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Abstract. The purpose of this paper is to report on the recent development concerning the
analysis and the rigorous derivation of thin film models for structures exhibiting residual stress
at free equilibria. This phenomenon has been observed in different contexts: growing leaves,
torn plastic sheets and specifically engineered polymer gels. The study of wavy patterns in these
contexts suggest that the sheet endeavors to reach a non-attainable equilibrium and hence assumes
a non-zero stress rest configuration.

1. Elastic energy of a growing tissue and the non-Euclidean elasticity

This paper concerns the elastic structures which exhibit non-zero strain at free equilibria. Many
growing tissues (leaves, flowers or marine invertebrates) attain complicated configurations during
their free growth. Recent work has focused on some of the related questions by using variants
of thin plate theory [1, 5, 4, 23]. However, the theories used are not all identical and some of
them arbitrarily ignore certain terms and boundary conditions without prior justification. This
suggests that it might be useful to rigorously derive an asymptotic theory for the shape of a
residually strained thin lamina to clarify the role of the assumptions used while shedding light on
the errors associated with the use of the approximate theory that results. Recently, such rigorous
derivations were carried out [8, 17, 19, 21] in the context of standard nonlinear elasticity for thin
plates and shells.

The purpose of this paper is to present these results in a concise manner, departing from
the 3d incompatible elasticity theory conjectured to explain the mechanism for the spontaneous
formation of non-Euclidean metrics. Namely, recall that a smooth Riemannian metric on a simply
connected domain can be realized as the pull-back metric of an orientation preserving deformation
if and only if the associated Riemann curvature tensor vanishes identically. When this condition
fails, one seeks a deformation yielding the closest metric realization. It is conjectured that the
same principle plays a role in the developmental processes of naturally growing tissues, where the
process of growth provides a mechanism for the spontaneous formation of non-Euclidean metrics
and consequently leads to complicated morphogenesis of the thin film exhibiting waves, ruffles
and non-zero residual stress.

Below, we set up a variational model describing this phenomenon by introducing the non-
Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under
the proper scaling. Heuristically, a sequence of functionals Fn is said to Γ-converge to a limit
functional F if the the minimizers of Fn, if converging, have a minimizer of F as a limit.

Consider a sequence of thin 3d films Ωh = Ω×(−h/2, h/2), viewed as the reference configurations
of thin elastic tissues. Here, Ω ⊂ R2 is an open, bounded and simply connected set which we

Date: May 9, 2013.
1991 Mathematics Subject Classification. 74K20, 74B20.
Key words and phrases. non-Euclidean plates, nonlinear elasticity, Gamma convergence, calculus of variations.

1



2 MARTA LEWICKA

refer to as the mid-plate of thin films under consideration. Each Ωh is now assumed to undergo a
growth process, described instantaneously by a (given) smooth tensor:

ah = [ahij ] : Ωh −→ R3×3 such that det ah(x) > 0.

According to the formalism in [25], the following multiplicative decomposition:

(1.1) ∇u = Fah

is postulated for the gradient of any deformation u : Ωh −→ R3. The tensor F = ∇u(ah)−1

corresponds to the elastic part of u, and accounts for the reorganization of Ωh in response to the
growth tensor ah. The validity of decomposition (1.1) into an elastic and inelastic part requires
that it is possible to separate out a reference configuration, and thus this formalism is most
relevant for the description of processes such as plasticity, swelling and shrinkage in thin films, or
plant morphogenesis.

The elastic energy of u depends now only on F :

(1.2) IhW (u) =
1

h

ˆ
Ωh
W (F ) dx =

1

h

ˆ
Ωh
W (∇u(ah)−1) dx, ∀u ∈W 1,2(Ωh,R3).

We remark that although our results are valid for thin laminae that might be residually strained
by a variety of means, we only consider the one-way coupling of growth to shape and ignore the
feedback from shape back to growth (plasticity, swelling, shrinkage etc). However, it seems fairly
easy to include this coupling once the basic coupling mechanisms are known.

In (1.2), the energy density W : R3×3 −→ R+ is a nonlinear function, assumed to be C2 in a
neighborhood of SO(3) and assumed to satisfy the following conditions of normalization, frame
indifference and nondegeneracy:

∃c > 0 ∀F ∈ R3×3 ∀R ∈ SO(3) W (R) = 0, W (RF ) = W (F )

W (F ) ≥ c dist2(F, SO(3)).
(1.3)

The reason for using a nonlinear elasticity model (rather than the more familiar linear elasticity)
is that, as our analysis shows, the resulting deformations uh when h → 0, are expected to be of
order O(1), even though their gradients are locally O(h) close to rigid rotations.

We now compare the above approach with the ’target metric’ formalism [5, 20]. On each Ωh

one assumes to be given a smooth Riemannian metric gh = [ghij ]. A deformation u of Ωh is then

an orientation preserving realization of gh, when:

(∇u)T∇u = gh and det∇u > 0,

or equivalently, by polar decomposition theorem:

(1.4) ∇u(x) ∈ Fh(x) =
{
R
√
gh(x); R ∈ SO(3)

}
a.e. in Ωh.

It is hence instructive to study the following energy, bounding from below IhW (u):

(1.5) Ĩhdist(u) =
1

h

ˆ
Ωh

dist2(∇u(x),Fh(x)) dx ∀u ∈W 1,2(Ωh,R3).

The functional Ĩhdist measures the average pointwise deviation of the deformation u from being an

orientation preserving realization of gh. Note that Ĩhdist is comparable in magnitude with IhW , for

W = dist2(·, SO(3)). Also, observe that the intrinsic metric of the material is transformed by ah

to the target metric gh = (ah)Tah and, for isotropic W , only the symmetric positive definite part

of ah given by
√
gh plays the role in determining the deformed shape.
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2. The residual stress and a result on its scaling

Note that one could define the energy as the difference between the pull-back metric of a
deformation u and the given metric: Ihstr(u) =

´
|(∇u)T∇u− gh|2 dx. However, such ’stretching’

functional is not appropriate from the variational point of view, because there always exists
u ∈ W 1,∞ such that Ihstr(u) = 0. Further, if the Riemann curvature tensor Rh associated to gh

does not vanish identically, say Rhijkl(x) 6= 0, then u has a ’folding structure’ [9]; it cannot be

orientation preserving (or reversing) in any open neighborhood of x.

As proved in [20], the functionals IhW , ĨhW below and Ĩhdist have strictly positive infima for non-

flat gh, which points to the existence of non-zero stress at free equilibria (in the absence of external
forces or boundary conditions):

Theorem 2.1. For each fixed h, the following two conditions are equivalent:

(i) The Riemann curvature tensor Rhijkl 6≡ 0,

(ii) inf
{
Ĩhdist(u); u ∈W 1,2(Ωh,R3)

}
> 0.

Several interesting questions further arise in the study of the proposed energy functionals. A
first one is to determine the scaling of the infimum energy in terms of the vanishing thickness
h→ 0. Another is to find the limiting zero-thickness theories under obtained scaling laws.

In [20], we considered the case where gh is given by a tangential Riemannian metric [gαβ] on
Ω, and is independent of the thickness variable:

(2.1) gh = g(x′, x3) =

 [gαβ(x′)
]

0
0

0 0 1

 ∀x′ ∈ Ω, x3 ∈ (−h/2, h/2).

The above particular choice of the metric is motivated by the results of [14]. The experiment
presented therein consisted in fabricating programmed flat disks of gels having a non-constant
monomer concentration which induces a ’differential shrinking factor’. The disk was then acti-
vated in a temperature raised above a critical threshold, whereas the gel shrunken with a factor
proportional to its concentration. This process defined a new target metric on the disk, of the
form (2.1) and radially symmetric. Consequently, the metric induced hence a 3d configuration in
the initially planar plate; one of the most remarkable features of this deformation is the onset of
some transversal oscillations (wavy patterns), which broke the radial symmetry.

Following our point of view, note that if [gαβ] in (2.1) has non-zero Gaussian curvature κ[gαβ ],

then each Rh 6≡ 0. In [20], we observed the following:

Theorem 2.2. [gαβ] has an isometric immersion y ∈W 2,2(Ω,R3) if and only if:

h−2 inf Ĩhdist ≤ C

(for a uniform constant C). Also, κ[gαβ ] 6≡ 0 if and only if, with a uniform positive constant c:

h−2 inf Ĩhdist ≥ c > 0.

The existence (or lack of thereof) of local or global isometric immersions of a given 2d Riemann-
ian manifold into R3 is a longstanding problem in differential geometry, its main feature being
finding the optimal regularity. By a classical result of Kuiper [15], a C1 isometric embedding into
R3 can be obtained by means of convex integration (see also [9]). This regularity is far from W 2,2,
where information about the second derivatives is also available. On the other hand, a smooth
isometry exists for some special cases, e.g. for smooth metrics with uniformly positive or negative
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Gaussian curvatures on bounded domains in R2 (see [11], Theorems 9.0.1 and 10.0.2). Counterex-
amples to such theories are largely unexplored. By [13], there exists an analytic metric [gαβ] with
nonnegative Gaussian curvature on 2d sphere, with no C3 isometric embedding. However such
metric always admits a C1,1 embedding (see [10] and [12]). For a related example see also [24].

3. The prestrained Kirchhoff model

Consider now a class of more general 3d non-Euclidean elasticity functionals:

(3.1) ĨhW (u) =

ˆ
Ωh
W (x′,∇u(x)) dx,

where the inhomogeneous stored energy density W : Ω × Rn×n −→ R+ satisfies the given below
conditions of frame invariance, normalization, growth and regularity, as in (1.3): with respect to
the energy well Fh given in (1.4), relative to gh = g as in (2.1). Note that Fh(x) = F(x′) is
independent of h and of x3.

(i) W (x′, RF ) = W (x′, F ) for all R ∈ SO(3),
(ii) W (x′,

√
g(x′)) = 0,

(iii) W (x′, F ) ≥ c dist2(F,F(x′)), with some uniform constant c > 0,
(iv) W has regularity C2 in some neighborhood of the set {(x′, F ); x′ ∈ Ω, F ∈ F(x′)}.

The properties (i) – (iii) are assumed to hold for all x ∈ Ω and all F ∈ R3×3.

The following two results provide the description of the limiting behavior of the energies ĨhW as

h→ 0. Namely, we prove that any sequence of deformations uh with ĨhW (uh) ≤ Ch2, converges to
a W 2,2 regular isometric immersion y of the metric [gαβ]. Conversely, every y with these properties

can be recovered as a limit of uh whose energy scales like h2. The Γ-limit [3] of the energies is a
curvature functional on the space of all W 2,2 realizations y of [gαβ] in R3:

(3.2)
1

h2
ĨhW

Γ−→ I2(y) where I2(y) =
1

24

ˆ
Ω
Q̃2(x′)

(√
[gαβ]

−1

(∇y)T∇~n
)

dx′,

Here ~n is the unit normal to the image surface y(Ω), while Q̃2(x′) are the following quadratic
forms, nondegenerate and positive definite on the symmetric 2× 2 tensors:

Q̃3(x′)(F ) = ∇2W (x′, ·)|√g(x′)(F, F ), Q̃2(x′)(F2×2) = min{Q̃3(x′)(F̃ ); F̃2×2 = F2×2}.

We use the following notational convention: for a matrix F , its n×m principle minor is denoted
by Fn×m and the superscript T refers to the transpose of a matrix or an operator.

Theorem 3.1. Assume that a given sequence of deformations uh ∈W 1,2(Ωh,R3) satisfies:

(3.3) ĨhW (uh) ≤ Ch2,

where C > 0 is a uniform constant. Then, for some sequence of constants ch ∈ R3, the following
holds for the renormalized deformations yh(x′, x3) = uh(x′, hx3)− ch ∈W 1,2(Ω1,R3):

(i) yh converge, up to a subsequence, in W 1,2(Ω1,R3) to y(x′, x3) = y(x′) and y ∈W 2,2(Ω,R3).

(ii) The matrix field Q(x′) with columns Q(x′) =
[
∂1y(x′), ∂2y(x′), ~n(x′)

]
∈ F(x′), for a.e.

x′ ∈ Ω. Here:

(3.4) ~n =
∂1y × ∂2y

|∂1y × ∂2y|
is the (well defined) normal to the image surface y(Ω). Consequently, y realizes the mid-
plate metric: (∇y)T∇y = [gαβ].
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(iii) We have the lower bound: lim inf
h→0

1

h2
ĨhW (uh) ≥ I2(y), where I2 is given in (3.2).

We further prove that the lower bound in (iii) above is optimal, in the following sense. Let
y ∈ W 2,2(Ω,R3) be a Sobolev regular isometric immersion of the given mid-plate metric, that is
(∇y)T∇y = [gαβ]. The normal vector ~n ∈W 1,2(Ω,R3) is then given by (3.4) and it is well defined

because |∂1y × ∂2y| = (det g)1/2 > 0. We have:

Theorem 3.2. For every isometric immersion y ∈W 2,2(Ω,R3) of [gαβ], there exists a sequence of

recovery deformations uh ∈W 1,2(Ωh,R3) such that the assertion (i) of Theorem 3.1 hold, together
with:

lim
h→0

1

h2
ĨhW (uh) = I2(y)

Assume now a slightly more general case of plates with slowly varying thickness, that is when:

Ωh = {(x′, x3); x ∈ Ω, −hq1(x′) < x3 < hq2(x′)}

with some positive C1 functions q1, q2 : Ω −→ (0,∞). In this setting, the same results as in
Theorem 3.1 and 3.2 have been reproved in [22], with the limiting functional:

Iq1,q22 (y) =
1

24

ˆ
Ω

(
q1(x′) + q2(x′)

)3Q̃2(x′)
(√

[gαβ]
−1

(∇y)T∇~n
)

dx′.

For classical elasticity (gh = Id) of shells with mid-surface of arbitrary geometry and slowly
oscillating boundaries as above, the analysis has been previously carried out in [18].

An important reference in the context of Theorems 3.1 and 3.2 (for flat films) is [26], containing
the derivation of Kirchhoff plate theory for heterogeneous multilayers from 3d nonlinear energies
given through an inhomogeneous density in

´
W (x3/h,∇u).

4. A rigidity estimate

As a crucial ingredient of the proof of compactness in Theorem 3.1, we present a generalization
of the nonlinear rigidity estimate obtained [7] in the Euclidean setting, extended to the non-
Euclidean metrics in [20]. Note that in case gh = Id, the infimum of Ihdist in (1.5) is naturally 0
and is attained only by the rigid motions. In [7], the authors proved an optimal estimate of the
deviation in W 1,2 of a deformation u (on Ωh), from rigid motions, in terms of the energy Ihdist(u).

In our setting, since there is no realization of Ihdist(u) = 0 if the Riemann curvature of the metric

gh is non-zero, we choose to estimate the deviation of the deformation from a linear map at the
expense of an extra term, proportional to the gradient of the metric.

Theorem 4.1. Let U be an open, bounded subset of Rn and let g be a smooth (up to the boundary)
metric on U . For every u ∈W 1,2(U ,Rn) there exists Q ∈ Rn×n such that:ˆ

U
|∇u(x)−Q|2 dx ≤ C

(ˆ
U

dist2
(
∇u, SO(n)

√
g(x)

)
dx+ ‖∇g‖2L∞(diam U)2|U|

)
,

where the constant C depends on ‖g‖L∞, ‖g−1‖L∞, and on the domain U . The dependence on
U is uniform for a family of domains which are bilipschitz equivalent with controlled Lipschitz
constants.

For an embeddable metric g (i.e. whose Rijkl ≡ 0) a related result has been obtained in [2];
namely an estimate of the deviation of (orientation preserving) deformation u from the realizations
of g in terms of the L1 stretching energy

´
|(∇u)T∇u− g|.
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5. A hierarchy of scalings

Given a sequence of growth tensors ah (say, each close to Id) defined on Ωh, the general objective
is now to analyze the behavior of the minimizers of the corresponding energies IhW as h → 0.

By Theorem 2.1, the infimum: mh = inf
{
IhW (u); u ∈ W 1,2(Ωh,R3)

}
must be strictly positive

whenever the Riemann tensor of the metric gh = (ah)Tah does not vanish identically on Ωh. This
condition for gh, under suitable scaling properties, can be translated into a first order curvature
condition (5.1) below. In a first step (Theorem 5.1) we established [16] a lower bound on mh

in terms of a power law: mh ≥ chβ, for all values of β greater than a critical β0 in (5.2). This
critical exponent depends on the asymptotic behavior of the perturbation ah − Id in terms of the
thickness h. Under existence conditions for certain classes of isometries, it can be shown that
actually mh ∼ hβ0 .

Theorem 5.1. For a given sequence of growth tensors ah define their variations:

V ar(ah) = ‖∇tan(ah|Ω)‖L∞(Ω) + ‖∂3a
h‖L∞(Ωh)

together with the scaling in h:

ω1 = sup

{
ω; lim

h→0

1

hω
V ar(ah) = 0

}
.

Assume that: ‖ah‖L∞(Ωh) + ‖(ah)−1‖L∞(Ωh) ≤ C and ω1 > 0.
Further, assume that for some ω0 ≥ 0, there exists the limit:

εg(x
′) = lim

h→0

1

hω0

 h/2

−h/2
ah(x′, t)− Id dt in L2(Ω,R3×3).

which moreover satisfies:

(5.1) curlT curl (εg)2×2 6≡ 0,

and that ω0 < min{2ω1, ω1 + 1}.
Then, for every β with:

(5.2) β > β0 = max{ω0 + 2, 2ω0},

there holds: lim sup
h→0

1

hβ
inf Ih0 = +∞.

We expect it should be possible to rigorously derive a hierarchy of prestrained limiting theories,
differentiated by the embeddability properties of the target metrics, encoded in the scalings of (the
components of) their Riemann curvature tensors. This is in the same spirit as the different scalings
of external forces lead to a hierarchy of nonlinear elastic plate theories displayed by Friesecke,
James and Müller in[8]. For shells, that are thin films with mid-surface or arbitrary (non-flat)
geometry, an infinite hierarchy of models was proposed, by means of asymptotic expansion in [21],
and it remains in agreement with all the rigorously obtained results [6, 17, 18, 19].

6. The prestrained von Kármán model

Towards studying the dynamical growth problem (that is, incorporating the feedback from the
minimizing shape uh at the prior time-step, to growth tensor ah at the current time-step) in [16]
we considered the growth tensor:

(6.1) ah(x′, x3) = Id + h2εg(x
′) + hx3γg(x

′),
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with given matrix fields εg, γg : Ω −→ R3×3. Note that the assumptions of Theorem 5.1 do not
hold, since in the present case ω0 = 2ω1 = ω1 + 1 = 2.

We proved that, in this setting inf IhW ≤ Ch4, while the lower bound h−4 inf IhW ≥ c > 0 is
equivalent to:

(6.2) curl((γg)2×2) 6≡ 0 or 2curlT curl(εg)2×2 + det(γg)2×2 6≡ 0,

which are the (negated) linearized Gauss-Codazzi equations corresponding to the metric I =
Id + h2(εg)2×2 and the second fundamental form II = 1

2h(γg)2×2 on Ω. Equivalently, the above
conditions guarantee that the highest order terms in the expansion of the Riemann curvature
tensor components R1213, R2321 and R1212 of gh = (ah)Tah do not vanish. Also, either of them
implies that inf I4 > 0 (see definition below), which yields the lower bound on inf IhW .

The Γ-limit of the rescaled energies is, in turn, expressed in terms of the out-of-plane displace-
ment v ∈W 2,2(Ω,R) and in-plane displacement w ∈W 1,2(Ω,R2):

1

h4
IhW

Γ−→ I4 where

I4(w, v) =
1

24

ˆ
Ω
Q2

(
∇2v +

1

2
(γg)2×2

)
+

1

2

ˆ
Ω
Q2

(
sym∇w +

1

2
∇v ⊗∇v − 1

2
(εg)2×2

)
,

(6.3)

with the quadratic nondegenerate form Q2, acting on matrices F ∈ R2×2:

Q2(F ) = min{Q3(F̃ ); F̃ ∈ R3×3, F̃2×2 = F} and Q3(F̃ ) = D2W (Id)(F̃ ⊗ F̃ ).

The two terms in (6.3) measure: the first order in h change of II, and the second order change in
I, under the deformation id+ hve3 + h2w of Ω. Moreover, any sequence of deformations uh with
IhW (uh) ≤ Ch4 is, asymptotically, of this form.

More precisely, we proved in [16]:

Theorem 6.1. Let the growth tensor ah be as in (6.1). Assume that the energies of a sequence
of deformations uh ∈W 1,2(Ωh,R3) satisfy:

(6.4) IhW (uh) ≤ Ch4,

where W fulfills (1.3). Then there exist proper rotations R̄h ∈ SO(3) and translations ch ∈ R3

such that for the normalized deformations:

yh(x′, x3) = (R̄h)Tuh(x′, hx3)− ch : Ω1 −→ R3

the following holds.

(i) yh(x′, x3) converge in W 1,2(Ω1,R3) to x′.
(ii) The scaled displacements:

(6.5) V h(x′) =
1

h

 1/2

−1/2
yh(x′, t)− x′ dt

converge (up to a subsequence) in W 1,2(Ω,R3) to the vector field of the form (0, 0, v)T ,
with the only non-zero out-of-plane scalar component: v ∈W 2,2(Ω,R).

(iii) The scaled in-plane displacements h−1V h
tan converge (up to a subsequence) weakly in W 1,2(Ω,R2)

to an in-plane displacement field w ∈W 1,2(Ω,R2).
(iv) Recalling the definition (6.3), there holds:

lim inf
h→0

1

h4
IhW (uh) ≥ I4(w, v),
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The limsup part of the Γ-convergence statement in the below Theorem 6.2 establishes that
for any pair of displacements (w, v) in suitable limit spaces, one can construct a sequence of 3d
deformations of thin plates Ωh which approximately yield the energy I4(w, v). The form of such
recovery sequence delivers an insight on how to reconstruct the 3d deformations out of the data
on the mid-plate Ω. In particular, comparing the present von Kármán growth model with the
classical model ([8], Section 6.1) we observe the novel warping effect in the non-tangential growth.

Theorem 6.2. Assume the setting of Theorem 6.1. For every w ∈ W 1,2(Ω,R3) and every v ∈
W 2,2(Ω,R), there exists a sequence of deformations uh ∈ W 1,2(Sh,R3) such that the following
holds:

(i) The sequence yh(x′, x3) = uh(x′, hx3) converge in W 1,2(Ω1,R3) to x′.

(ii) V h(x′) = h−1

 h/2

−h/2
(uh(x′, t)− x′) dt converge in W 1,2(Ω,R3) to (0, 0, v)T .

(iii) h−1V h
tan converge in W 1,2(Ω,R2) to w.

(iv) Recalling the definition (6.3) one has:

lim
h→0

1

h4
IhW (uh) = I4(w, v).

The main consequences of the Γ-convergence results above are as follows:

Corollary 6.3. Assume the setting of Theorem 6.1. Then:

(i) There exist uniform constants C, c ≥ 0 such that for every h there holds:

(6.6) c ≤ 1

h4
inf IhW ≤ C.

If moreover (6.2) holds then one may have c > 0.
(ii) There exists at least one minimizing sequence uh ∈W 1,2(Ωh,R3 for IhW :

(6.7) lim
h→0

( 1

h4
IhW (uh)− 1

h4
inf IhW

)
= 0.

For any such sequence the convergences (i), (ii) and (iii) of Theorem 6.1 hold and the
limit (w, v) is a minimizer of I4.

(iii) For any minimizer (w, v) of I4, there exists a minimizing sequence uh, satisfying (6.7)
together with (i), (ii), (iii) and (iv) of Theorem 6.2.

7. The prestrained von Kármán equations

For elastic energy W satisfying (1.3) which is additionally isotropic:

(7.1) ∀F ∈ R3×3 ∀R ∈ SO(3) W (FR) = W (F ),

one can see [8] that the quadratic forms in I4 are given explicitly as:

(7.2) Q3(F ) = 2µ|sym F |2 + λ|tr F |2, Q2(F2×2) = 2µ|sym F2×2|2 +
2µλ

2µ+ λ
|tr F2×2|2,

for all F ∈ R3×3. Here, tr stands for the trace of a quadratic matrix, and µ and λ are the Lamé
constants, satisfying: µ ≥ 0, 3λ+ µ ≥ 0.

Under these conditions, the Euler-Lagrange equations of the limiting functional I4 are equiv-
alent, under a change of variables which replaces the in-plane displacement w by the Airy stress
potential Φ, to the new system proposed in [23]:

∆2Φ = −S(KG + λg), B∆2v = [v,Φ]−BΩg,
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where S = µ(3λ+2µ)/(λ+µ) is the Young’s modulus, KG the Gaussian curvature, B = S/(12(1−
ν2)) the bending stiffness, and ν = λ/(2(λ + µ)) the Poisson ratio given in terms of the Lamé
constants λ and µ. The corrections due to the prestrain are:

λg = curlT curl (εg)2×2, Ωg = divTdiv ((γg)2×2 + ν cof (γg)2×2)

More precisely:

Theorem 7.1. Assume (1.3) and (7.1). Then the leading order displacements in a thin tissue
which tries to adapt itself to an internally imposed metric gh = (ah)Tah with ah as in (6.1) satisfy:

∆2Φ = −S
(

det∇2v + curlT curl(εg)2×2

)
,

B∆2v = cof∇2Φ : ∇2v −B divTdiv
(

(γg)2×2 + ν cof(γg)2×2

)
.

together with the (free) boundary conditions on ∂Ω:

Φ = ∂~nΦ = 0,

Ψ̃ : (~n⊗ ~n) + ν Ψ̃ : (τ ⊗ τ) = 0,

(1− ν)∂τ

(
Ψ̃ : (~n⊗ τ)

)
+ div

(
Ψ̃ + ν cofΨ̃

)
~n = 0.

Here ~n denotes the normal, τ the tangent to ∂Ω, while:

Ψ̃ = ∇2v + sym(γg)2×2,

The in-plane displacement w can be recovered from the Airy stress potential Φ and the out-of-plane
displacement v, uniquely up to rigid motions, by means of:

cof∇2Φ = 2µ
(

sym∇w +
1

2
∇v ⊗∇v − sym(εg)2×2

)
+

2µλ

2µ+ λ

(
div w +

1

2
|∇v|2 − tr(εg)2×2

)
Id.

Notice that in the particular case when (sym κg)2×2 = 0 on ∂Ω, the two last boundary conditions
become:

∂2
~n~nv + ν

(
∂2
ττv −K∂~nv

)
= 0

(2− ν)∂τ∂~n∂τv + ∂3
~n~n~nv +K

(
∆v + 2∂2

~n~nv
)

= 0,

where K stands for the (scalar) curvature of ∂Ω, so that ∂ττ = K~n. If additionally ∂Ω is a
polygonal, then the above equations simplify to equations (5) in [23].
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