∆T = f(T ),

−∆u+ ∇p = Tρ~g(1.1)

div u = 0.

The nonlinearity f is a nonnegative Lipschitz function and throughout we assume it
to be of the ignition type. Vector ~g represents the scaled gravity and the constant
ρ > 0 corresponds to the Rayleigh number. We consider the system (1.1) in an infinite
cylinder D ⊂ Rn, not aligned with ~g and with a smooth crossection Ω. We want
to look for the traveling waves in (u, T ) connecting (0, 1) to (0, 0) and satisfying the
Neumann boundary conditions in T and the Dirichlet (that is, ’no-slip’) boundary
conditions in u.

The system (1.1) can be derived, under the assumption that the Prandtl number σ
equals +∞, from a more complete Navier-Stokes-Boussinesq system:

Tt + u · ∇T − ∆T = f(T )

1

σ
(ut + u · ∇u) − ∆u+ ∇p = Tρ~g(1.2)

div u = 0.
1
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For a review of recent results on front propagation we refer to [X] or [B]. In connection
with the single temperature equation in (1.1) when u is an imposed flow of shear type,
the existence and uniqueness of a multidimensional traveling wave has been proved
in [BLL]; this wave is stable both in the linear and the nonlinear sense [R]. As
a next step, while studying the coupled system (1.2) or (1.1) in which the flow is
affected by the evolution of the temperature of the reactant, one may ask whether
there exists a traveling wave in (u, T ) whose T - component does not correspond to
a traveling solution of the reaction-advection-diffusion equation in T seen from the
previous theory, and in particular that is not planar, so that u 6≡ 0. The numerical
computations in [VR] suggest that non-planar fronts exist and are stable for large
Rayleigh numbers ρ.

In the setting of n = 2 and an infinite cylinder aligned with ~g, it has been proved
in [CKR] that non-planar traveling fronts cannot exist if the aspect ratio (the ratio of
the width of the domain and the so-called thickness of the planar front) is sufficiently
small. In the same regime, the planar wave (which corresponds to a traveling solution
of the reaction-diffusion equation in T ), is nonlinearly stable, that is it attracts all
solutions of the Cauchy problem asymptotically in time. On the other hand, when the
strip is wide and the Rayleigh number is large, the planar fronts are linearly unstable.
Moreover, as shown in [TV] there exists a bifurcation at a critical value ρc > 0; for any
sufficiently small interval [ρc, ρ] there exist non-planar fronts whose Rayleigh number
belongs to this interval.

The situation is quite different when D is not aligned with ~g. As shown by Beresty-
cki, Constantin and Ryzhik in [BCR] (still in the setting n = 2), a traveling front exists
always, independently of the width of the strip and ρ, under the no-stress boundary
condition on u. As observed in [BKV], this traveling front cannot be planar.

For a viscous fluid, the no-stress boundary condition is artificial and should be
replaced by the no-slip condition. Indeed, in [CLR] Constantin, Lewicka and Ryzhik
prove the same existence result for the full system (1.2) and n = 2. The goal of the
present paper is to extend this result to smooth cylinders of any dimension n and for
the system (1.1).

It seems that unlike in the case n = 2, for n ≥ 3 the related analysis should be done
separately for systems (1.1) and (1.2). On one hand the estimates on the propagation
speed obtained from the reaction-advection-diffusion equation in T are too weak in
presence of the quadratic terms in (1.2), while on the other hand, more refined bounds
on the propagation speed, coming from the Navier-Stokes equation in u, may not be
true in the former case. The case of the full system (1.2) is at the center of our
attention and we will address it in a separate paper.

Our main result, whose precise formulation is contained in Theorem 5.1, can be
stated as follows:
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Theorem 1.1. Assume that the unbounded direction of D is not aligned with the
gravity vector ~g. Then there exists a smooth, non-planar traveling wave solution T (x−
ct, ·), u(x − ct, ·) to (1.1) with the ignition type nonlinearity f , which satisfies the
boundary conditions (2.4). When moreover the nonlinearity satisfies the smallness
condition:

f(T ) ≤ CΩ[(T − θ0)+]n,

then this solution satisfies θ− = 1 in (2.4). Above θ0 is the ignition temperature and
CΩ > 0 is a constant, depending only on ρn−2 and the geometry of Ω.

The smallness assumption above is made for purely technical reasons and was also
present in the two-dimensional setting of [BCR] and [CLR], in which case CΩ = |Ω|−2.

Our paper is organized as follows. In section 2 we introduce a version of the problem,
posed on compact domains increasing to D. In order to show that each of these
approximating problems has a solution, we want to use the Leray-Schauder degree
argument and hence we need the a-priori bounds on the solutions. Since we eventually
want to pass to the limit with the lengths of the domains 2a and recover the traveling
wave as the limit of the approximate solutions, we need the a-priori bounds to be
independent of a. This is the crucial point; we prove such bounds in section 3 and the
major difference with respect to [CLR] is that for n ≥ 3 the estimates using L2 norms
do not suffice and have to be done instead in Lp, with p ≥ n. The same estimates
remain valid in the setting of the Navier-Stokes-Boussinesq system (1.2); in appendix
B we remark that other improvements are necessary to close the bounds for this case.
In appendix A we give a proof of the Lp elliptic estimates for the Stokes system on
bounded domains. We finally show the existence of the approximate solutions on
compact domains, satisfying uniform bounds, in section 4. We prove that the limit of
these solutions is a non-planar traveling wave in section 5, where we also discuss the
wave’s limits at ±∞.

2. The setting of the problem and its compact approximations

We study the system (1.1) where the unknown functions T ∈ R, u ∈ Rn and p ∈ R

are defined in an infinite cylinder D ⊂ Rn with a smooth, connected crossection
Ω ⊂ Rn−1. The ’gravity vector’ ~ρ = ρ · ~g is not parallel to the unbounded direction
of D. By an elementary change of variables we can without loss of generality restrict
our attention to the horizontal cylinder:

(2.1) D = (−∞,∞) × Ω = {(x, x̃); x ∈ R, x̃ ∈ Ω}

and

(2.2) ~ρ · en 6= 0.

The nonlinear Lipschitz continuous function f is assumed to be of ’ignition type’:

(2.3) f(T ) = 0 on (−∞, θ0] ∪ [1,∞), f(T ) > 0 on (θ0, 1)
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for some ’ignition temperature’ θ0 ∈ (0, 1).
We impose the following boundary conditions:

T → θ− as x→ −∞, T → 0 as x→ ∞,
∂T

∂~n
= 0 on ∂D,

u = 0 on ∂D, u→ 0 as x→ ±∞,
(2.4)

where by ~n we denote the unit normal to ∂D, and θ− is some equilibrium of f . Of
particular interest is θ− = 1. We want to study the existence of a traveling wave
solution to (1.1) (2.4): T (x − ct, x̃), u(x − ct, x̃), with the speed c to be determined.
Such a front satisfies:

−cTx + u · ∇T − ∆T = f(T ),(2.5)

−∆u+ ∇p = T~ρ,(2.6)

div u = 0,(2.7)

together with (2.4).

Towards the proof of Theorem 1.1 we will first replace the problem (2.4) - (2.7) with
its approximation on compact domains, which will allow to use the Leray-Schauder
degree theory. Let Ra = [−a, a] × Ω and let Da be a smooth domain such that
Ra ⊂ Da ⊂ Ra+1 (see figure 1).

x

DR Raa a+1Ω

a−a a+1−a−1

Figure 1

We want that (2.5) be satisfied in Ra and (2.6) in Da, where T is extended on Da

by the odd reflection across the vertical boundary of Ra:

(2.8) T (x, x̃) =

{

−T (−2a− x, x̃) + 2T (−a, x̃) for x < −a
−T (2a− x, x̃) + 2T (a, x̃) for x > a.

Notice that one clearly has:

(2.9) ||T ||C1,α(Da) ≤ 2||T ||C1,α(Ra), ||∇T ||L2(Da) ≤ 2||∇T ||L2(Ra).
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The boundary conditions for the compactified problem are:

(2.10)

u = 0 on ∂Da,
T (−a, x̃) = 1, T (a, x̃) = 0 for x̃ ∈ Ω,

∂T

∂~n
(x, x̃) =

∂T

∂~n
(x, x̃) = 0 for x ∈ [−a, a] and x̃ ∈ ∂Ω,

together with the following normalization condition:

(2.11) max{T (x, x̃); x ∈ [0, a], x̃ ∈ Ω} = θ0.

Our first result is:

Theorem 2.1. For a > 0 sufficiently large, there exist c ∈ R, T ∈ C1,α(Ra), u ∈
C2,α(Da), p ∈ C1,α(Da) solving the problem (2.5) - (2.11) and satisfying the following
uniform bound:

(2.12) |c| + ||T ||C1,α(Ra) + ||u||C2,α(Da) + ||∇T ||L2(Ra) + ||u||W 3,2(Da) +

∫

Ra

f(T ) ≤ C.

Above C does not depend on a and on none of the estimated quantities.

We postpone the proof of Theorem 2.1 to section 4.

Remark 2.2. The normalization condition (2.11) is the same as in [BNS]. Its role is
to single out a correct approximation of the traveling wave in T , in the moving frame
which chooses (to fix the ideas) to have f(T (x, ·)) = 0 for x ≥ 0.

3. Uniform bounds

The aim of this section is to prove the a-priori bound as in (2.12):

Theorem 3.1. Let a > 0 be sufficiently large and let c ∈ R, T ∈ C1,α(Da), u ∈
C2,α(Da), p ∈ C1,α(Da) satisfy (2.5) - (2.11). Then the bound (2.12) holds.

The proof will be achieved through a sequence of lemmas estimating various norms
of the quantities c, T, u. Throughout by C we denote the generic constant, the value
of which may change from line to line, but does not depend on a, c, T, u. We also use
the notation A � B meaning A ≤ C(1 +B).

In all the subsequent lemmas we assume that a > 0 is sufficiently large and that
c, T, u, p having regularity as in Theorem 3.1 satisfy (2.5) - (2.11).

Lemma 3.2. There holds:

T (x, x̃) ∈ [0, 1] for all (x, x̃) ∈ Ra(3.1)

T (x, x̃) ≤ θ0 for all x > 0, x̃ ∈ Ω.(3.2)
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Proof. Because of the nonnegativity of f , the maximum principle and the Hopf lemma
can be applied to (2.5) on Ra, which gives T ≥ 0 in Ra. Applying the same results to
T on [0, a] × Ω we obtain (3.2) in view of the normalization (2.11).

Now the function 1 − T satisfies the equation:

∆(1 − T ) − u · ∇(1 − T ) + c(1 − T )x −
f(T )

1 − T
(1 − T ) = 0,

where the lowest order coefficient is nonpositive. Again, we conclude that 1 − T ≥ 0
in Ra, proving (3.1).

Lemma 3.3. |c| � ||u||L∞.

Proof. The proof follows as in [BLL, BCR]. Consider the function ψ(x, x̃) = e−α(x+a).
For every α > 0 such that:

(3.3) c ≥ α + ||u||L∞ +
M

α
with M = ||f ′||L∞, ψ is a supersolution of (2.5), so that it satisfies:

−∆ψ + u · ∇ψ − cψx ≥
f(T )

T
× ψ in Ra,

ψ(x, x̃) ≥ T (x, x̃) for x̃ ∈ Ω and x ∈ {−a, a}.

We now show that for such values of α one has T ≤ ψ in Ra. Define:

A0 = inf{A ≥ 1; T ≤ Aψ in Ra}.

We have that A0 ∈ [1,∞), as T ≤ Aψ for A sufficiently large. Clearly, A0ψ is also a
supersolution of (2.5), and the nonnegative function A0ψ − T achieves its minimum
(= 0) in Ra. By the Hopf lemma and the maximum principle [GT] we conclude that
this minimum has to be attained in the set Ω × {−a, a}. This implies that A0 = 1.

Now, using the normalization (2.11) we see that θ0 ≤ e−aα. Therefore, if α >
ln(θ−1

0 )/a, the negation of (3.3) must hold:

c < α + ||u||L∞ +
M

α
.

Therefore:

c ≤ ||u||L∞ + inf
α≥ln(θ−1

0 )/a
(α+

M

α
) ≤ ||u||L∞ + 1 +M.

In order to prove the lower bound, we consider the following subsolution of (2.5):
φ(x, x̃) = 1 − eα(x−a) where α > 0 satisfies

c ≤ −α− ||u||L∞.

We reason as before and obtain that if 1 − e−αa ≤ θ0. Hence:

c ≥ −||u||L∞ − inf
α≥ln(1−θ0)−1/a

(α) ≥ −||u||L∞ − 1.
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This proves the desired inequality.

Lemma 3.4. For every p ≥ 2 there holds:

||∇2T ||Lp(Ra) ≤ C(||∆T ||Lp(Ra) + ||∇T ||Lp(Ra)).

Proof. Define S(x, x̃) = 1
|Ω|

∫

Ω
T (x, ·). Of course, the function S depends only on the

variable x. The function T − S satisfies the Dirichlet condition on the vertical part of
∂Ra and the Neumann condition on the horizontal part of ∂Ra. Therefore, by standard
elliptic estimates up to the boundary [ADN, GT] we obtain:

||∇2(T − S)||Lp ≤ C(||∆(T − S)||Lp + ||T − S||Lp).

Hence:

(3.4) ||∇2T ||Lp ≤ ||∇2(T −S)||Lp + ||∇2S||Lp ≤ C(||∆T ||Lp + ||∇2S||Lp + ||T −S||Lp).

Moreover:

(3.5) ||∇2S||pLp = ||Sxx||
p
Lp =

∫

Ra

∣

∣

∣

∣

1

|Ω|

∫

Ω

∆T

∣

∣

∣

∣

p

≤ C

∫

Ra

∫

Ω

|∆T |p ≤ C||∆T ||pLp,

because
∫

Ω
Txx =

∫

Ω
∆T in view of the Neumann boundary condition for T . On the

other hand by the Poincare’ inequality:

||T − S||Lp ≤ C||∇T ||Lp.

Using (3.4) and (3.5) we conclude the proof.

Lemma 3.5. For every natural p ≥ 2 we have:

||∇T ||Lp(Ra) � (|c| + ||u||L∞(Da))
p−1

p ,(3.6)
∫

Ra

f(T ) � |c| + ||u||L∞(Da).(3.7)

Proof. 1. We first prove (3.6) for p = 2 and (3.7). Multiplying (2.5) by 1 − T and
using boundary conditions together with the incompressibility of u on Ra we obtain:

∫

Ra

|∇T |2 +

∫

Ω

Tx(a, ·) =
|Ω|c

2
−

1

2

∫

Ω

u1(a, ·) −

∫

Ra

(1 − T )f(T ).

Since the last term above is nonpositive, we obtain:

(3.8)

∫

Ra

|∇T |2 ≤
|Ω|

2
(|c| + ||u||L∞) −

∫

Ω

Tx(a, ·).

We now reproduce the argument from [BCR] to bound the term −
∫

Ω
Tx(a, ·). Con-

sider the quantity I(x) = 1
|Ω|

∫

Ω
T (x, ·). Integrating (2.5) on Ω, we notice that I
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satisfies:

−Ixx =
1

|Ω|

∫

Ω

f(T ) − u · ∇T + cTx,(3.9)

I(−a) = 1, I(a) = 0.

By an elementary and explicit calculation (see [BCR]) one obtains:

−Ix(a) =
1

2a
+

1

2a|Ω|

∫ a

−a

(a+ x)

∫

Ω

(f(T ) − u · ∇T + cTx)(x, x̃) dx̃dx.

Using the boundary conditions and the incompressibility of u, we obtain:

−Ix(a) =
1

2a
+

1

|Ra|

∫

Ra

(a+ x)f(T ) +
1

|Ra|

∫

Ra

u1T −
c

|Ra|

∫

Ra

T.

We now notice that
∫

Ra
xf(T ) ≤ 0 by (3.2). Therefore, using (3.1) we obtain:

(3.10) −Ix(a) ≤
1

2a
+

1

|Ra|

∫

Ra

f(T ) + |c| + ||u||L∞.

Now, integrating (3.9) on [−a, a], we obtain:

1

|Ω|

∫

Ra

f(T ) = c+ Ix(−a) − Ix(a) −
1

|Ω|

∫

Ω

u1(−a, ·).

Using (3.10) and noting that Ix(−a) ≤ 0, we continue:

1

|Ω|

∫

Ra

f(T ) ≤ 2(|c| + ||u||L∞) +
1

2a
+

1

2|Ω|

∫

Ra

f(T )

which implies (3.7). Together with (3.10) and (3.8) we also conclude that
∫

Ra
|∇T |2 �

|c| + ||u||L∞.

2. We proceed by induction on p ≥ 3. Assume that (3.6) holds for p− 1, that is:

(3.11)

∫

Ra

|∇T |p−1 � (|c| + ||u||L∞)p−2.

Multiply the equation (2.5) by T |∇T |p−2 to obtain:
∣

∣

∣

∣

−

∫

Ra

∆T · T |∇T |p−2

∣

∣

∣

∣

=

∣

∣

∣

∣

c

∫

TxT |∇T |
p−2 −

∫

u · ∇T · T |∇T |p−2 +

∫

f(T )T |∇T |p−2

∣

∣

∣

∣

≤ (|c| + ||u||L∞) ·

∫

Ra

|∇T |p−1 +

∫

f(T )|∇T |p−2,
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where we used Lemma 3.2 and the boundedness of f . Now recall (3.11) and (3.7) and
write:

∫

f(T )|∇T |p−2 ≤ ||∇T ||p−2
Lp−1(Ra) · ||f(T )||Lp−1(Ra)

� (|c| + ||u||L∞)
(p−2)2+1

p−1 ≤ (|c| + ||u||L∞)p−1.

Therefore we obtain:

(3.12)

∣

∣

∣

∣

∫

∆T · T |∇T |p−2

∣

∣

∣

∣

� (|c| + ||u||L∞)p−1.

On the other hand, one has:

(3.13)

∫

Ra

|∇T |p = −

∫

∆T ·T |∇T |p−2−

∫

Ra

T ·∇T ·∇|∇T |p−2 +

∫

Ω

|∇T |p−1(−a, ·).

By Lemma 3.4, equation (2.5) and (3.7) we obtain:

||∇2T ||Lp−1(Ra) � ||∆T ||Lp−1(Ra) + ||∇T ||Lp−1(Ra)

� (|c| + ||u||L∞) · ||∇T ||Lp−1(Ra) + (|c| + ||u||L∞)
1

p−1 + ||∇T ||Lp−1.

Thus, in view of (3.11) we may estimate the second term in the right hand side of
(3.13) by:

∫

Ra

|∇T |p−2|∇2T | ≤ ||∇T ||p−2
Lp−1(Ra) · ||∇

2T ||Lp−1(Ra)

� (|c| + ||u||L∞)
(p−2)2

p−1
+1+ p−2

p−1 = (|c| + ||u||L∞)p−1.

(3.14)

To estimate the third term in (3.13), consider the function |∇T |p−1 on R′
a = [−a,−a+

1] × Ω. By (3.11) and (3.14) we have:

‖ |∇T |p−1‖W 1,1(R′

a) � (|c| + ||u||L∞)p−1.

Since the trace space of W 1,1(R′
a) is embedded in L1(∂R′

a), we obtain:

(3.15) ‖ |∇T |p−1(−a, ·)‖L1(Ω) � (|c| + ||u||L∞)p−1.

Now, combining (3.13) with (3.12), (3.14) and (3.15), in view of Lemma 3.2 we conclude
(3.6).

We now turn to estimating norms of u in terms of ∇T . To do this, we need the
following:

Lemma 3.6. For every a > 1 and p ≥ 2 there exists q ∈ C1(Ra) with:

||T~ρ−∇q||Lp(Ra) ≤ C||∇T ||Lp(Ra),

where the constant C depends on the exponent p but not on a or T .
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Proof. First, extend the function T~ρ to a C1,α function h = (h1 . . . hn) defined on the
domain R′

a = [−a− 1, a+ 1] ×Ω′, where Ω′ is a box [−b, b]n−1 containing Ω. We may
without loss of generality assume that:

(3.16) ||∇h||Lp(R′
a) ≤ 2||∇T ||Lp(Ra).

Define:

q(x, x̃) = q1(x) +
n−1
∑

i=1

∫ x̃i

−b

hi+1(x, x̃1 . . . x̃i−1, s, x̃i+1 . . . x̃n−1) ds,

where we use the convention x̃ = (x̃1 . . . x̃n−1) ∈ Ω′, and the function q1 satisfies on
[−a− 1, a+ 1]:

q′1(x) =
1

|Ω′|

∫

Ω′

h1(x, ·).

We clearly have:

∂q

∂x
(x, x̃) =

1

|Ω′|

∫

Ω′

h1(x, ·) +
n−1
∑

i=1

∫ x̃i

−b

∂hi+1

∂x
ds,

∀i : 1 . . . n− 1
∂q

∂x̃i
(x, x̃) = hi+1(x, x̃) +

∑

j 6=i

∫ x̃i

−b

∂hi+1

∂x
ds.

Hence:
||h−∇q||Lp(R′

a) ≤ C||∇h||Lp(R′
a),

where C depends only on the Poincare’ constant of Ω′ and the magnitude of |b|. In
view of (3.16) the result follows.

Lemma 3.7. For every p ≥ 2 we have:

(i) ||u||W 1,2(Da) ≤ C||∇T ||L2(Ra),

(ii) ||∇T ||Lp + ||u||Lp(Da) � ||u||
p−1

p

L∞ .

Proof. We integrate (2.6) against u and note that by the Cauchy-Schwartz inequality:

(3.17)

∫

Da

|∇u|2 ≤ ||T~ρ−∇q||L2(Da) · ||u||L2(Da),

where q is as in Lemma 3.6. Now, the Poincare’ inequality applied to the crossection
of Da implies:

||u||L2(Da) ≤ C||∇u||L2(Da),

which together with (3.17), Lemma 3.6 and (2.9) yields (i).
Now, (ii) follows from Lemma 3.3, Lemma 3.5, Lemma 3.6 and the interpolation

inequality:

||u||Lp(Da) ≤ ||u||
2
p

L2 · ||u||
1− 2

p

L∞ .
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The following bound which is an extension of Lemma 3.7 (i) for exponents p > 2
follows for example from [G] or can be found in [K]. We give an alternative, to our
knowledge new, proof of this fundamental estimate in Appendix A.

Lemma 3.8. For every p ≥ 2, there holds:

||u||W 3,p(Da) ≤ C(||∇T ||Lp(Ra) + ||u||Lp(Da)).

Proof of Theorem 3.1. For p > n, we have:

||u||L∞ ≤ C||u||W 1,p � ||u||
p−1

p

L∞ ,

where we have used Lemma 3.8 and Lemma 3.7 (ii). This clearly implies that ||u||L∞ ≤
C. Therefore, by Lemma 3.8, Lemma 3.7 (ii), Lemma 3.3 and Lemma 3.5, the same
uniform bound holds for the quantities:

||u||W 3,p, ||∇T ||Lp, |c|,

∫

Ra

f(T ),

and consequently also for ||u||C2,α. By standard elliptic estimates applied to (2.6) we
obtain ||T ||C1,α ≤ C.

Note that up to Lemma 3.8, all the uniform estimates remain valid also for the
system (1.2). For the discussion of the finite Prandtl number case, see Appendix B.

4. A proof of Theorem 2.1

Fix a > 0 and let c ∈ R, T ∈ C1,α(Ra) and τ ∈ [0, 1]. Extend first T on Da as in
(2.8) and consider the Stokes problem:

−∆u + ∇p = τT ~ρ in Da,

div u = 0 in Da,

u = 0 on ∂Da.

By the standard regularity results [L] we have u ∈ C2,α(Da). Let now Z be the solution
to:

−cZx + τu · ∇Z − ∆Z = τf(T ) in Ra,

Z(−a, x̃) = 1, Z(a, x̃) = 0 for x̃ ∈ Ω,

∂Z

∂~n
(x, x̃) = 0 for x ∈ [−a, a] and x̃ ∈ ∂Ω,

which is C1,α regular [GT]. We now set:

(4.1) K(c, T, τ) := (c− θ0 + max{T (x, x̃); x ∈ [0, a], x̃ ∈ Ω}, Z).
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Now, the operator K : R × C1,α(Ra) × [0, 1] −→ R × C1,α(Ra) is well defined, con-
tinuous and compact [GT, L]. Also, by Theorem 3.1 its fixed points (c, T ), such that
K(c, T, τ) = (c, T ) for some τ ∈ [0, 1], are uniformly bounded:

|c| + ||u||C2,α(Da) ≤ C.

It is clear that C is also independent of τ . Therefore, the Leray-Schauder degree
deg(Id−K(·, ·, τ), B2C(0), 0) is well defined and equal to deg(Id−K(·, ·, 0), B2C(0), 0).
To conclude that K(·, ·, 1) has a fixed point (which is, by definition, a solution to (2.4)
- (2.7)) it is hence enough to see that

(4.2) deg(Id −K(·, ·, 0), B2C(0), 0) 6= 0.

To prove (4.2), notice that K(c, T, 0) = (c−θ0 +max{T (x, x̃); x ∈ [0, a], x̃ ∈ Ω}, Z)
where

Z(x, x̃) = φc(x) =
e−cx − e−ca

eca − e−ca

is the solution (when c 6= 0) to:

φc
xx + cφc

x = 0 in [−a, a], φc(−a) = 1, φc(a) = 0.

As in [BCR] we see that K(·, ·, 0) is homotopic to the map

F(c, T ) = (c− θ0 + max
x∈[0,a]

φc(x), φc∗),

where c∗ is the unique number so that

max
x∈[0,a]

φc∗(x) = φc∗(0) = θ0.

The homotopy can be taken to be compact and without fixed points on a sufficiently
large ball BC(0) in R × C1,α(Ra).

By the homotopy invariance of the Leray-Schauder degree of compact perturbations
of identity we conclude that:

deg(Id −K(·, ·, 0), B2C(0), 0) = deg(Id − F , BR(0), 0) = 1,

as the degree of the map (Id−F)(c, T ) = (θ0−φ
c(0), T−φc∗) is the product of degrees

of each component, all of them equal to 1. This proves (4.2) and hence also Theorem
2.1.

5. Identification of the limit and a proof of Theorem 1.1

In this section we make precise and prove Theorem 1.1. We first observe that the
sequence of solutions (ca, T a, ua, pa) to (2.5) - (2.11) has a converging subsequence, as
the length of the compact domains increases: a→ +∞. We then prove that the limit
is a solution to (2.4) - (2.7).



TRAVELING WAVES IN STOKES-BOUSSINESQ SYSTEM 13

Theorem 5.1. There exist c > 0, T, u ∈ C2,α(D), p ∈ C1,α
loc (D) satisfying (2.5) - (2.7).

Moreover we have: ∇T ∈ L2(D), u ∈W 3,2(D) and:

(5.1) T (D) ⊂ [0, 1] and max
x≥0,y∈Ω

T (x, y) = θ0,

(5.2)
∂T

∂~n
= 0 and u = 0 on ∂D,

(5.3) lim
x→±∞

||u(x, ·)||L∞(Ω) = lim
x→±∞

||∇u(x, ·)||L∞(Ω) = lim
x→±∞

||∇T (x, ·)||L∞(Ω) = 0.

(5.4)

∫

D

f(T ) ∈ (0,∞).

(5.5) lim
x→+∞

||T (x, ·)||L∞(Ω) = 0,

The left limit θ− ∈ (0, θ0] ∪ {1} exists:

(5.6) lim
x→−∞

||T (x, ·) − θ−||L∞(Ω) = 0.

If moreover

(5.7) f(T ) ≤ CΩ[(T − θ0)+]n,

where CΩ > 0 is a constant, depending only on ρn−2 and on the geometry of Ω, then
θ− = 1.

Towards a proof of Theorem 5.1, notice first that by a bootstrap argument we clearly
have:

||T a||C2,α(Da−1) ≤ C.

Therefore we may choose a sequence an → ∞ such that cn := can converges to some
c ∈ R and Tn := T an , un := uan converge in C2,α

loc (D) (for a smaller α which we for
simplicity denote with the same symbol) to some T, u ∈ C2,α(D). Also, pn := pan

converges in C1,α
loc (D) to some p ∈ C1,α

loc (D). Obviously, c, T, u, p must satisfy (2.5) -
(2.7) and (5.2), while Lemma 3.2 implies (5.1). Since ∇T ∈ L2(D) ∩ C1,α(D) and
u ∈W 3,2(D) ∩ C2,α(D), we obtain (5.3). By (2.12), we have:

(5.8)

∫

D

f(T ) < +∞.

The main difficulty is now to identify the limits of T (x, ·). This will be done through
a sequence of lemmas whose proofs extensively use ’the sliding method’.

Lemma 5.2. The propagation speed is positive: c > 0.
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Proof. The proof is made of various ingredients of different proofs in [BCR], section 3.
1. Notice that there exists x̃ ∈ Ω such that there simultaneously hold:

∫ an

−an

|∇Tn(·, x̃)|
2 ≤

3

|Ω|

∫

Ran

|∇Tn|
2,(5.9)

∫ an

−an

f(Tn(·, x̃)) ≤
3

|Ω|

∫

Ran

f(Tn).(5.10)

Indeed, consider the set:

Ω′ =

{

x̃ ∈ Ω;

∫ an

−an

|∇Tn(·, x̃)|2 >
3

|Ω|

∫

Ran

|∇Tn|
2

}

.

We have:

3
|Ω′|

|Ω|

∫

Ran

|∇Tn|
2 ≤

∫

Ω′

∫ an

−an

|∇Tn|
2 ≤

∫

Ran

|∇Tn|
2,

which implies:

|Ω′| ≤ |Ω|/3.

With exactly the same argument one proves that the set of x̃ ∈ Ω violating (5.10) is
as well not bigger than a third of Ω. The claim follows.

2. We will deduce that:

(5.11)

∫

Ran

f(Tn) ≥ C,

for some constant C > 0 independent of n.
For a given n, fix a small ǫ > 0 and let −an < x1 < x2 < 0 be such that Tn(x1, x̃) =

1− ǫ, Tn(x2, x̃) = θ0 + ǫ and Tn([x1, x2], x̃) ⊂ [θ0 + ǫ, 1− ǫ]. Using the Cauchy-Schwartz
inequality and the fact that f(Tn(·, x̃)) must be bounded away from 0 on [x1, x2] we
obtain:

∫ x2

x1

|∇Tn(·, x̃)|2 ≥
1

|x1 − x2|
·

∣

∣

∣

∣

∫ x2

x1

∂Tn

∂x
(·, x̃)

∣

∣

∣

∣

2

=
C

|x1 − x2|
,

∫ x2

x1

f(Tn(·, x̃)) ≥ C|x1 − x2|.

Combining the above with (5.9) and (5.10) we obtain that
∫

Ran

f(Tn) ·

∫

Ran

|∇Tn|
2 ≥ C,

which in view of (2.12) yields (5.11).

3. Now define Φn(x, x̃) = Tn(x+an, x̃), ζn(x, x̃) = un(x+an, x̃) on domains Ran
and

Dan
“shifted” to the left by the distance an. Since Φn, ζn obviously satisfy the same
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uniform bounds as Tn and un, they converge (uniformly on compact sets, together
with their derivatives) to some Φ and ζ defined on (−∞, 0] × Ω, where they satisfy:

(5.12) −cΦx + ζ · ∇Φ = ∆Φ,

and Φ(0, ·) = 0, Φx(0, ·) ≤ 0. The absence of the nonlinearity in (5.12) is due to (3.2)
which gives:

(5.13) Φ(·, ·) ∈ [0, θ0].

Moreover ζ and Φ have the same limit properties at −∞ as u and T in (5.3). Therefore
taking x large and negative and integrating (5.12) on [x, 0] × Ω we obtain:

(5.14)

∫

Ω

Φx(0, ·) ≥ −
C

2
+ c

∫

Ω

Φ(x, ·)

4. Now integrating (2.5) on Ran
we have:

cn|Ω| ≥

∫

Ω

∂Tn

∂x
(an, ·) +

∫

Ran

f(Tn)

Note that ∂Tn/∂x(an, ·) = ∂Φn/∂x(0, ·) and pass to the limit with n → ∞, using
(5.11) and (5.14). This gives:

c|Ω| ≥
C

2
+ c

∫

Ω

Φ(x, ·).

Therefore we have:

c

∫

Ω

(1 − Φ)(x, ·) > 0,

which in view of (5.13) proves the lemma.

Lemma 5.3. For some θ−, θ+ ∈ [0, θ0] ∪ {1} there must be:

lim
x→±∞

||T (x, ·) − θ±||L∞(Ω) = 0.

Proof. We argue by contradiction. Let limn→∞ T (xn, x̃n) = θ1, limn→∞ T (yn, ỹn) = θ2
with some θ1 6= θ2 and limn→∞ xn = limn→∞ yn = +∞. Integrating (2.5) on Sn :=
[xn, yn] × Ω and using the boundary conditions we obtain:

−c

∫

Ω

[T (yn, ·) − T (xn, ·)]

= −

∫

Ω

[(Tu1 − Tx)](yn, ·) − (Tu1 − Tx)](xn, ·)] +

∫

Sn

f(T ),

(5.15)

where as usual u1 refers to the horizontal component of the velocity vector u. Notice
that by (5.3) and (5.8), the right hand side in (5.15) converges to 0 as n → ∞. At
the same time, the left hand side converges to −c|Ω|(θ2 − θ1) where we used (5.3). In
view of Lemma 5.2 we conclude that indeed θ1 = θ2.
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In view of (5.8), we have f(θ−) = f(θ+) = 0 which concludes the proof.

Lemma 5.4. The temperature limits satisfy: θ− > θ+.

Proof. Taking xn → −∞, yn → +∞ in (5.15) and using (5.3) we get:

(5.16) c|Ω|(θ− − θ+) =

∫

D

f(T ).

Therefore θ− ≥ θ+. Assume that θ− = θ+. By Lemma 5.2 this implies that f(T ) ≡ 0
and hence by the maximum principle T must be constant. By (5.1) we conclude that
T ≡ θ0.

Integrate now (2.5) on [0, an] × Ω:

cn|Ω|θ0 ≤

∫

Ω

u1
nTn(0, ·) −

∫

Ω

∂Tn

∂x
(0, ·),

pass with n→ ∞ and obtain:

(5.17) c|Ω|θ0 ≤ θ0

∫

Ω

u1(0, ·).

Now by (5.3):

(5.18) −

∫

Ω

u1(x, ·) =

∫

[x,+∞)×Ω

div u = 0,

which contradicts (5.17) and Lemma 5.2.

Notice that Lemma 5.4, Lemma 5.2 and (5.16) imply that
∫

D

f(T ) > 0

which together with (5.8) proves (5.4).

Lemma 5.5. For every ǫ > 0 there exists A such that for all sufficiently large n:

|Tn(x, y)| ≤ ǫ ∀(x, y) ∈ [A, an] × Ω.

In particular (5.5) holds.

Proof. We argue by contradiction. Let ǫ0 > 0 and a sequence (xn, x̃n) be such that
lim xn = +∞ and:

(5.19) Tn(xn, x̃n) ≥ ǫ0,

Without loss of generality we consider two cases.
Case 1. Assume that:

lim(an − xn) = y0.

Define Φn(x, x̃) = Tn(x+ an − y0, x̃), ζn(x, x̃) = un(x+ an − y0, x̃). As in step 3 of the
proof of Lemma 5.2 we observe that Φn, ζn converge (uniformly on compacts, together
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with their derivatives) to Φ and ζ satisfying (5.12), (5.13) and Φ(y0, ·) = 0. Now
reasoning exactly as in the proof of Lemma 5.3 we see that Φ converges uniformly to
some limit Φ− ∈ [0, θ0], as x→ −∞. Integrating (5.12) on (−∞, y0] × Ω we get:

c|Ω|Φ− =

∫

Ω

Φx(y0, ·) ≤ 0,

which by Lemma 5.2 implies that Φ− = 0. But now, by maximum principle Φ ≡ 0,
which contradicts (5.19).

Case 2. Assume that

(5.20) (an − xn) → +∞.

Define Φn(x, x̃) = Tn(x + xn, x̃) and ζn(x, x̃) = un(x + xn, x̃), satisfying on R̃n =
[0, an − xn] × Ω:

−cn(Φn)x + ζn · ∇Φn − ∆Φn = 0.

Multiplying the last equation by Φn and integrating over R̃n we obtain:

cn

∫

R̃n

∂|Φn|
2

∂x
−

∫

∂R̃n

|Φn|
2ζn · ~n+ 2

∫

∂R̃n

Φn
∂Φn

∂~n
= 2

∫

R̃n

|∇Φn|
2,

where ~n is the outward normal to ∂R̃n. Using the boundary conditions, this yields:

(5.21)

∫

Ω

[

(ζ1
n − cn)|Φn|

2 − 2Φn∂xΦn

]

(0, ·) ≥ 0

where the superscript in ζ1
n refers to the horizontal component of the vector ζn.

As before, Φn and ζn satisfy the same uniform bounds as Tn and un and hence
converge to some Φ and ζ defined by virtue of (5.20) on whole D and still satisfying
(5.12). By an argument as in the proof of Lemma 5.3 we see that Φ must have left
and right limits Φ± as x → ±∞. Integrating (5.12) there follows c(Φ− − Φ+) = 0
which by Lemma 5.2 implies Φ− = Φ+. Therefore, by the maximum principle Φ must
be constant and say, equal to Φ0. By (5.19) there must be Φ0 ≥ ǫ0. Passing to the
limit in (5.21), we obtain:

(5.22) |Φ0|
2

∫

Ω

(ζ1 − c)(0, ·) ≥ 0.

On the other hand, since div ζ = 0 we have
∫

Ω
ζ1(0, ·) = 0, as in the calculation (5.18).

Finally, (5.22) becomes:
−h|Ω||Φ0|

2 ≥ 0,

which contradicts the positivity of c in Lemma 5.2.

Notice now that Lemmas 5.3, 5.4 and (5.5) imply (5.6) and in particular θ− > 0.

The following lemma gives a sufficient condition for the left limit of T = limn→∞ Tn to
be 1.
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Lemma 5.6. There exists a constant CΩ > 0, depending only on ρn−2 and the geometry
of Ω, such that if (5.7) holds, then θ− = 1.

Proof. In the course of the proof, C will denote any positive constant depending only
on ρn−2 and on the geometry of Ω, that is its dimension n − 1, diameter, Poincare’
and Sobolev constants, etc.

For every x ∈ R denote M(x) = maxx̃∈Ω T (x, x̃), m(x) = minx̃∈Ω T (x, x̃). Notice
first that m(x) is nonincreasing. This can be easily proved for each tn on Rn, using
the maximum principle. Passing with n to ∞, we obtain the same result in the limit.

We now argue by contradiction. If θ− ≤ θ0 then m(x) ≤ θ0 for every x ∈ R and
therefore:

(5.23)

∫

D

[(T − θ0)+]n ≤ |Ω| ·

∫ +∞

−∞

|M(x) −m(x)|n dx.

By Sobolev and Poincare’ inequalities on Ω we get:

M(x) −m(x) = M(x) −
1

|Ω|

∫

Ω

T (x, ·) +
1

|Ω|

∫

Ω

T (x, ·) −m(x)

≤ 2 ‖ T (x, ·) −
1

|Ω|

∫

Ω

T (x, ·) ‖L∞(Ω)≤ C ‖ T (x, ·) −
1

|Ω|

∫

Ω

T (x, ·) ‖W 1,n(Ω)

≤ C ‖ ∇T (x, ·) ‖Ln(Ω) .

Therefore, by (5.23):

(5.24)

∫

D

[(T − θ0)+]n ≤ C

∫

D

|∇T |n.

Now, revisiting the proof of Lemma 3.5 we see that:
∫

D

|∇T |p ≤ C(1 + |c| + ||u||L∞) ·

∫

D

|∇T |p−1

+ C

(
∫

D

f(T )

)
1

p−1

·

(
∫

D

|∇T |p−1

)
p−2
p−1

≤ C(1 + |c| + ||u||L∞)

∫

D

|∇T |p−1 + C

∫

D

f(T ).

By (2.12) we have |c| + ||u||L∞ ≤ C and hence:

(5.25)

∫

D

|∇T |n ≤ C

∫

D

|∇T |2 + C

∫

D

f(T ).

On the other hand, integrating the temperature equation in (2.5) - (2.7) on D, we
obtain:

cθ−|Ω| =

∫

D

f(T ),

∫

D

|∇T |2 +
1

2
cθ2

−|Ω| =

∫

f(T )T,
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which implies:
∫

D

|∇T |2 =

∫

D

(

T −
θ−
2

)

f(T ).

Now combining (5.24), (5.25) and (5.7) we obtain:

3

∫

D

f(T ) ≤
1

C

∫

D

[(T − θ0)+]n ≤

∫

D

(

T −
θ−
2

)

f(T ) +

∫

D

f(T ) ≤ 2

∫

D

f(T ),

if only CΩ is chosen to be smaller than 1/3C above. Therefore f(T ) ≡ 0 and, as in
the proof of Lemma 5.5 we deduce that T must be constant. This contradicts Lemma
5.2.

Remark 5.7. If θ− ≤ θ0, then integrating the equation:

−∆(T − θ0) + u · ∇(T − θ0) − c(T − θ0)x = f(T )

on D, against (T − θ0)+, we obtain:
∫

D

|∇(T − θ0)+|
2 =

∫

D

f(T )(T − θ0)+.

On the other hand, when n = 2, the Poincare inequality implies:
∫

D

[(T − θ0)+]2 ≤ |Ω|2
∫

D

|∇(T − θ0)+|
2,

as for each x ∈ R, the function (T − θ0)+(x, ·) has a zero in Ω (as in Lemma 5.6).
Thus, for n = 2, we obtain θ− = 1 under a conditon that for some ǫ > 0:

∀T ∈ [θ0, 1] f(T ) ≤
1

|Ω|2
(T −θ0)+ and ∀T ∈ (θ0, θ0 + ǫ) f(T ) <

1

|Ω|2
(T −θ0)+.

This condition is weaker than (5.7).

We believe that under the requirement of (5.7) or, similarly, under some smallness
requirement on Ω, the left limit θ− = 1 should follow from f(T ) 6≡ 0 and θ+ = 0,
for any traveling wave solution of (1.1) (2.4). Theorem 5.6 and Remark 5.7 prove it
for the wave (T, u) obtained in our limiting procedure. We believe that, actually, this
wave is unique, under the mentioned conditions.

6. Appendix A: a proof of Lemma 3.8

In this section we want to give a proof of the local Sobolev up-to-the boundary
estimates for strong solutions of the stationary Stokes problem in a bounded, smooth
and simply connected domain U ⊂ Rn:

∆u+ ∇p = g in U,

div u = 0 in U,(6.1)

u = 0 on ∂U.
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Namely, for every p ≥ 1 and every integer k ≥ 0 there holds:

(6.2) ||u||W k+3,p(Q) ≤ C
(

||∇g||W k,p(2Q) + ||u||W 1,p(2Q)

)

,

where for a given x ∈ U and ǫ > 0 sufficiently small we define: Q = U ∩ B(x, ǫ) and
2Q = U ∩ B(x, 2ǫ). The constant C in (6.2) depends only on the geometry of the
domain, and in the particular setting of this paper, it is uniform in a. Therefore the
proof of Lemma 3.8 follows directly, through an interpolation inequality, which allows
to exchange the Sobolev norm of u in the right hand side of (6.2) with its Lp norm.

To prove (6.2) we will first write an equivalent to (6.1) elliptic problem, coupled in
the equations as well as in the boundary conditions. We then verify the Lopatinsky-
Shapiro conditions at the boundary and deduce the estimate (6.2) from the classical
theory in [ADN]. When n = 3, the equivalent system can be found, roughly speaking,
by taking curl of the equation in (6.1) (see Remark 6.3). For higher dimensions, the
natural generalization is to use the exterior derivative and the language of differential
forms [GMS].

Given smooth vector fields u, g : U −→ Rn and a function p : U −→ R, we will
naturally interpret them as respectively 1- and 0- differential forms on U :

u, f ∈ Ω1(U), p ∈ Ω0(U).

By ∆ : Ωk −→ Ωk we denote the Laplace-Beltrami operator:

∆ = dδ + δd

where d : Ωk −→ Ωk+1 is the exterior derivative of forms and δ : Ωk −→ Ωk−1 is the
codifferential operator. Recall that (in the flat metrics of Rn) the components of the
differential form ∆α are given by the usual Laplacian of the components of α, for any
α ∈ Ωk. The trace of α on ∂U , and the normal and the tangential parts of trace are
denoted by, respectively:

tr α, ntr α, ttr α.

The system (6.1) can be now written as:

∆u+ dp = g in Ω1(U),

δu = 0 in Ω1(U),(6.3)

tr u = 0 on ∂U.

Denoting ω = du ∈ Ω2, the above system of equations clearly implies:

∆u− δω = 0 in Ω1(U),

∆ω = dg in Ω2(U),

tr u = 0 on ∂U,(6.4)

ntr (du− ω) = 0 on ∂U,

ntr (dω) = 0 on ∂U.
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The second equality above follows by applying the operator d to the first equation in
(6.3) and recalling that dd = 0.

Lemma 6.1. The systems (6.1), (6.3) and (6.4) are equivalent.

Proof. It is enough to prove that if u, ω satisfy (6.4) then (6.3) must hold, for some
p ∈ Ω0. This will follow by a sequence of steps, showing that:

dω = 0,(6.5)

ω = du,(6.6)

div u = 0,(6.7)

∆u− g ∈ im(d).(6.8)

To prove (6.5) notice first that the differential form α = dω satisfies:

∆α = 0 in U,

ntr α = 0 on ∂U.(6.9)

By the Hodge-Morrey theorem [GMS], the above problem has a unique solution in
the class of forms perpendicular (with respect to the L2 product 〈·, ·〉 of forms) to
ker(d) ∩ ker(δ) ∩ ker(ntr). This class clearly contains im(d), because the product:

〈dω, β〉 = −〈ω, δβ〉+

∫

∂U

ttr ω · ntr β,

is 0, if δβ = 0 and ntr β = 0. This proves (6.5).
Now, α = du−ω satisfies (6.9) as well and moreover in view of (6.5) and the simple

connectedness of U , again we have α ∈ im(d). Therefore, the same argument as above
implies α = 0, proving (6.6).

By (6.6) and the first equation in (6.4) we deduce δu ∈ ker(d). This means that
div u is constant in U . By Stokes’ theorem and the first boundary condition in (6.4)
we conclude (6.7).

Finally, (6.8) follows from (6.6), the second equation in (6.4) and the simple con-
nectedness of U .

We will now concentrate on the elliptic system (6.4). At a first glance, we notice
that the number of its boundary conditions is n+

(

n
2

)

−
(

n−1
2

)

+
(

n
3

)

−
(

n−1
3

)

= n+
(

n
2

)

which equals the number of unknowns and the number of equations. Therefore, we
may hope for the well-posedness of (6.4). Indeed, we have:

Lemma 6.2. The system (6.4) satisfies the Lopatinsky-Shapiro conditions and (6.2)
holds.

Proof. We will use the Euclidean metric in U , so that:

u(x) =

n
∑

i=1

ui(x) dxi, ω(x) =
∑

1≤i<j≤n

ωi,j(x) dxi ∧ dxj,
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Using the notation of [ADN], the square operator matrix L of dimension d =
(

n
2

)

+ n,

and its adjugate matrix Ladj are given in the block form:

(6.10) L =

[

∆ · Id(n

2)
0

−A ∆ · Idn

]

, Ladj = ∆d−2

[

∆ · Id(n

2)
0

A ∆ · Idn

]

.

The coefficients of the above matrices are polynomials in the variables x1, . . . , xn, and
in particular ∆ = x2

1 + . . . + x2
n. The appropriate monomials appearing in matrix A

can be derived from the formula:

δω =
n
∑

i=1

(

∑

j 6=i

sgn (i− j)
∂ω(i,j)

∂xj

)

dxi,

where ω(j,i) = ωj,i if j < i or ωi,j if j > i.
The first

(

n
2

)

rows of the matrix L correspond to the second equation is (6.4), that

is to the operator ∆ω; to these rows we assign weights s = 0. The first
(

n
2

)

columns
correspond to the components of the differential form ω; to these columns we assign
weights t = 2. The following n rows correspond to the linear operator ∆u − δω; we
impose weights s = −1. The following n columns correspond to the components of u,
we assign weights t = 3. Clearly, with this choice of weights we have: L′ = L.

We want to verify the algebraic version of the Lopatinsky-Shapiro conditions (the
complementing condition), at a boundary point P ∈ ∂U and relative to any tangent
vector Θ, perpendicular to the unit normal ~nP to ∂U at P . First of all, notice that
because of the coordinate invariance of the system (6.4), we may without loss of
generality assume that

P = 0, ~nP = dx1, Θ = dx2.

With these simplifications, the rectangular matrix A is given by:

A =

−1 0

x1 · Idn−1
Idn−2

ω1,2 . . . ω1,n ω2,3 . . . ω2,n ω3,4 . . . ωn−1,n

u1

u2

u3

...

un

,

where the shaded minors are all 0.
We need now to derive the boundary operator matrix B, calculate the product

B′ · Ladj , write the elements as the latter matrix as polynomials in τ = x1 and check
that its rows are linearly independent modulo the complex polynomial:

M+(τ) = (τ − i)d.
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This is because the polynomial detL(τ) = ∆d(τ) = (τ 2 + 1)d has i as the only root
with positive imaginary part, and it is of multiplicity d.

The first n − 1 rows of B will correspond to the operator ntr (du − ω) and its
coefficients at dx1 ∧ dxi, for 1 < i ≤ n; we assign them the weights r = −2. The
following

(

n−1
2

)

rows, to which we assign weights r = −1, will correspond to the
coefficients of ntr (dω) at dx1 ∧ dxi ∧ dxj , for 1 < i < j ≤ n. The last n rows will
correspond to u = 0 on ∂U and coefficients u1, . . . , un of the differential form u; to
these rows we assign weights r = −3. Since u = 0 on ∂U , we have:

(ntr (du))1,i =
∂ui

∂x1
−
∂u1

∂xi
=
∂ui

∂x1
, ∀ 1 < i ≤ n,

(ntr (dω))1,i,j =
∂ωi,j

∂x1
−
∂ω1,j

∂xi
+
∂ω1,i

∂xj
∀ 1 < i < j ≤ n.

By an elementary calculation we thus see that the matrices B = B′ and B · Ladj have
the following block structure:

B(τ) =

−Idn−1 τ · Idn−1

−Idn−2

τ · Id(n−1
2 )

Idn

ω1,2. . . ω1,n ω2,3 . . . ωn−1,nu1 . . . un

dx1 ∧ dx2

...

dx1 ∧ dxn
dx1 ∧ dx2 ∧ dx3...
dx1 ∧ dx2 ∧ dxn

...

dx1 ∧ dxn−1 ∧ dxn

u1

...

un

,
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B · Ladj(τ) = (τ 2 + 1)d−2 ·

−1 0

−Idn−1
(τ2 + 1)τ ·

Idn−1

τ · Idn−1

τIdn−2

−(τ2 + 1)·

Idn−2

Idn−2

(τ 2 + 1)τ · Id(n−1
2 )

(τ2 + 1)Idn

2 . . . n 3 . . . n 1 . . . n

2
3
...
n
3
...
n

...

1
2
...
n

,

where again the shaded minors are all 0.
We now want to reduce each element of the last matrix modulo M+ and evaluate

it at τ = 0. It is clear that if the matrix W composed of such numbers is invertible,
then the Lopatinsky-Shapiro conditions hold as well.

The elements of W are calculated in an elementary way. For example, for the
reduction of the polynomial ∆d−2(τ) = (τ 2 +1)d−2, we notice that if a polynomial r(τ)
of degree < d satisfies:

∆d−2(τ) = (τ − i)d−2(τ + i)d−2 = (τ − i)d · q(τ) + r(τ),

then necessarily (τ + i)d−2 − (τ − i)2 · q(τ) = aτ + b for some a, b ∈ C. We obtain:

ai+ b = (2i)d−2,

a =
d

dτ |τ=0

[

(τ + i)d−2 − (τ − i)2 · q(τ)
]

= (2i)d−3(d− 2),

and thus:

r(0) = (τ − i)d−2 ·
(

(τ + i)d−2 − (τ − i)2q(τ)
)

|τ=0
= (−i)d−2b = 2d−3(4 − d),

which we symbolically denote: ∆d−2 −→ w1 = 2d−3(4−d). Similarly, for other elements
of the matrix B · Ladj we have:

τ · ∆d−2 −→ w2 = 2d−3i(2 − d),

(τ 2 + 1)τ · ∆d−2 −→ w3 = 2d−1i,

(τ 2 + 1) · ∆d−2 −→ w4 = 2d−1.
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The matrix W is now obtained from B · Ladj by replacing each of its elements as
indicated above. Since every wi is nonzero and also −w1 − iw2 6= 0, we see (after
performing row operations on W ) that the invertibility of W is equivalent to the
invertibility of the following square matrix (of dimension 2(n− 2)):

W̃ =

[

(−w1 − iw2) · Idn−2, (w2 − iw1) · Idn−2

−w4 · Idn−2 w3 · Idn−2

]

.

One checks directly that det W̃ 6= 0, which proves the validity of the complementing
condition.

Consequently and in agreement with our choice of weights s, t, r, we obtain the
following a-priori bound:

||u||W k+3,p(Q) + ||ω||W k+2,p(Q) ≤ C
(

||dg||W k,p(2Q) + ||u||Lp(2Q) + ||ω||Lp(2Q)

)

,

which clearly implies (6.2).

Remark 6.3. When n = 3, the system (6.4) is equivalent to (after taking into account
the possible change of sign in the components of ω = curl u):

∆u+ curl ω = 0 in U,

∆ω = curl g in U,

u = 0 on ∂U,

t(curl u− ω) = 0 on ∂U,

div ω = 0 on ∂U,

where for a vector field v, by t(v) we denote its two tangential components on ∂U .
The above system follows from (6.1) by taking curl of the first equation and recalling
the formula: curl curl = −∆ + ∇div.

7. Appendix B: a remark concerning the finite Prandtl number case

It is clear that all the uniform bounds in section 3, up to Lemma 3.8, remain valid as
well for the compactified version of the full problem (1.2), that is (2.5) - (2.11) where
the equation (2.6) is replaced by:

(7.1)
1

σ
(−cux + u · ∇u) − ∆u+ ∇p = T~ρ.

The presence of c in (7.1) should allow to improve the bound |c| � ||u||L∞ in Lemma
3.3, which follows from equation (2.5) alone.

In this section we want to remark that an improvement of the propagation speed
bound is crucial for extending Theorem 1.1 to the Navier-Stokes-Boussinesq system
(1.2) in dimension n ≥ 3.

When n = 2, the bound in Lemma 3.3 is enough, as shown in [CLR]. Roughly

speaking, this follows from the bounds ||u||L∞ � ||u||W 1,2+ǫ and ||u||W 1,2 � ||u||
1/2
L∞.
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Using interpolation inequalities we are still able to close the estimates because the
exponent of ||u||L∞ in the latter inequality is much smaller than the exponent of
||u||L∞ in the former one.

In general, we only have ||u||L∞ � ||u||W 1,n+ǫ. To make the argument as above work
for n > 2, we would need a uniform Lp (p > 2) estimate on u solving (7.1) and in
particular the estimate should be uniform in c and a.

Remark 7.1. Consider the problem:

−∆u− cux = g in [0, 2a] × Ω,(7.2)

u = 0 on ∂([0, 2a] × Ω).

We are interested in an estimate of the form:

||∇u||Lp ≤ C||g||Lp

with C independent from a and c. We will show that it is not possible unless p = 2.

Let v 6= 0 be an eigenfunction, solving:

−∆u = λv in Ω,

v = 0 on ∂Ω

for some given eigenvalue λ > 0 of −∆ on Ω. Define u(x, x̃) = q(x) · v(x̃), which solves
(7.2) with g(x, x̃) = −v(x̃) iff q solves the following ODE:

−q′′ − cq′ + λq + 1 = 0,

q(0) = q(2a) = 0.

The function r(x) = 1+λq(x) is of the form r(x) = Aes1x +Bes2x where s1 ≈ λ/c and
s2 ≈ −c as c → ∞. The constants A and B can be obtained through the boundary
conditions on q and one sees that they satisfy: A ≈ e−2λa/c and B = 1 − A.

Assume now that a = c and calculate:
(

λp

∫ 2a

0

|q′(x)|p dx

)

1
p

≥

(
∫ 1

0

|r′(x)|p dx

)

1
p

≥ −A||s1e
s1x||Lp[0,1] +B||s2e

s2x||Lp[0,1].

Now the first norm in the right hand side of the above converges to 0 as c→ ∞ while
the second one is bounded from below by (cp−1/(p4p−1)1/p, for large c. Therefore we
have:

||∇u||Lp ≥ ||ux||Lp = ||v||Lp(Ω) ·

(
∫ 2a

0

|q′(x)|p dx

)

1
p

≥ C||v||Lp(Ω) · c
p−1

p ,

||g||Lp = ||v||Lp(Ω) · (2c)
1
p ,

where C depends on λ and p but not on c. This proves the claim.

Acknowledgments. I gratefully acknowledge conversations with V. Šverák and S.
Müller.
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