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Chapter 1
Introduction

This monograph concerns the analytical and geometrical questions emerging from
the study of thin elastic films that exhibit residual stress at free equilibria. Pre-
stressed thin films are present in many contexts and applications, ranging from
growing tissues, through plastically strained sheets, engineered swelling or shrink-
ing gels, to petals and leaves of flowers, atomically thin graphene layers, etc. While
the related questions about the physical basis for shape formation (morphogenesis)
lie at the intersection of biology, chemistry and physics, fundamentally they have
analytical and geometrical character. Indeed, they may be seen as a variation on
classical themes: in differential geometry - that of isometrically embedding a shape
with a given metric in an ambient space of possibly different dimension; and in cal-
culus of variations - that of minimizing non-convex energy functionals parametrised
by a quantity in whose limit the functionals become in some sense degenerate.

Motivation from differential geometry. The field of differential geometry begun
through studying of curves and surfaces inR3. The abstract concept of a Riemannian
manifold, formulated in XIXth century, and the natural question whether each such
object is simply a subset (submanifold) of some Euclidean space RM , quickly as-
sumed a position of fundamental conceptual importance. This problem is called the
isometric immersion problem and it can be formulated as the question of solvability
of the following system of partial differential equations:

(—u)T (—u) = g for u : RN � W ! RM, (1.1)

where g : W ! RN⇥N is a given symmetric, positive definite matrix field. A re-
markable result, due to Nash, states that any smooth N-dimensional Riemannian
manifold (corresponding to g in (1.1)) admits a smooth isometric immersion in RM

(corresponding to u) for some large dimension M = M(N). On the other hand, the
celebrated Nash-Kuiper theorem asserts that any C 1 short immersion of a C 1 metric
g into RN+1 (i.e. u0 2 C 1(W ,RN+1) satisfying 0 < (—u0)T —u0 < g in the sense of
matrix inequalities), can be uniformly approximated by C 1 solutions to (1.1). Re-
cently, this regularity has been improved to Hölder continuous u 2 C 1,a(W ,RN+1),
with the optimal exponent a being the subject of vigorous ongoing research.

1



2 1 Introduction

For N = M, the isometric immersion problem is linked with the satisfaction or
failure of the orientation preservation by u, expressed as:

det—u > 0 in W . (1.2)

Without this restriction, there always exists a Lipschitz u : W ! RN solving (1.1).
However, under (1.2) the same problem becomes very rigid: a sufficient and neces-
sary condition for the (local) solvability of (1.1) (1.2) is then the vanishing of the
Riemann curvature of g at each point of W . In the latter context, it is natural to pose
the quantitative question: what is the infimum of the averaged pointwise deficit of a
map u from being an orientation-preserving isometric immersion of g on W? This
deficit may be is measured by the following non-Euclidean energy:

Eg(u) =
Z

W
dist2

�
(—u)g�1/2,SO(N)

�
dx. (1.3)

Indeed, u satisfies (1.1) (1.2) if and only if —u 2 SO(N)g1/2 almost everywhere in
W , which is precisely when Eg(u) = 0. In this monograph, we will be concerned
with the following questions: Can one quantify infEg in relation to g and W? What
is the structure of minimizers to (1.3), if they exist? In the limit of W becoming
(N � 1)-dimensional, what can be said about asymptotic properties of non-Eucli-
dean energies and their minimizers in relation to the Riemann curvatures of g?

Motivation from calculus of variations. The field of calculus of variations origi-
nally centered around minimization problems for integral functionals of the form:

E (u) =
Z

W
W
�
x,u(x),—u(x)

�
dx for all u : RN � W ! RM, (1.4)

where W : W ⇥RM ⇥RM⇥N ! R is the given energy density, and where u may be
subject to various constraints, for example the boundary conditions. The systematic
study of existence of minimizers to (1.4), their uniqueness and qualitative proper-
ties, begun with Euler and Bernoulli in XVIIth century and rapidly progressed due to
seminal contributions by Tonelli, Morrey and De Giorgi in XXth century. These and
other related questions are strongly tied to the appropriate convexity (with respect
to —u) properties of W , which in turn imply the so-called sequential lower semicon-
tinuity of E , necessary to conclude that the minimizing sequences to (1.4) accumu-
late at its minimizers. This is the celebrated direct method of calculus of variations
which bypasses solving the potentially complicated Euler-Lagrange equations of
(1.4), and allows to treat the aforementioned minimization problem directly.

Unfortunately, this technique does not apply to the functional in (1.3) due to non-
convexity. However, for a class of domains W that are thin films, namely domains
whose diameter in certain direction is much smaller than in others, one may consider
a family of energies parametrised by the small thickness h of W h =w⇥(�h/2,h/2):

E h
g (u

h) =
Z

W h
dist2

�
(—uh)g�1/2,SO(N)

�
dx. (1.5)
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The task is now, rather than to minimize E h
g for each particular h, to determine

the asymptotic limit of the above minimization problems as h ! 0. This can be
achieved by the method of G -convergence, which identifies such “singular limit”
energy functional I with the property that the minimizers and minimum values of
(1.5) converge, in a suitable sense, to the minimizers and minimum values of Ig. In
this monograph, we will be concerned with the following related questions: What
is the optimal mode of convergence in this approach, allowing to recover the most
information for the original minimization problems? Can one expect that infE h

g ' hg

as h ! 0 and can one determine the optimal scaling exponent g from the metric
g? Which curvatures or components of g play the role in this dimension reduction
process and how do they contribute to the residual energy Ig?

Motivation from solid mechanics and elasticity. The theory of elasticity is one
of the most important fields of continuum mechanics. It studies elastic materials
capable of undergoing large deformations, due to the distribution of local stresses
and displacements, resulting from the application of mechanical or thermal loads.
The basic variational model investigated in this monograph pertains to the non-
Euclidean version of the nonlinear elastic energy of deformations:

Eg(u) =
Z

W
W
�
(—u)g�1/2� dx for all u : R3 � W ! R3, (1.6)

where W : R3⇥3 ! R is the given energy density, satisfying physically-relevant con-
ditions, including the frame invariance: W (RF) = W (F) valid for all rotations R
and all F 2 R3⇥3, and the zero-penalty for all rigid motions: W (R) = 0. This model
postulates formation of a target Riemannian metric g and the induced multiplica-
tive decomposition of the deformation gradient —u into an elastic part (—u)g1/2

and an inelastic part, carrying the prestress g1/2, responsible for the morphogenesis.
Equivalently, E (u) quantifies the total pointwise deviation of —u from g1/2, modulo
rotations that do not cost any energy.

The functional (1.6), corresponding to a range of hyperelastic energies that ap-
proximate the behavior of a large class of elastomeric materials, is consistent with
microscopic derivations based on statistical mechanics. It has the general form (1.4)
and it reduces to the classical nonlinear three-dimensional elasticity when Eg(u) = 0
for some u, with the necessary condition given by the vanishing of the Riemann
curvature of g. In the opposite case i.e. for a non-Euclidean g, the infimum of E in
absence of any forces or boundary conditions is strictly positive, pointing to the ex-
istence of residual strain. The energy (1.6) reduces also to (a version of) the classical
linear elasticity when g ' Id3. The goal is now to answer the following questions:
How to determine the minimizing shapes u of the tissue attaining an orientation-
preserving configuration closest to being an isometric immersion of g, in terms of
an appropriate mechanical theory? Is it possible to quantify the separation of scales
arising in slender structures and inducing the constraints from the prescription of
growth laws? How to pose and resolve the geometric design problems involving
prestress, as inverse problems to the minimization of (1.6)?



4 1 Introduction

Overview of the monograph. This monograph consists of three parts. Part I intro-
duces three tools in the mathematical analysis that we will rely on while investi-
gating minimization problems of the energies of the types (1.3) - (1.6). These are:
G -convergence discussed in chapter 2, Korn’s inequality in chapter 3, and its non-
linear counterpart which is Friesecke-James-Müller’s inequality in chapter 4. Our
treatment is self-contained and proofs are complete, including Hardy’s inequality
and the Lusin-type truncation-approximation result in Sobolev spaces, which are of
independent interest. We also derive various estimates and properties of the con-
stants appearing in both inequalities, in relation to the dimension of the problem or
to the geometry of the domain, including the star-shaped domains and thin films.

In Part II we formulate the modern description of nonlinear elasticity of plates
and shells, where the analysis of the scaling of the energy minimizers in terms of the
film’s thickness leads to the rigorous derivation of a hierarchy of limiting variational
theories. These theories are differentiated by shells’ responses to external forces: in
chapter 5 we derive the Kirchhoff theory (fully nonlinear bending) of elastic plates
and shells, while in chapter 6 we turn to the von Kármán (nonlinear) and linear elas-
ticity. In chapter 7 we discuss the linearised Kirchhoff theory (linearised bending)
for plates. The aforementioned four plate theories were rigorously derived from the
nonlinear elasticity in the fundamental work by Friesecke, James and Müller, rely-
ing on the nonlinear rigidity estimate studied in chapter 4.

Chapter 8 provides a heuristic derivation of the infinite hierarchy of elastic shell
models and explains how it reduces to the finite hierarchy of plates due to the match-
ing and density properties of infinitesimal isometries on two-dimensional domains.
Other matching and density properties lead to an even larger collapse of theories: for
elliptic shells in chapter 9, and for developable shells in chapter 10. In each case of
a particular theory, we give the complete details of G -convergence results, including
the compactness analysis, the lower bound estimates, constructions of the recovery
family, and the induced convergence of minimizers. We frequently take a detour and
present a few generalizations: to shells with variable thickness and to shallow shells,
where the depth of the midsurface competes with the vanishing thickness.

Part III is the central part of this monograph. There, we continue the discussion
of the dimension reduction in the context of the prestress-driven response, where the
G -limiting theories are differentiated by the embeddability properties of the target
metrics (rather than by the magnitude of applied forces) and, a-posteriori, by the
emergence of isometry constraints on deformations with low regularity. In chapter
11 we derive the Kirchhoff-like theory for prestressed thin films, and in chapter 12
we turn to the von Kármán-like theory. In chapter 13 we show the energy quantisa-
tion result, in the sense that only the even powers of films’ thickness are viable as the
scaling of the energy at minimizers, and all of them are also attained. This leads to
the remaining family of the linear elasticity-like theories in the infinite hierarchy of
prestressed films’ models. Along the way, we provide many examples, including ap-
plications to liquid crystal elastomers and the relation to experimental observations.
There are still unresolved dichotomies between theory and experiments, pertaining
to understanding of the role of curvature in determining the mechanical properties
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of the material, and to the effects of the symmetry and the symmetry breaking solu-
tions, which call for a thorough understanding.

The final chapter 14 analyzes the case of weak prestress, using analytical con-
structions and arguments similar to those in chapter 7 for shallow shells. There,
many problems regarding multiplicity, singularities and regularity of the critical
points of the obtained models remain open and are hard to tackle. On the other
hand, our analysis leads to further questions of rigidity and flexibility of solutions to
the weak formulations of related partial differential equations, including the weak
Sobolev or Hölder solutions to the Monge-Ampère equation.

Overview of the back matter. The bibliography contains the main references to
the material treated in this monograph, updated to 2022. Each chapter ends with
the bibliographical notes while the attributions are kept to a minimum in the body
of the text. We also provide an extensive index of terminology, containing both
the classical notation in analysis and differential geometry, the standard notation in
elasticity theory, and the terminology consistently used throughout the text. Finally,
we include the alphabetical index of topics, concepts, and named theorems.

Prerequisites. The monograph is self-contained and suitable for beginning graduate
students in analysis, with some prior exposure to concepts in differential geometry.
No a priori knowledge of elasticity theory is assumed.

This monograph aims at at the systematic and comprehensive treatment of the of
the theory of dimension reduction for thin elastic (prestressed or lacking prestress)
plates and shells. Starting from the view that shape is the consequence of metric frus-
tration in an ambient space, we explore many surprising connections between the
classical Nash embedding problem, its quantitative version via the variational de-
scription, the Monge-Ampére equation and the biological morphogenesis. We hope
that our text will serve as a friendly introduction to this beautiful and multifaceted
topic, as well as suggest and encourage new research directions.

Marta Lewicka
Pittsburgh, March 2022.



Chapter 3
Korn’s inequality

Among the most important inequalities in the mathematical analysis is Korn’s in-
equality. Discovered in the early XXth century in the context of the boundary value
problem of linear electrostatics, it is a basic tool to prove existence of solutions of
the linearised displacement-traction equations in elasticity. Another area of applica-
tion is fluid dynamics in presence of Navier’s boundary conditions, where Korn’s
inequality replaces the Poincaré inequality used under the Dirichlet conditions.

The outline of this chapter is as follows. In section 3.1 we introduce Korn’s in-
equality (sometimes called the second Korn’s inequality) as the rigidity estimate,
quantifying the simple observation that a gradient field that is skew-symmetric must
be constant. We show how through an argument by contradiction, it can be deduced
from the First Korn’s inequality that involves the norm of the vector field itself, in
addition to the norm of its gradient. In section 3.2 we divert to deduce a few useful
variants of Korn’s inequality, in presence of boundary conditions: the homogeneous
inequality where Korn’s constant equals 2 regardless of the domain (the same result
is true on polyhedra under tangential boundary conditions), and Korn’s inequality
under mixed boundary conditions (Dirichlet and tangential), in which it suffices to
look for the approximating skew-symmetric matrix among those matrices that are
gradients of affine functions satisfying the same boundary conditions. In particular,
if the portion of the boundary corresponding to the Dirichlet condition is nonempty
or when the domain has no rotational symmetry, this set is trivial leading to the
homogeneous Korn’s inequality (albeit with a constant possibly different than 2).

In sections 3.3 and 3.4 we give a proof of First Korn’s inequality. The argument
relies on the weighted (through the distance from the boundary) reverse Poincaré-
inequality and on estimates in star-shaped domains. Since star-shaped domains are
the building blocks of Lipschitz domains (as proved in section 3.3), the final result
is obtained by decomposition.

In section 3.5 we prove that under tangential boundary conditions, Korn’s con-
stant is at least 2. There is however no upper bound, because any Killing field on a
given midsurface gives raise to a family of displacements on thin shells that are tan-
gential on the shells’ boundaries and whose Korn’s constants blow up as the inverse
square of shell’s thickness. This statement is established in section 3.5 for the case

21
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of a curve in R2, and for the general case a hypersurface in RN in section 3.8. In
section 3.6 we deduce an approximation result in which the displacement gradient
on a thin shell is approximated by a field of skew-symmetric matrices, rather than a
constant matrix, with the corresponding Korn’s constants uniform in thickness. The
construction is a combination of the local application of Korn’s inequality and a
mollification argument, and it can be repeated in other contexts. In particular, it is of
key importance towards the dimension reduction analysis in nonlinear prestressed
elasticity, discussed in Parts II and III of this monograph.

In section 3.7 we prove the counterparts of the two Korn’s inequalities on hyper-
surfaces. Rather than redeveloping previous arguments in the Riemannian geometry
setting, we apply First Korn’s inequality on thin shells and pass to the limit with the
vanishing thickness. Then, an argument by contradiction naturally identifies gra-
dients of Killing fields as approximations of the covariant derivatives of arbitrary
tangent fields, up to the error quantifying the symmetrized gradients. Killing fields
are the infinitesimal generators of isometries on the surface and as such they serve
as replacements of the affine maps with skew-symmetric gradients, which are the
“linearised rigid motions” on open domains in RN .

In sections 3.9 and 3.10 we prove that the presence of Killing fields is the only
obstruction from the uniformity of Korn’s constant on thin shells under tangential
boundary conditions. Indeed, for vector fields within any cone that is separated from
the displacements derived from Killing fields, Korn’s constant is uniform.

3.1 Korn’s inequality and First Korn’s inequality

In this section we introduce the two versions of Korn’s inequality and show how to
deduce one, namely the rigidity estimate in Theorem 3.1, from the other which is
the First Korn’s inequality in Theorem 3.5.

Theorem 3.1. [Korn’s inequality]
Let W ⇢ RN be an open, bounded, connected, Lipschitz domain. Then, for
every vector field v 2 H1(W ,RN) there exists a matrix A 2 so(N) satisfying:

Z

W
|—v�A|2 dx C

Z

W
|sym—v|2 dx. (3.1)

The above constant C depends only on W , but not on v.

The inequality (3.1) is an example of a rigidity estimate, quantifying the rigidity
statement below. Namely, the vanishing of the right hand side in (3.1) i.e. having
sym—v ⌘ 0 in W , implies the vanishing of its left hand side i.e. having —v constant
and skew-symmetric. This simple yet remarkable observation is proved directly:
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Lemma 3.2. Let W ⇢RN be an open, bounded, connected domain. If v2H1(W ,RN)
satisfies —v 2 so(N) a.e. in W , then:

v(x) = Ax+b for some A 2 so(N), b 2 RN .

Proof. The following useful formula, valid in the sense of distributions:

Dv = 2div
⇣

sym—v� 1
2

tr
�
sym—v

�
IdN

⌘
. (3.2)

may be obtained by noting div
�
sym—v

�
= 1

2 div—v+ 1
2 div(—v)T = 1

2 Dv+ 1
2 —(divv),

and that div
�
(divv)IdN

�
= —(divv). Consequently, if sym—v = 0 then Dv = 0 in W ,

so v is harmonic and automatically smooth.
By assumption, there holds —v = �(—v)T . To each row {—vi = �∂iv}i=1...N of

this identity, we apply the N-dimensional curl operator:

curlu ⌘ {∂ku j �∂ juk} j,k=1...N .

Since curl—vi = 0, it follows that —curlv = 0 and so curlv must be constant within
the connected domain W . It now suffices to note that coefficients of curlv coincide
with entries of the matrix —v = skew—v. The proof is done.

Recall that every matrix in RN⇥N is the orthogonal sum of is symmetric and skew-
symmetric parts, so in particular:

|sym—v(x)|= dist(—v(x),so(N)) for all x 2 W .

The inequality (3.1) is thus the quantitative version of Lemma 3.2, in the sense that
the total pointwise distance of —v from so(N), measured in the L2(W) norm, yields
the deviation of —v from being constant skew-symmetric, again measured in L2(W):

distL2(W)

�
—v,so(N)

�
⌘ inf

A2so(N)

�Z

W
|—v�A|2 dx

�1/2

Ckdist(—v,so(N))kL2(W).
(3.3)

It is obvious that the above inequality can also be reversed:

kdist(—v,so(N))kL2(W)  distL2(W)

�
—v,so(N)

�
.

Hence, Korn’s inequality states equivalence of commuting the operations of taking
the distance from so(N) and integrating. One has to be careful though: the right hand
side computes the L2 norm of the pointwise distance in RN⇥N , whereas the distance
in the left hand side is in the functional space L2(W ,RN⇥N). Further, we have:

Remark 3.3. The infimum in (3.3) is the minimum, attained at the unique matrix A:

A = skew
?

W
—v dx.
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Indeed, let A 2 so(N) be such that
R

W |—v�A|2 dx 
R

W |—v� (A+ eB)|2 dx for all
e 2 R and B 2 so(N). Expanding the right hand side as:

Z

W
|—v�A|2 dx+2e

Z

W
h—v�A : Bi dx+ e2

Z

W
|B|2 dx,

and passing to the limit with e ! 0, we obtain the Euler-Lagrange equations:

⌦Z

W
—v�A dx : B

↵
=
Z

W
h—v�A : Bi dx = 0 for all B 2 so(N).

The matrix
>

W —v�A is thus orthogonal to so(N), hence symmetric:

skew
?

W
—v dx�A = skew

�?

W
—v dx�A

�
= 0.

This yields the claimed result.

By combining (3.1) with the Poincaré-Wirtinger inequality, one gets another useful
bound (that we already applied in section 2.2):

Corollary 3.4. [Korn-Poincarè inequality]
Let W ⇢ RN be an open, bounded, connected, Lipschitz domain. Then, for
every v 2 H1(W ,RN) there exists A 2 so(N) and b 2 RN such that:

kv� (Ax+b)kH1(W) Cksym—vkL2(W).

The constant C depends only on W , but not on v.

Korn’s inequality in Theorem 3.1 classically follows via an argument by contra-
diction, from a stronger result called the First Korn’s inequality:

Theorem 3.5. [First Korn’s inequality]
Let W ⇢ RN be open, bounded, Lipschitz domain. There holds:

Z

W
|—v|2 dx C

Z

W
|v|2 + |sym—v|2 dx, (3.4)

for every v 2 H1(W ,RN), where the constant C depends on W , but not on v.

We postpone the proof of (3.4) to section 3.3, and deduce (3.1) right away:

Proof of Theorem 3.1.
Assume that there is no universal constant C for (3.3) to hold. In view of Remark

3.3, this implies existence of a sequence {vn 2 H1(W ,RN)}•
n=1, such that:
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Z

W

��—vn � skew
?

W
—vn

��2 dx > n
Z

W
|sym—vn|2 dx. (3.5)

Denoting wn(x)⌘ vn(x)�
�
skew

>

W —vn
�
x�
>

W
�
vn(y)�

�
skew

>

W —vn
�
y
�

dy we get:
?

W
wn dx = 0, skew

?

W
—wn dx = 0. (3.6)

Multiplying each vn by an appropriate constant, we may also ensure that:
Z

W
|—wn|2 dx = 1,

Z

W
|sym—wn|2 dx <

1
n
, (3.7)

where the second assertion follows by (3.5). In virtue of Poincaré’s inequality, the
sequence {wn}•

n=1 is thus bounded in H1(W), and so it has a subsequence (that
we do not relabel), converging weakly to some w 2 H1(W ,RN). In particular, the
sequence {sym—wn}•

n=1 converges weakly in L2(W ,RN⇥N) to sym—w.
By (3.7) we see that sym—w = 0 a.s. in W , so Lemma 3.2 implies that w(x) =

Ax+ b for some A 2 so(N) and b 2 RN . On the other hand, passing to the limit in
(3.6) implies: skew

>

W —w dx = 0 and
>

W w dx = 0. In conclusion, A = 0,b = 0 and
w = 0, yielding the following convergences:

Z

W
|wn|2 dx ! 0,

Z

W
|sym—wn|2 dx ! 0 as n ! •.

We now apply (3.4) to get:
Z

W
|—wn|2 dx ! 0 as n ! •.

This contradicts the first assertion in (3.7). The proof is done.

As a point of comparison, we anticipate that a nonlinear version of (3.1) will be
discussed in chapter 4. This celebrated nonlinear geometric rigidity estimate (see
Theorem 4.1), due to Friesecke, James and Müller, is “nonlinear” in the sense that
in both of its sides it quantifies the appropriate distances of the gradient —v from
the compact manifold SO(N), rather than from a linear subspace so(N)⇢ RN⇥N as
in (3.1). Another connection is that so(N) is the tangent space to SO(N) at IdN , so
(3.1) formally follows by collecting the lowest order terms in the expansion of the
nonlinear estimate (4.2) close to —u = IdN . These observations are also inherently
related with the concepts of deformations and displacements in the mathematical
description of, respectively, the nonlinear and linear elasticity.

We have used Corollary 3.5 in section 2.2 to prove a G -convergence result in the
dimension reduction of the linearly elastic plates. The aforementioned Friesecke-
James-Müller inequality will be applied in the dimension reduction analysis of the
nonlinear prestressed plates and shells in Parts II and III of this monograph.



26 3 Korn’s inequality

3.2 Variants of Korn’s inequality with different boundary
conditions

In this section we prove variants of Korn’s inequality valid under specific bound-
ary conditions. The rule of thumb is that, without violating the uniformity of the
constant C in (3.1), it suffices to seek the skew-symmetric matrix A in its left hand
side, only within constant skew-symmetric gradients of those linear maps that obey
the same boundary conditions. This space is, in general, a proper subspace of so(N)
and may even be trivial. Before we make this observation more precise, we prove a
classical variant of Korn’s inequality where the constant C can be made specific.

Theorem 3.6. [Homogeneous Korn’s inequality]
For every open domain W ⇢ RN and every v 2 H1

0 (W ,RN), there holds:
Z

W
|—v|2 dx  2

Z

W
|sym—v|2 dx. (3.8)

Moreover, the constant 2 above is optimal, for any W .

Proof. Without loss of generality, we assume that v 2 C •
0 (W ,RN). Recall the for-

mula (3.2), multiply its both sides by v and integrate by parts on W . Thus we arrive
at the equality below, implying the claimed bound (3.8):

Z

W
|—v|2 dx = 2

Z

W
|sym—v|2 dx�

Z

W
|divv|2 dx  2

Z

W
|sym—v|2 dx.

For the optimality of Korn’s constant C = 2, it suffices to take any divergence-free,
compactly supported v, for which the above formula yields equality in (3.8).

The same arguments as in the proof of Theorem 3.6 work also under tangential
boundary conditions when W is a polyhedron:

Example 3.7. Let W be a (bounded) polyhedron in RN . We will show that (3.8)
holds for v 2 H1(W ,RN) satisfying hv,ni= 0 on ∂W . Indeed, (3.2) results in:

2
Z

W
|sym—v|2 dx =

Z

W
|—v|2 + |divv|2 dx+

Z

∂W

⌦
(—v)T � (divv)IdN

�
n,v

↵
ds(x),

where we applied integration by parts. The boundary integral equates to:
Z

∂W

⌦
(—v)v,n

↵
� (divv)hv,ni ds(x) =

Z

∂W
∂vhv,ni� (divv)hv,ni ds(x) = 0.

The last equality above follows as n is locally constant and v is tangent on ∂W .

To go beyond the particular geometry in Example 3.7 and also to deal with the
mixed boundary conditions, let us denote the following space of linear maps with
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skew-symmetric gradients on W :

I (W) =
�

Ax+b; A 2 so(N), b 2 RN . (3.9)

In section 3.7 we will extend the notion of I (W) to encompass the space of so-
called Killing vector fields I (S), the concept that is central to Korn’s inequality on
surfaces S and thin shells having S as their midsurface. We anticipate that Killing
fields are precisely the generators of one-parameter paths of isometries, which is
why they appear in Korn’s inequality seen as a linear counterpart of the nonlinear
geometric rigidity estimate (4.2) in chapter 4.

Theorem 3.8. Let W ⇢RN be an open, bounded, connected, Lipschitz domain.
Given two open, disjoint (possibly empty) subsets G0,G1 ⇢ ∂W , denote:

VG0,G1(W) =
�

v 2 H1(W ,RN); v = 0 on G0, hv,ni= 0 on G1
 
,

IG0,G1(W) = I (W)\VG0,G1(W).

Then, for every v 2 VG0,G1(W) there exists w 2 IG0,G1(W) with:
Z

W
|—v�—w|2 dx C

Z

W
|sym—v|2 dx, (3.10)

where the constant C above depends only on W , G0 and G1.

Proof. We first claim that for all vector fields v 2 VG0,G1(W) which are L2(W)-
orthogonal to the subspace IG0,G1(W), the following holds:

Z

W
|—v|2 dx C

Z

W
|sym—v|2 dx, (3.11)

with a universal constant C as in the statement of the result. To show (3.11), we argue
by contradiction as in the proof of Theorem 3.1. Assume existence of a sequence
{vn 2 VG0,G1(W)}•

n=1 satisfying the same orthogonality condition and such that:
Z

W
|—vn|2 dx = 1,

Z

W
|sym—vn|2 dx ! 0 as n ! •. (3.12)

Passing to a subsequence (that we do not relabel) and modifying each vn by a
constant if necessary, we obtain that vn converges to a limit field v, weakly in
H1(W ,RN). Consequently, sym—v = 0 and so v 2 I (W) in virtue of Lemma 3.2.
Since the weak convergence implies the strong convergence of traces in L2(∂W ,RN),
there also holds v2IG0,G1(W). Finally, since passing to the limit yields:

R
W hv,wi dx=

0 for all w 2 IG0,G1(W), one sees that v = 0. Hence:
Z

W
|vn|2 dx ! 0 as n ! •.
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Together with the second assertion in (3.12), the estimate in Theorem 3.5 impliesR
W |—vn| dx ! 0. This contradicts the first assertion in (3.12) and proves (3.11).

Now, given any v 2 VG0,G1(W), let w be its orthogonal projection on the finite-
dimensional subspace IG0,G1(W)⇢ L2(W ,RN). Condition (3.11) implies then:

Z

W
|—v�—w|2 dx =

Z

W
|—(v�w)|2 dx C

Z

W
|sym—v|2 dx.

The proof is done.

Remark 3.9. With the same analysis as in Remark 3.3, one can identify the unique
optimal vector field w 2 IG0,G1(W) in (3.10). Given v 2 VG0,G1(W), let:

A ⌘ P{—w; w2IG0 ,G1 (W)}

?

W
—v dx,

where P denotes the orthogonal projection onto the indicated linear subspace of
RN⇥N . Then there exists b 2 RN so that w(x) = Ax+ b belongs to IG0,G1(W) and
hence is the desired vector field.

Theorem 3.8 implies Theorem 3.6 (with some uniform constant C rather than the
optimal constant 2) in view of the observation below. In fact, (3.11) holds with any
nonempty G0, because:

Corollary 3.10. Let W ⇢ RN be an open, bounded, connected, Lipschitz domain. In
the context of Theorem 3.8 we have IG0,G1(W) = {0}, in any of the two cases:

(i) G0 , /0,
(ii) G0 = /0, G1 = ∂W and W has no rotational symmetry.

Then, for every v2VG0,G1(W) and with C that depends only on W ,G0,G1, there holds:
Z

W
|—v|2 dx C

Z

W
|sym—v|2 dx.

Proof. 1. To prove (i), let x0 2 G0 be such that the normal vector n(x0) is well de-
fined. Consider the linear subspace:

M = span{x� x0; x 2 G0}⇢ RN .

Then, M contains the (well defined) tangent space to ∂W at x0, because every y 2
Tx0∂W is generated by some sequence { xn�x0

|xn�x0| 2 M}•
n=1 in the limit of G0 3 xn ! x0.

Let now w = Ax+b 2 IG0,G1(W). It is easy to note that M ⇢ kerA, since:

A(x� x0) = w(x)�w(x0) = 0 for all x 2 G0.

Thus dimkerA � dimM � N � 1. We further claim that A = 0. Indeed, if y 2 RN

was a unit vector in (kerA)?, then not only hAy,yi= 0 by skew-symmetry, but also:
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hAy,zi=�hy,Azi= 0 for all z 2 kerA. (3.13)

We see that Ay is orthogonal to RN and hence y 2 kerA, which is a contradiction.
Since A = 0, it easily follows that b = 0 as well, proving the claim w = 0.

2. To show (ii), we take w = Ax+ b 2 IG0,G1(W) and prove below that the flow
generated by the tangent vector field w|∂W must be a rotation. Then, the lack of
nontrivial rotations of W will directly yield w = 0.

Since A 2 so(n) it follows that kerA� imA is an orthogonal decomposition of
RN , in virtue of (3.13). Accordingly, we write b = bker +Ab0 with bker 2 kerA and
some b0 2 RN . Consider the translated domain W0 = W +b0. Since:

w(x) = A(x+b0)+bker for all x 2 W ,

it follows that y 7! Ay+bker is a tangent vector field on ∂W0. The flow a which this
field generates, is given by:

a 0(t) = Aa(t)+bker, a(0) 2 ∂W0,

where we may also write a(t) = b (t)+d (t), with:
⇢

b 0(t) = Ab (t), b (0) 2 imA
d 0(t) = bker, d (0) 2 kerA, b (0)+d (0) = a(0).

Notice that b (t) remains bounded, because:

d
dt
|b (t)|2 = 2hb (t),Ab (t)i= 0,

while d (t) = d (0)+ tbker is unbounded for bker , 0. Since a(t) 2 ∂W0 for all t � 0,
there must be bker = 0. Hence the flow a(t) = etAb (0)+ d (0) indeed is a rotation
generated by A 2 so(N) on ∂W0. The proof is done.

Remark 3.11. (i) From the proof of Corollary 3.10 (ii) it follows that each w 2
I /0,∂W (W) has the form w(x) = A(x+b0) with A 2 so(N), b0 2 RN . We thus obtain
the following characterisation when W ⇢ R3:

I /0,∂W (W) =

8
<

:

{0} if W has no rotational symmetry
a 1-parameter family if W has one rotational symmetry
a 3-parameter family if W = Br(x).

(ii) Let W = B1(0) ⇢ R3. Each A 2 so(3) can be written as Ax = a⇥ x for some
a2R3, and hence we obtain: I /0,∂W (B1(0)) = {a⇥x; a2R3}. The perpendicularity
condition in the proof of Theorem 3.8 then reads:

0 =
Z

B1(0)
ha⇥ x,v(x)i dx =

⌦
a,
Z

B1(0)
x⇥ v(x) dx

↵
for all a 2 R3.

Consequently, for the class of vector fields v in:
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�
v 2 H1(B1(0),R3); hv,ni= 0 on ∂B1(0) and

Z

B1(0)
x⇥ v(x) dx = 0

 
,

there holds the uniform homogeneous estimate (3.11).

3.3 Proof of Korn’s inequality: preliminary estimates

In this and the next sections, we prove the First Korn’s inequality (3.1). We start
with two preliminary results:

Lemma 3.12. Let W be an open, bounded, connected, Lipschitz domain, and let
g 2 L2(W ,R) satisfy Dg = 0 in W . Then:

Z

W
|—g|2 dist2(x,∂W) dx  4

Z

W
|g|2 dx.

Proof. For each small e > 0, consider the open, Lipschitz domain:

We = {x 2 W ; dist(x,∂W)> e}.

Integrating by parts, it follows that:
Z

We

�
dist(x,∂W)� e

�2|—g|2 dx =
Z

We
div

⇣�
dist(x,∂W)� e

�2g—g
⌘

dx

�2
Z

We

�
dist(x,∂W)� e

�
g
⌦
—x dist(x,∂W),—g

↵
dx

=�2
Z

We

�
dist(x,∂W)� e

�
g
⌦
—x dist(x,∂W),—g

↵
dx

 2
Z

We
|g|2 dx+

1
2

Z

We

�
dist(x,∂W)� e

�2⌦—x dist(x,∂W),—g
↵2 dx,

where the last inequality follows by applying �2ab  a2+b2 with a =
p

2g(x) and
b = 1p

2

�
dist(x,∂W)�e

�⌦
—x dist(x,∂W),—g(x)

↵
, at each x 2 We under the integra-

tion sign. Since the function x 7! dist(x,∂W) has Lipschitz constant 1, we get:
���
⌦
—x dist(x,∂W),—g

↵���
��—x dist(x,∂W)

�� ·
��—g(x)

�� |—g(x)|.

It now follows that the last term in the right hand side of the displayed formula can
be bounded by the half of the exact term in the left hand side, leading to:

Z

We

�
dist(x,∂W)� e

�2|—g|2 dx  4
Z

We
|g|2 dx.

Passing with e ! 0 while applying Fatou’s lemma in the left hand side and the
monotone convergence theorem in the right hand side, yields the result.
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Lemma 3.13. Let g 2 H1
loc((0,T ),R) satisfy limt!0 g(t) = 0. Then there holds:

Z T

0
|g|2 dt  4

Z T

0
|g0|2|T � t|2 dt.

Proof. Consider the function h 2 H1
loc((0,•),R), given by: h(t) = g(T � t)1(0,T )(t).

This function is absolutely continuous on (0,•) and identically equal to zero beyond
T . For each t 2 (0,T ) we have:

h(t)2 =
⇣Z •

t
h0(s) ds

⌘2
= 4t�1

⇣ 1
R •

t s�3/2 ds

Z •

t

�
h0(s)s3/2�s�3/2 ds

⌘2

 4t�1 1
R •

t s�3/2 ds

Z •

t

�
h0(s)s3/2�2s�3/2 ds  2t�1/2

Z •

t
h0(s)2s3/2 ds,

where the inequality above follows by applying Jenssen’s inequality to the convex
function x 7! x2, with the probability measure obtained as the normalisation of the
measure s�3/2 ds on the interval (t,•). Integrating on (0,•) yields:
Z T

0
h(t)2 dt =

Z •

0
h(t)2 dt  2

Z •

0
t�1/2

Z •

t
h0(s)2s3/2 ds dt

=
Z •

0

⇣Z s

0
t�1/2 dt

⌘
h0(s)2s3/2 ds = 4

Z •

0
h0(s)2s2 ds = 4

Z T

0
|h0|2s2 ds,

in virtue of Fubini’s theorem and changing the integration order. Applying the re-
flection of variables t 7! (T � t) results in the claimed bound for g.

The main arguments in the proof of Theorem 3.5 will be given in star-shaped do-
mains, which by Lemma 3.15 can be seen as building blocks of Lipschitz domains.

Definition 3.14. We say that an open domain W ⇢ RN is star-shaped with respect
to its interior ball Br(z) bW , when:

{tx+(1� t)x̄; t 2 [0,1]}⇢ W for all x 2 W , x̄ 2 Br(z). (3.14)

Fig. 3.1 A domain that is star-shaped with respect to an internal ball, see Definition 3.14.
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Lemma 3.15. Let W ⇢ RN be an open, bounded domain.

(i) if W is star-shaped with respect to an internal ball, then it is Lipschitz,
(ii) if W is Lipschitz then it can be written as a finite union W = {Wi}n

i=1 of open
domains Wi that are each star-shaped with respect to some internal ball.

Proof. 1. To prove (i), we may without loss of generality assume that W ⇢ BR(0)
and that it is star-shaped with respect to Br(0) bW . For every z 2 ∂Br(0), define:

f (z) = sup
�

t > 0; (t + r)
z
r
2 W

 
.

By (3.14), the graph of f over ∂Br(0) coincides with ∂W . We will show that the
function f is Lipschitz, which by a simple (local) change of variable will imply the
Lipschitz condition on W .

Fix z 2 ∂Br(0) and observe that f (z) 2 [aminr,amaxr] with some uniform constant
amin > 0 and amax =

R
r �1. Further, define the angle g(z) so that: cosg(z) = r

f (z)+r .
It is clear that g(z) � g0, where cosg0 = 1

amin+1 . Take now any pair z, z̄ 2 ∂Br(0)
satisfying: \(z, z̄) 1

2 g0. In virtue of the mean value theorem and (3.14) we get:

f (z̄)� f (z)>
r

cos(g(z)� g
� r

cosg(z)
��r|g| 1

cos2 q
,

for some angle q 2
�
g(z)� g,g(z)

�
for which: cos2 q > cos2 g(z) � 1

(amax+1)2 . In
conclusion and by a symmetric argument, there follows the final bound:

| f (z̄)� f (z)| r
(amax +1)2 g.

2. To show (ii), it suffices to construct the claimed finite decomposition only cov-
ering the boundary layer

S
z2∂W Be(z)\ W̄ for some e ⌧ 1. The remaining interior

set can then be covered by balls, which are clearly star-shaped domains.
Let f : BN�1

2r (0)! R be a Lipschitz function, whose graph coincides with a por-
tion of ∂W and whose subgraph is contained in W . We denote the Lipschitz constant
of f by L, and take its domain to be a ball BN�1

2r (0)⇢ RN�1 for some r > 0. Without
loss of generality we may assume that min f > 4r and L > 2.

Observe that for each z 2 BN�1
2r (0), the “upside down” cone with its tip at the

point (z, f (z)), its aperture angle equal g such that tang = 1
L , and its height f (z), is

contained in W . Consequently, the open set:

Wi = Br(0)[
�
(z, t) 2 RN ; z 2 BN�1

r (0), 0 < t < f (z)
 

satisfies the condition (3.14) with respect to Br(0), which implies that Wi is star-
shaped with respect to its internal ball Br/2(0) b Wi. By construction and compact-
ness of W̄ , finitely many of the domains of the type Wi cover the sufficiently narrow
boundary layer of W , as claimed.

From Lemma 3.13 there follow the key estimates on star-shaped domains:
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Theorem 3.16. Let W ⇢ BR(0) ⇢ RN be an open domain that is star-shaped with
respect to Br(0), for some 0 < r < R. Then, for every g 2 H1(W ,R) there holds:

(i)
Z

W
|g|2 dx C

⇣Z

Br(0)
|g|2 dx+

Z

W
|—g|2dist2(x,∂W) dx

⌘
,

(ii) there exists a 2 R such that:
Z

W
|g�a|2 dx C

Z

W
|—g|2dist2(x,∂W) dx,

with constants C depending only on N and R/r.

Proof. 1. By a simple scaling argument, it suffices to assume that R = 1. To prove
(i), we first derive an estimate on

R
W\Br(0) |g|

2 dx. Choose a smooth cut-off function
q : (0,•)! [0,1] with the following properties:

q|(0,r/2) ⌘ 0, q|(r,•) ⌘ 1, kq 0kL•  4
r
.

For every p 2 ∂W we apply Lemma 3.13 to the function qg on the segment [0, p]:

Z |p|

0
|qg|2 dt  4

Z |p|

0

��(qg)0
��2��|p|� t

��2 dt

 8
r2

Z |p|

0

�
|q 0g|2 + |q |2|—g|2

�
dist2

�
t

p
|p| ,∂W

�
dt,

where we used the assumption of W being start-shaped with respect to Br(0) in
order to conclude that:

��|p|� |x|
��

dist(x,∂W)
 |p|

r
 1

r
for all x 2 [0, p].

Consequently, it follows that:
Z |p|

r
|g|2 dt C

⇣Z r

r/2
|g|2 dt +

Z |p|

r/2
|—g|2 dist2

�
t

p
|p| ,∂W

�
dt
⌘
,

and further, with the constant C that again depends only on r:
Z |p|

r
tN�1|g|2 dt C

⇣Z r

r/2
tN�1|g|2 dt +

Z |p|

r/2
tN�1|—g|2 dist2

�
t

p
|p| ,∂W

�
dt
⌘
.

Integrating in spherical coordinates, we finally arrive at (i):
Z

W\Br(0)
|g|2 dx C

⇣Z

Br(0)
|g|2 dx+

Z

W
|—g|2 dist2

�
x,∂W

�
dx
⌘
.

2. To prove (ii), we invoke the Poincaré-Wirtinger inequality to get:
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Z

Br/2(0)

��g�
?

Br/2(0)
g
��2 dx Cr2

Z

Br/2(0)
|—g|2 dx

C
Z

Br/2(0)
|—g|2dist2(x,∂W) dx,

(3.15)

where C depends only on N. Apply now the statement in (i) with the interior ball
Br/2(0) replacing Br(0) and to the function g�

>

Br/2(0)
g on W . It follows that:

Z

W

��g�
?

Br/2(0)
g
��2 dx C

⇣Z

Br/2(0)

��g�
?

Br/2(0)
g
��2 dx+

Z

W
|—g|2dist2(x,∂W) dx

⌘

C
Z

W
|—f |2dist2(x,∂W) dx,

where in the last inequality we used (3.15). Taking a =
>

Br/2(0)
g dx achieves (ii).

We now have all the ingredients towards proving Korn’s inequality in Theorem
3.5. The proof will be given in the next section, while below we digress and deduce
an important corollary from Theorem 3.16:

Theorem 3.17. Let W ⇢ RN be an open, bounded, connected, Lipschitz do-
main. Then, for every g 2 H1(W ,R) there holds:

(i)
Z

W
|g|2 dx C

Z

W

�
|g|2 + |—g|2

�
dist2(x,∂W) dx,

(ii) there exists a 2 R such that:
Z

W
|g�a|2 dx C

Z

W
|—g|2dist2(x,∂W) dx,

with constants C depending only on W . Moreover, these constants can be cho-
sen uniformly for a family of domains W which are bilipschitz equivalent with
controlled Lipschitz constants.

Proof. 1. The uniform estimate in (i) follows directly from Theorem 3.16 in view
of the finite decomposition statement in Lemma 3.15 (ii). To show the weighted
Poincaré-type inequality (ii), for each e > 0 we consider the domain

We = {x 2 W ; dist(x,∂W)> e},

and apply (i) to the function g�
>

We
g:

Z

W

��g�
?

We
g
��2 dx

C
⇣

e2
Z

W\We

��g�
?

We
g
��2 dx+

Z

We

��g�
?

We
g
��2 dx+

Z

W
|—g|2dist2(x,∂W) dx

⌘
.
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The constant C above depends only on W , so for e ⌧ 1 sufficiently small to have
Ce2  1

2 , the first term in the right hand side can be absorbed in the left hand side:
Z

W

��g�
?

We
g
��2 dx  2C

⇣Z

We

��g�
?

We
g
��2 dx+

Z

W
|—g|2dist2(x,∂W) dx

⌘
.

We now apply the Poincarè-Wirtinger inequality on We to get:
Z

We

��g�
?

We
g
��2 dx Ce

Z

We
|—g|2 dx  Ce

e2

Z

We
|—g|2dist2(x,∂W) dx,

where by writing Ce we indicate the dependence of the constant on e . Combining
the two displayed inequalities, we arrive at (ii).

2. To prove the uniformity of constants, assume that j : W ! W 0 is a bi-Lipschitz
map with Lipschitz constants of j and j�1 both bounded by some L > 0. Given
h 2 H1(W 0,R), define g ⌘ h�j 2 H1(W ,R). Then:

Z

W 0
h2 dx  kdet—jkL•(W)

Z

W
g2 dx CLN

Z

W
g2 dx,

Z

W

�
g2 + |—g|2

�
dist2(x,∂W) dx

 kdet—(j�1)kL•(W 0)

Z

W 0

�
h2 +L2|—h|2

�
dist2(j�1(x),j�1(∂W 0)) dx

CLN+1(1+L2)
Z

W 0

�
h2 + |—h|2

�
dist2(x,∂W 0) dx,

where C above depends only on the dimension N. This implies the estimate in (i)
on W 0 with the constant that only depends on the constant in (i) on W and on L. The
argument for (ii) is the same. This ends the proof of the theorem.

3.4 Proof of Korn’s inequality

In this section, we complete the proof of Theorem 3.5. In the first step, we decom-
pose the given vector field v as the sum of the harmonic part w and the correction
u that equals zero on ∂W . A simple integration by part yields a desired bound for
u. To deal with w, one applies Lemma 3.12 to g = sym—w and uses the fact that
—2w ' —(sym—w), in combination with Theorem 3.16 (i). The argument is then
lifted from star-shaped domains to arbitrary Lipschitz domains, by Lemma 3.15 (ii).
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Theorem 3.18. Let W ⇢ BR(0)⇢ RN be open and star-shaped with respect to
Br(0), for some 0 < r < R. Then, there holds:

Z

W
|—v|2 dx C

⇣Z

Br(0)
|—v|2 dx+

Z

W
|sym—v|2 dx

⌘
, (3.16)

for every v 2 H1(W ,RN), where C depends only on N and R/r.

Proof. 1. We decompose v as the sum: v = u+w, where u 2 H1(W ,RN) satisfies:

Du = Dv in W , u = 0 on ∂W .

Using identity (3.2), it follows that:

Du = 2div
⇣

sym—v� 1
2

tr
�
sym—v

�
IdN

⌘
.

Integration by parts against u then leads to:
Z

W
|—u|2 dx = 2

Z

W

⌦
—u : sym—v� 1

2
tr(sym—v)IdN

↵
dx

 2N k—ukL2(W)ksym—vkL2(W),

and further: Z

W
|—u|2 dx  4N2

Z

W
|sym—v|2 dx. (3.17)

2. Consider now the harmonic corrector w = v�u 2 H1(W ,RN), which satisfies:

Dw = 0 in W , w = v on ∂W .

The application of Lemma 3.12 to each of N2 components of the harmonic matrix
field sym—w 2 L2(W ,RN⇥N) yields, upon noting Lemma 3.15 (i):

Z

W

��—(sym—w)
��2 dist2(x,∂W) dx C

Z

W
|sym—w|2 dx.

We now observe the useful fact that the second partial derivatives are always a linear
combination of the first derivatives of the components of symmetric gradient:

[—2wi] jk = ∂ j[sym—w]ik +∂k[sym—w]i j �∂i[sym—w] jk

for all i, j,k = 1 . . .N.
(3.18)

The above identity can be checked by a direct calculation. Consequently, the previ-
ous bound becomes:

Z

W

��—2w
��2 dist2(x,∂W) dx C

Z

W
|sym—w|2 dx, (3.19)
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again with a constant C that depends only on N and R/r.
3. Finally, we apply Theorem 3.16 (i) to each component g = ∂iw j of —w to get:

Z

W
|—w|2 dx C

⇣Z

Br(0)
|—w|2 dx+

Z

W
|—2w|2 dist2

�
x,∂W

�
dx
⌘
. (3.20)

Combining (3.17), (3.19) and (3.20) results in:
Z

W
|—v|2 dx C

⇣Z

W
|—u|2 dx+

Z

W
|—w|2 dx

⌘

C
⇣Z

W
|sym—v|2 dx+

Z

Br(0)
|—w|2 dx+

Z

W
|—2w|2 dist2

�
x,∂W

�
dx
⌘

C
⇣Z

W
|sym—v|2 dx+

Z

Br(0)
|—w|2 dx+

Z

W
|sym—w|2 dx

⌘

C
⇣Z

W
|sym—v|2 dx+

Z

Br(0)
|—v|2 dx

⌘
.

The proof is done.

We remark that the same splitting technique used above will also be present in
the proof of Friesecke-James-Müller’s inequality (4.2) in the next chapter, as well
as in the dimension reduction analysis in presence of prestress, in Part III of this
monograph. Two corollaries are now in order. In the first one, we already derive the
estimate in Theorem 3.5 on star-shaped domains:

Corollary 3.19. [First Korn’s inequality on star-shaped domains]
In the setting of Theorem 3.18, for every v 2 H1(W ,RN) there holds:

Z

W
|—v|2 dx C

⇣Z

W
|sym—v|2 dx+

Z

W
|v|2 dx

⌘
, (3.21)

where the constant C depends only on N, R/r and dist(Br(0),∂W).

Proof. Let f 2 C •
0 (W , [0,1]) be some smooth test function satisfying f|Br(0) ⌘ 1.

By Theorem 3.6 applied to fv 2 H1
0 (W ,RN), we obtain:

Z

Br(0)
|—v|2 dx 

Z

W
|—(fv)|2 dx  2

Z

W
|sym—(fv)|2 dx

 4
⇣Z

W
|sym—v|2 dx+

Z

W
|—f |2|v|2 dx

⌘
.

Since f can be taken radially symmetric with k—fkL• depending only on the quan-
tity dist(Br(0),∂W), the estimate (3.16) yields the result.

Proof of Theorem 3.5
The same estimate (3.21) is evidently valid on any W that is a finite union of
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domains satisfying assumptions of Theorem 3.18. Hence, the proof of Theorem 3.5
is achieved in virtue of Lemma 3.15 (ii).

Recall that the argument by contradiction, as in the proof of Theorem 3.1, yields
Korn’s inequality in the form of the rigidity estimate on those domains on which
First Korn’s inequality has been established. Below we observe a direct proof of the
same statement, which on star-shaped domains gives an information on the depen-
dence of Korn’s constant on W :

Corollary 3.20. [Korn’s inequality on star-shaped domains]
In the setting of Theorem 3.18, for every v 2 H1(W ,RN) there holds:

Z

W
|—v� skew

?

W
—v|2 dx C

Z

W
|sym—v|2 dx (3.22)

where C depends only on N and R/r.

Proof. Let v = u+w be the decomposition as in the proof of Theorem 3.18. We
apply Theorem 3.16 (ii) to the components g = ∂iw j of the harmonic matrix field
—w, to get B 2 RN⇥N so that, recalling (3.19):

Z

W
|—w�B|2 dx C

Z

W
|—2w|2dist2(x,∂W) dx C

Z

W
|sym—w|2 dx. (3.23)

Since for every x 2 W there holds:

|B� skewB|= dist(B,so(N)) |B�—w(x)|+dist(—w(x),so(N))

= |B�—w(x)|+ |sym—w(x)|,

it follows that
R

W |B� skewB|2 C
R

W |sym—w|2 dx, and consequently:
Z

W
|—w� skewB|2 dx C

Z

W
|sym—w|2 dx. (3.24)

In conclusion, by (3.17) and (3.24) we get:

k—v� skewBkL2(W)  k—ukL2(W) +k—w�BkL2(W) Cksym—vkL2(W), (3.25)

and invoking Remark 3.3 completes the proof.

3.5 Korn’s constant under tangential boundary conditions

We have seen in Theorem 3.6 that under Dirichlet boundary conditions, Korn’s con-
stant is universal and equals 2 for all domains W . In this section, we deduce that
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under tangential boundary condition Korn’s constant is always at least 2. As shown
in the example below there is however no upper bound on it.

Example 3.21. Consider any smooth, closed, nonintersecting curve g in R2, which
is not rotationally symmetric. Denote by g 3 z 7! n(z),t(z) the smooth unit normal
and unit tangent vector fields on g , and recall that ∂t n = kt and ∂t t =�kn, where
k is the scalar curvature field on g . For each z 2 g and a small |t|⌧ 1, let:

v(z+ tn(z)) = (1+ tk(z))t(z).

Then v|W̄ h 2 C •(W̄ h,R2) where for each small h > 0 we define a thin strip W h ⇢ R2

around g , by setting:

W h =
�

x = z+ tn(z); z 2 g, t 2
�
� h

2
,

h
2
� 

.

It is clear that hv,ni= 0 on ∂W h, and also we calculate directly:

∂nv(z+ tn) = kt(z),

∂t v(z+ tn) = 1
1+ tk

⇣
(1+ tk)∂t t(z)+ t∂t k(z)t(z)

⌘
=�kn(z)+ t∂t k

1+ tk
t(z).

Consequently:
⌦
∂nv,n

↵
= 0,

⌦
∂t v,n

↵
+
⌦
∂nv,t

↵
= 0 and

⌦
∂t v,t

↵
= t∂t k

1+tk , yielding:
Z

W h
|sym—v|2 dx Ch3,

Z

W h
|—v|2 dx � ch as h ! 0. (3.26)

By Corollary 3.10, the uniform bound (3.11) holds for all v 2 H1(W h,R2) tangential
on the boundary, with some constant C = Ch that depends only on W h. However,
(3.26) implies that Ch � c

h2 as h ! 0.

Fig. 3.2 Thin two-dimensional domains in Example 3.21.

We point out that Example 3.21 can be carried out in higher dimensions N > 2 as
well, upon replacing the tangent vector field t along a curve g , by a Killing vector
field on a surface S. We refer to Example 3.34 for the related construction.
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The following is the main result of this section:

Theorem 3.22. Let W ⇢ Rn be an open, bounded, connected, Lipschitz do-
main. In the context of Theorem 3.8, let G0 = /0 and G1 = ∂W . Then, there holds
C � 2 for the constant C in (3.10). Equivalently:

2  sup
n

min
w2I /0,∂W (W)

Z

W
|—v�—w|2 dx; v 2 H1(W ,RN), hv,ni= 0 on ∂W ,

and
Z

W
|sym—v|2 dx = 1

o

Proof. 1. Without loss of generality, we may assume that 0 2 W . Fix some vector
field v̄ 2 H1(RN ,RN) satisfying

R
W |sym—v̄|2 dx = 1 and define the sequence {v̄n 2

H1(RN ,RN}•
n=1 by v̄n(x) = nN/2�1v̄(nx). Then, there holds:

Z

RN
|—v̄n|2 dx =

Z

RN
|—v̄|2 dx,

Z

RN
|sym—v̄n|2 dx =

Z

RN
|sym—v̄|2 dx = 1.

Let f 2 C •
c (W , [0,1]) be a test function, equal identically to 1 in a neighborhood of

0 in W . For the modified sequence {vn ⌘ f v̄n 2 H1
0 (W ,RN)}•

n=1, we have:

—vn = f—v̄n + v̄n ⌦—f ,

where the second term satisfies:

lim
n!•

kv̄n ⌦—fkL2(W)  lim
n!•

k—fkL•(W)n�1kv̄kL2(RN) = 0.

We now make the following claims:

lim
n!•

k—vnkL1(W) = 0, (3.27)

lim
n!•

k—vnkL2(W) = k—v̄kL2(RN), lim
n!•

ksym—vnkL2(W) = 1. (3.28)

The first convergence in (3.28) follows by noting that:

lim
n!•

��f—v̄n
��2

L2(W) = lim
n!•

Z

RN

��f
� x

n
�
—v̄(x)

��2 dx = k—v̄k2
L2(W).

The second convergence follows similarly. For the remaining assertion (3.27), we
use the result (3.29) in step 2 below to conclude the last equality in:

lim
n!•

kf—v̄nkL1(W)  lim
n!•

kfkL•n�N/2k—v̄kL1(nW) = 0.

2. We now prove the following statement, valid for any g 2 L2(RN ,R):

lim
R!•

R�N/2kgkL1(BR(0)) = 0. (3.29)
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Fix e > 0 and let R > m be two constants, sufficiently large to ensure that:

kgkL2(RN\Bm(0)) < e and
⇣m

R

⌘N/2
kgkL2(RN)  e.

Then we have, as claimed:

R�N/2kgkL1(BR)
= R�N/2�

Z

BR(0)\Bm(0)
|g| dx+

Z

Bm(0)
|g| dx

�

 R�N/2|BR(0)|1/2e +R�N/2|Bm(0)|1/2kgkL2(RN)

 |B1(0)|1/2e +
⇣m

R

⌘N/2
|B1(0)|1/2kgkL2(RN)  2|B1(0)|1/2e.

3. Note that, in virtue of Remark 3.9 we obtain:

min
w2IG0 ,G1 (W)

k—vn �—wkL2(W) =
��—vn �P

?

W
—vn dx

��
L2(W)

� k—vnkL2(W)�
��P
?

W
—vn dx

��
L2(W) � k—vnkL2(W)� |W |�1/2k—vnkL1(W).

By (3.27) and (3.28), the right hand side above converges to k—v̄kL2(RN) as n ! •,
while the left hand side is bounded by C1/2ksym—vnkL2(W), with C being the Korn
constant to be estimated. Passing to the limit and using (3.28) again, we conclude:

k—v̄kL2(RN) C1/2ksym—v̄kL2(RN) =C1/2,

which yields:

C � sup
nZ

RN
|—v̄|2 dx; v̄ 2 H1(RN ,RN),

Z

RN
|sym—v̄|2 dx = 1

o
.

The proof is done by recalling homogeneous Korn’s inequality in Theorem 3.6.

The bound in Theorem 3.22 is actually achieved, as shown in Example 3.7. The
final observation of this section is that, in general, Korn’s constant under tangen-
tial boundary condition blows up (at the rate h�2) when the thickness h of a 2-
dimensional domain goes to 0. Thin domains are of primary importance in this
monograph and will be studied in the context of elasticity, in Parts II and III.

3.6 Approximation theorem and Korn’s constant in thin shells

In this section we show how to approximate a displacement gradient —v on a thin
shell, by a field of skew-symmetric matrices rather than by a constant matrix. While
Korn’s constant in the latter approximation, in general, blows up like 1

h2 along the
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vanishing shell’s thickness h (as we have already seen in Example 3.21), the former
approximation has the corresponding constants independent of h ! 0.

A similar construction, combining a mollification argument with Korn’s inequal-
ity (3.1) used locally, will be carried out in section 4.5 to obtain the SO(N)-valued
approximations of a deformation gradient on thin shells. This approximation, based
on the Friesecke-James-Müller nonlinear version of (3.1), will be of key importance
in the dimension reduction analysis in Parts II and III of this monograph. In this
section, we will also show how a simple application of the same technique yields a
uniform Poincaré-Wirtinger type inequality on thin shells.

Let S be a smooth, closed hypersurface (i.e. a compact boundaryless manifold
of co-dimension 1) in RN . We will use the following notation: n for the outward
unit normal to S (seen as the boundary of some bounded domain in RN), TzS for the
tangent space to S at z 2 S, and p for the projection onto S along n:

p(z+ tn(z)) = z for all z 2 S, |t|⌧ 1.

For two families of positive, C 1 functions {gh
1,g

h
2 : S ! R}h>0, we will consider a

family {Sh}h>0 of thin shells around S, viewed as their midsurfaces:

Sh = {x = z+ tn(z); z 2 S, �gh
1(z)< t < gh

2(z)}. (3.30)

We have:

Theorem 3.23. Let S ⇢ RN be a smooth, closed hypersurface. Assume that
{Sh}h>0 is given by (3.30) where {gh

1,g
h
2 2 C 1(S,R)}h>0 satisfy:

C1h  gh
i (z)C2h, |—gh

i (z)|C3h for all z 2 S, h ⌧ 1, (3.31)

with some positive constants C1,C2,C3 independent of h. Then, for every vector
field v 2 H1(Sh,RN) there exists a map A 2 H1(S,so(N)) such that:

(i)
Z

Sh
|—v�Ap|2 dx C

Z

Sh
|sym—v|2 dx,

(ii)
Z

S
|—A|2 ds(z) C

h3

Z

Sh
|sym—v|2 dx.

The constants C above depend on S and {Ci}3
i=1, but not on v or h ⌧ 1.

Proof. 1. For each z 2 S define the following sets:

Dz,h = Bh(z)\S, Bz,h = p�1(Dz,h)\Sh,

where Bh(z) denotes the ball in RN . We observe that Bz,h is contained in a ball
of radius (C2 + 1)h and and it is star-shaped with respect to a ball of radius
r(C1,C2,C3,S)h, for h sufficiently small. Hence, an application of Corollary 3.20
on Bz,h yields a skew-symmetric matrix Az,h 2 so(N) such that:
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Z

Bz,h

|—v(x)�Az,h|2 dx C
Z

Bz,h

|sym—v|2 dx, (3.32)

where C depends only on the quantities indicated in the statement of the result.
The goal now is to replace Az,h by A(z) which depends smoothly on z, and thus
ultimately replace Az,h by A(pz) in (3.32). The desired estimate on Sh will then
follow by summing over a finite family of cylinders Dz,h.

To this end, let q : [0,1)! [0,2] be a smooth cut-off function that is compactly
supported, constant in a neighbourhood of 0, and satisfying

R 1
0 q = 1. Define:

hz(x) =
q(|px� z|/h)R

Sh q(|px� z|/h) dx
for all z 2 S, x 2 Sh.

Then hz is supported on Bz,h and moreover we have:
Z

Sh
hz(x) dx = 1, |hz|

C
hN , |—zhz|

C
hN+1 . (3.33)

Finally, we define the skew-symmetric matrix field A as the average:

A(z) =
Z

Sh
hz(x)skew—v(x) dx.

2. Since A(z)�Az,h =
R

Sh hz(x)skew(—v(x)�Az,h) dx, the Cauchy-Schwarz in-
equality together with (3.32) and (3.33) yield:

|A(z)�Az,h|2 
�Z

Sh
hz(x)|—v(x)�Az,h| dx

�2  C
hN

Z

Bz,h

|sym—v|2 dx. (3.34)

To estimate —A we use that:
R

Sh —zhz(x) dx = —z (
R

Sh hz(x) dx) = 0, to get: —A(z) =R
Sh (—zhz) skew—v dx =

R
Sh (—zhz) skew(—v�Az,h) dx. Consequently:

|—A(z)|2 
Z

Bz,h

|—zhz|2 dx ·
Z

Bz,h

��—v�Az,h
��2 dx  C

hN+2

Z

Bz,h

|sym—v|2 dx, (3.35)

in virtue of (3.32) and (3.33). Similarly, for all z0 2 Dz,h there holds:

|—A(z0)|2  C
hN+2

Z

Bz0 ,h

|sym—v|2 dx  C
hN+2

Z

2Bz,h

|sym—v|2 dx, (3.36)

where 2Bz,h = p�1(Dz,2h)\Sh. From this, by the fundamental theorem of calculus:

|A(z00)�A(z)|2  C
hN

Z

2Bz,h

|sym—v|2 dx for all z00 2 Dz,h.

In combination with (3.32) and (3.34) the above yields:
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Z

Bz,h

|—v(x)�A(px)|2 dx C
Z

2Bz,h

|sym—v|2 dx. (3.37)

3. We now cover Sh with a family of sets {Bzi,h}
n(h)
i=1 with the property that the

covering number of the derived family {2Bzi,h}
n(h)
i=1 is independent of h. An argument

for the existence of such a covering goes as follows. The surface S is contained in the
finite union of balls

Sn(h)
i=1 Bh/2(ki) where ki 2 ( h

2Z)
N . Fix a one-to-one map ki 7! zi 2

S\Bh/2(ki), so that Sh =
S

i Bzi,h. Then, if x 2 2Bzi,h there must be p(x) 2 B2h(zi),
so that |ki �p(x)| |ki � xi|+ |p(x)� zi| 5h/2. Therefore ki 2 B5h/2(x)\ ( h

2Z)
n.

The cardinality of this last set is bounded by 10N , which serves as an upper bound
on the covering number for the family {2Bzi,h}

n(h)
i=1 .

Summing (3.37) over i = 1 . . .n proves (i). Integrating (3.36) on Dz,h we get:
Z

Dz,h

|—A(z0)|2 ds(z0) C
h3

Z

2Bz,h

|sym—v|2 dx,

which yields (ii) by using the same covering argument above.

As a corollary, we readily deduce:

Theorem 3.24. Let S ⇢ RN be a smooth, closed hypersurface and assume
(3.31). Then, for every vector field v 2 H1(Sh,RN) defined on Sh in (3.30) with
h ⌧ 1, there exists A0 2 so(N) such that:

Z

Sh
|—v�A0|2 dx  C

h2

Z

Sh
|sym—v|2 dx.

The constant C above depends only on S and {Ci}3
i=1 in (3.31).

Proof. Let A : S ! so(N) be as in Theorem 3.23 and define:

A0 ⌘
?

S
A(z) ds(z) 2 so(N).

Applying additionally the Poincaré inequality on S, we obtain:
Z

Sh
|—v�A0|2 dx C

�Z

Sh
|—v�Ap|2 dx+h

Z

S
|A(z)�A0|2 ds(z)

�

C
�Z

Sh
|sym—v|2 dx+h

Z

S
|—A|2 ds(z)

�
 C

h2

Z

Sh
|sym—v|2 dx.

This ends the proof.

The decomposition and mollification argument as in Theorem 3.23 can be ap-
plied towards a useful uniform Poincaré inequality in thin shells:
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Theorem 3.25. Let S ⇢ RN be a smooth, closed hypersurface and assume
(3.31). Then, for every g 2 H1(Sh,R), there exists a 2 R so that:

Z

Sh
|g�a|2 dx C

Z

Sh
|—g|2 dx.

The constant C above depends only on S and {Ci}3
i=1 in (3.31).

Proof. Let Dz,h, Bz,h, hx be as in the proof of Theorem 3.23. We will show the result
for the constant a =

>

S ã(z) ds(z), where we define:

ã(z) =
Z

Sh
hz(x)g(x) dx for all z 2 S.

First, by Lemma 3.16 (ii), the local estimate (3.32) can be replaced by:
Z

Bz,h

|g�az,h|2 dx Ch2
Z

Bz,h

|—u|2 dx.

Repeating the calculations leading to (3.34) and (3.35), it follows that:

|ã(z)�az,h|2 Ch2�N
Z

Bz,h

|—g|2 dx,

|—ã(z0)|2 Ch�N
Z

2Bz,h

|—g|2 dx for all z0 2 Dz,h,

which imply, exactly as in (3.37):
Z

Sh
|g� ãp|2 dx Ch2

Z

Sh
|—g|2 dx,

Z

S
|—ã|2 ds(z)Ch�1

Z

Sh
|—g|2 dx.

Using the standard Poincaré inequality on surfaces, we thus get:
Z

Sh
|g�a|2 dx C

⇣Z

Sh
|g� ãp|2 dx+h

Z

S
|ã(z)�a|2 ds(z)

⌘

C
⇣

h2
Z

Sh
|—g|2 dx+h

Z

S
|—ã|2 ds(z)

⌘
C

Z

Sh
|—g|2 dx.

The proof is done.

Theorems 3.24 and 3.25 directly imply the following Korn-Poincaré inequality:

Corollary 3.26. Let S ⇢ RN be a smooth, closed hypersurface and assume (3.31).
Then, for every v 2 H1(Sh,RN), defined on Sh in (3.30), there exists affine map with
skew-symmetric gradient w 2 I (Sh), satisfying:

kv�wkH1(Sh) 
C
h
ksym—vkL2(Sh).
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The constant C above depends only on S and {Ci}3
i=1 in (3.31).

We close this section by a trace theorem, resulting by applying the scaled versions
of the usual trace theorem to each neighbourhood Bz,h in the proof of Theorem 3.23:

Lemma 3.27. Let S ⇢ RN be a smooth, closed hypersurface and assume (3.31).
Then, for every g 2 H1(Sh,R) there holds:

kgkL2(S) +kgkL2(∂Sh) C
⇣ 1

h1/2 kgkL2(Sh) +h1/2k—gkL2(Sh)

⌘
,

where in the left hand side we have norms of traces of g on S and ∂Sh. The constant
C is independent of g or h ⌧ 1.

3.7 Killing vector fields and Korn’s inequality on surfaces

The purpose of this section is to prove the counterparts of Korn’s inequalities in
Theorems 3.5 and 3.1, where the open domain W ⇢ RN is replaced by a N � 1
dimensional surface S ⇢ RN . Rather than carrying out proofs (for now) in the more
general context of Riemannian geometry, we will apply the previous results on thin
shells around S and recover Korn’s inequality on S in the vanishing limit of the
shell’s thickness. In addition to the independent interest of these results, the analysis
below will be essential for continuing the discussion in section 3.9.

Let S be a smooth, closed hypersurface in RN . We use the notation n, TzS and p as
in section 3.6. For a vector field v 2 H1(S,RN), we denote by sym—v the symmetric
part of the (covariant) gradient of (the tangent component of) v, in:

hsym—v(z)h ,ti= 1
2
�
h∂h v(z),ti+ h∂t v(z),hi

�
for all z 2 S, t,h 2 TzS.

By ∂t v(z) we denote the derivative of v in the tangent direction t , i.e. if g :
(�e,e) ! S is a C 1 curve with g(0) = z and g 0(0) = t , then ∂t v(z) = (v � g)0(0).
By P(z) = —n(z) : TzS ! TzS we denote the shape operator (which is the negative
second fundamental form) on S.

We have the following counterpart to Theorem 3.5:

Theorem 3.28. [First Korn’s inequality on surfaces]
Let S be a smooth, closed hypersurface in RN. There holds:

Z

S
|—v|2 ds(z)C

Z

S
|v|2 + |sym—v|2 ds(z), (3.38)

for all vector fields v 2 H1(S,RN) tangent to S, i.e. satisfying hv(z),n(z)i = 0
for a.e. z 2 S. The constant C above depends only on S but not on v.
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Proof. 1. Consider the extension of v on the thin neighbourhood of Sh0 of S:

ṽ(z+ tn(z)) = (Id+ tP(z))�1v(z) for all x 2 Sh0 ,

where Sh0 =
�

x = z+ tn(z); z 2 S, |t|< h0

2
 
, h0 ⌧ 1.

(3.39)

We have ṽ 2 H1(Sh0 ,RN) and for every x = z+ tn(z) 2 Sh0 and t 2 TzS there holds:

∂t ṽ(z) =
n

—
⇥
(Id+ tP(z))�1⇤(Id+ tP(z))�1t

o
v(z)

+(Id+ tP(z))�1—v(z)(Id+ tP(z))�1t.
(3.40)

The first component above is bounded by C|tu(x)|. Taking the scalar product of
the second term with any h 2 TxS gives: h(Id+ tP(z))�1h ,—v(z)(Id+ tP(z))�1ti.
Consequently, we obtain:

hsym—ṽ(x)t,hi=
⌦
(Id+ tP(z))�1h ,sym—v(z)(Id+ tP(z))�1t

↵

+ hZ(t,z),v(z)i
|Z(t,z)|C.

(3.41)

On the other hand, hn(z), ṽ(x)i= 0, so for any t 2 TzS:

h∂t ṽ(x),n(z)i=�
⌦
P(z)(Id+ tP(z))�1t, ṽ(x

↵
)

=�
⌦
(Id+ tP(z))�1P(z)(Id+ tP(z))�1v(z),t

↵
= ht,∂nṽ(x)i.

Hence it follows that:

hsym—ṽ(x)t,ni=�
⌦
(Id+ tP(z))�1P(z)(Id+ tP(z))�1v(z),ti,

hsym—ṽ(x)n,ni= 0.
(3.42)

2. We now invoke first Korn’s inequality on the open bounded smooth Sh0 , to get:
Z

Sh0
|—ṽ|2 dx C

Z

Sh0
|ṽ|2 + |sym—ṽ|2 dx,

where C depends only on S and the chosen parameter h0. By (3.40) and noting that:

h∂t v,ni=�hPt,vi,

we further obtain:
Z

Sh0
|—ṽ|2 dx � c1

Z

S
|—v|2 ds(z)� c2

Z

S
|v|2 ds(z),

again with some uniform positive constants c1,c2. Further, by (3.41) and (3.42):
Z

Sh0
|sym—ṽ|2 dx C

Z

S
|v|2 + |sym—v|2 ds(z).
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The three above displayed inequalities imply (3.38), in view of the elementary
bound

R
Sh0 |ṽ|2 dx C

R
S |v|2 ds(z).

In order to formulate second Korn’s inequality on S, we necessitate the displace-
ments whose gradients replace the constant skew matrices A 2 so(N) in (3.1).

Definition 3.29. We say that a (smooth) vector field w : S ! RN is a Killing vector
field on S, provided that: w(z) 2 TzS and sym—w = 0 for all z 2 S. The linear space
(and the Lie algebra) of all Killing fields on S will be denoted by I (S).

The Killing fields are infinitesimal generators of isometries on S, in the sense that
for every fixed t the map S 3 z 7! F(t,z) 2 S is an isometry, where F is the flow of:

d
dt

F(s,z) = w(F(t,z)), F(0,z) = z.

The smoothness assumption in Definition 3.29 is not a restriction, because of the
following counterpart of Lemma 3.2:

Lemma 3.30. (i) Let w 2 H1(S,RN) be a tangent field satisfying sym—w = 0 al-
most everywhere on S. Then w 2 I (S).

(ii) The space I (S) has finite dimension.

Proof. To show smoothness of w in (i), recall the extension w̃ 2 H1(Sh0 ,RN) given
by the formula in (3.39). By (3.41), (3.42) we see that sym—w̃ has the improved
regularity H1 and hence in virtue of (3.2) we get: D w̃ 2 L2(Sh0 ,R). The result is a
consequence of the elliptic regularity and a bootstrap argument.

The finite dimensionality assertion in (ii) follows from the equivalence of the L2

and the H1 norms on I (S), in view of (3.38) which yields:

k—wkL2(S) CkwkL2(S) for all w 2 I (S). (3.43)

For otherwise the space (I (S),k · kH1) would have a countable Hilbert (orthonor-
mal) basis {en}•

n=1. The sequence {en} must then converge to 0 as n ! •, weakly
in H1(S,RN). But this implies that limn!• kenkL2(S,RN) = 0, which by the norms
equivalence gives the same convergence in H1(S,R3), and a contradiction.

As in the proof of Theorem 3.1, an argument by contradiction now yields:

Theorem 3.31. [Korn-Poincaré’s inequality on surfaces]
Let S be a smooth, closed hypersurface in RN. For every tangent vector field
v 2 H1(S,RN) there exists a Killing field w 2 I (S) such that:

kv�wkH1(S) Cksym—vkL2(S)

and the constant C depends only on S.
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Proof. Consider the orthogonal complement I (S)? of I (S) in the Hilbert space
of H1(S,RN) regular tangent vector fields on S. Both spaces are closed (with respect
to both weak and strong convergences in H1(S,RN)). We will show that:

kvkH1(S) Cksym—vkL2(S) for all v 2 I (S)?,

which clearly implies the result in the Theorem. We argue by contradiction. If the
above was not true, there would exist a sequence {vn 2 I (S)?}•

n=1 such that:

kvnkH1(S) = 1, ksym—vnkL2(S) ! 0 as n ! •.

Without loss of generality, or passing to a subsequence if necessary, {vn}n!• con-
verges weakly to some v 2 I (S)?. Moreover, sym—v = 0 by the second condition
above, so Lemma 3.30 implies that v 2 I (S). Since the spaces I (S) and I (S)?
are orthogonal, there must be v = 0, and hence {vn}n!• converges to 0 (strongly) in
L2(S,RN). This contradicts the normalisation kvnkH1(S) = 1, in virtue of (3.38).

A few remarks on the linear space I (S) are of interest:

Remark 3.32. (i) The bound (3.43) together with an estimate of the uniform con-
stant C (that depends on S), can be recovered directly using the following identity,
valid for all Killing vector fields w 2 I (S):

DS
�1

2
|w|2

�
=
��e—w

��2 �Ric(w,w). (3.44)

Here DS is the Laplace-Beltrami operator on S, e—w = (—w)tan is the covariant
derivative of w on S, and Ric stands for the Ricci curvature form on S. To cal-
culate Ric(w,w) in our particular setting, note that by Gauss’ Teorema Egregium,
the Riemann curvature 4-tensor on S satisfies:

hR(t,h)x ,Ji= hP(z)t,JihP(z)h ,x i�hP(z)t,x ihP(z)h ,Ji,

for all z 2 S and t,h ,x ,J 2 TzS. Thus, the Ricci curvature 2-tensor being the ap-
propriate trace of R, we obtain for all z 2 S and h ,x 2 TzS:

Ric(h ,x ) = tr(t 7! R(t,h)x ) = trP(z)hP(z)h ,x i�hP(z)x ,P(z)hi
=
⌦�
(trP(z))P(z)�P(z)2�h ,x

↵
.

(3.45)

Integrating (3.44) on S and using (3.45) we arrive at:

ke—wk2
L2(S) =

Z

S

⌦�
(trP(z))P(z)�P(z)2�w(z),w(z)

↵
ds(z). (3.46)

To calculate the L2 norm of the full gradient —u on S, we use:
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k—wk2
L2(S)�ke—wk2

L2(S) =
Z

S

n�1

Â
i=1

h∂tiw,ni
2 ds(z)

=
Z

S

n�1

Â
i=1

hw(z),P(z)tii2 ds(z) =
Z

S
|P(z)w|2 ds(z).

Hence we arrive at:
Z

S
|—w|2 ds(z) =

Z

S
trP(z)

⌦
P(z)w(z),w(z)i ds(z) for all w 2 I (S), (3.47)

which clearly implies (3.43).
(ii) Notice that in the special case of a 2⇥2 matrix P , when N = 3 and S is a 2d

surface in R3, the Cayley-Hamilton theorem implies:

(trP)P �P 2 = (detP)Id2,

and so (3.46) becomes:

ke—wk2
L2(S) =

Z

S
detP(z)|w|2 ds(z)

In this case detP(z) coincides with the Gaussian curvature of S at z.
(iii) An equivalent way of obtaining the formula (3.47), but without using the

language of Riemannian geometry, is to look at the extension of w:

w̃(z+ tn(z)) = w(z) for all x = z+ tn(z) 2 Sh0 .

Since ∂nw̃ = 0 and hw̃,ni= 0 on the boundary of Sh0 , by (3.2) one has:
Z

Sh0
|—w̃|2 dx =�2

Z

Sh0
hdivsym—w̃, w̃i dx�

Z

Sh0
|div w̃|2 dx. (3.48)

Calculating hsym—w̃, w̃i in terms of P(z), dividing both sides of (3.48) by 2h0 and
passing to the limit with h0 ! 0, one recovers (3.47) directly.

We conclude this section by the following Korn-type inequality on 2d surfaces:

Lemma 3.33. Let S ⇢ R3 be a smooth, closed hypersurface in R3. Assume that A 2
C 0,1(S,R2⇥2) satisfies detA , 0 on S. Then there holds, for every tangent vector
field v 2 H1(S,R3), with C that depends only on S and A, but not on v:

k—vkL2(S) C
�
kvkL2(S) +k(—v)tan �h(—v)tan : AiAkL2(S)

�
.

Proof. It suffices to prove the claimed bound locally, and hence below we replace S
by a single patch, with a boundary that is a Lipschitz curve. Take J 2 C 0,1(S̄,so(2))
to be any skew-symmetric matrix field with nonvanishing determinant. Define ṽ =
JA�1v and note the decomposition:
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—v = AJ�1(—ṽ)tan +—(AJ�1)JA�1v. (3.49)

To estimate —ṽ, we use (the local version of) Theorem 3.28:

k—ṽkL2(S) C(kvkL2(S) +ksym—ṽkL2(S)). (3.50)

Further, sym—ṽ = sym
�
(—ṽ)tan �h(—v)tan : AiJ

�
as J is skew-symmetric. Thus:

ksym—ṽkL2(S)  k(—ṽ)tan �h(—v)tan : AiJkL2(S)

CkAJ�1(—ṽ)tan �h(—v)tan : AiAkL2(S)

Ck(—v)tan �h(—v)tan : AiAkL2(S) +CkvkL2(S),

in view of (3.49). Combining (3.49), (3.50) and the above completes the proof.

3.8 Blowup of Korn’s constant in thin shells

In this section, we present an extension of the argument in Example 3.21 showing
that in general, the uniform constant C =Ch in (3.1) posed on the thin film W = Sh

with the mid-surface S, blows up quadratically: Ch � c
h2 as h ! 0.

Example 3.34. Given two smooth positive functions g1,g2 : S ! R, we now con-
sider the family {Sh}h>0 of thin shells around S:

Sh = {x = z+ tn(z); z 2 S, �hg1(z)< t < hg2(z)}.

By nh we denote for the outward unit normal to ∂Sh. Define the subspace of I (S):

Ig1,g2(S) = {w 2 I (S); hw(z),—(g1 +g2)(z)i= 0 for all z 2 S} ,

consisting of those Killing fields w which satisfy: limh!0
1
h hw(z),(n

h
+ +nh

�)i = 0,
where nh

+ and nh
� denote, respectively, the outward unit normals to Sh at its boundary

points z+hg2(z) and z�hg1(z).
For w 2 Ig1,g2(S)\{0} we now construct a family {vh 2 H1(Sh,RN)}h!0 with:

hvh,nhi= 0 on ∂Sh, (3.51)

for which C =Ch � c
h2 as h! 0 in (3.1), even though I /0,∂Sh(Sh)= {0} for all h⌧ 1.

This is the case, for example, when S has no rotational symmetry, see Remark 3.11
and Theorem 3.8.

1. Namely, for all z 2 S and all t 2 (�hg1(z),hg2(z)), we set:

vh(z+ tn(z)) =
⇣

Id+ tP(z)+hn(z)⌦—g2(z)
⌘

w(z) (3.52)
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and calculate directly:

vh(z+ tn(z)) = hg1(z)+ t
h(g1(z)+g2(z))

⇣
Id+hg2(z)P(z)+hn(z)⌦—g2(z)

⌘
w(z)

+
hg2(z)� t

h(g1(z)+g2(z))

⇣
Id�hg1(z)P(z)�hn(z)⌦—g1(z)

⌘
w(z).

The above means that each vh is a linear interpolation between the push-forward of
the vector field w from S onto the external boundary ∂+Sh and the push-forward
onto the internal boundary ∂�Sh of ∂Sh. Indeed, derivatives of the maps in:

S 3 z 7! z±hgi(z)n(z) 2 ∂±Sh

are given through:
Id±hgi(z)P(z)±hn(z)⌦—gi(z).

In particular, we see that (3.51) holds.
2. Write now vh = w̃+(vh � w̃), with:

w̃(x) =
�
Id+ tP(z)

�
w(z),

and estimate components of —w̃ and sym—w̃. For all z 2 S and t 2 TzS, there holds:

∂nw̃(x) = P(z)w(z),

∂t w̃(x) =
t∂P(z)

∂ ((Id+ tP(z))�1t)
w(z)+(Id+ tP(z))—w(z)(Id+ tP(z))�1t.

(3.53)

Since hn, w̃i= 0 and since P(x) commutes with (Id+ tP(x))�1, we get:

h∂t w̃,ni+ h∂nw̃,ti=�h∂t n, w̃i+ h∂nw̃,ti
=�

⌦
P(z)(Id+ tP(z))�1t,(Id+ tP(z))w(z)

↵
+ hP(z)w(z),ti= 0,

h∂nw̃,ni= 0.
(3.54)

To estimate hsym—w̃(x)t,hi for t,h 2 TzS, note that:
��h(Id+ tP(z))—w(z)(Id+ tP(z))�1t,hi

�h(Id+ tP(z))�1—w(z)(Id+ tP(z))�1t,hi
��Ct|—w(z)|,

because |(Id+ tP(z))� (Id+ tP(z))�1|  Ct with C that, as usual, denotes any
positive constant independent of h. Since (Id+ tP(z))�1t 2 TzS, we obtain:

|hsym—w̃(x)t,hi|Ct(|w(z)|+ |—w(z)|). (3.55)

Further: |—(vh � w̃)(x)|Ch, and by (3.54) and (3.55): |sym—w̃|Ch on Sh.
3. Consequently, it follows that:
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Z

Sh
|sym—vh|2 dx Ch3.

On the other hand, inspecting the terms in —vh and recalling that w , 0 so that
—w , 0 as well, we see that:

Z

Sh
|—vh|2 dx � 1

2

Z

Sh
|—w|2 dx� c2h3 � c1h.

The two last inequalities yield the claim.

3.9 Uniformity of Korn’s constant under tangential boundary
conditions in thin shells

We have shown in Example 3.34 that Korn’s constants C in (3.1) may converge to
infinity as the thickness h of a thin shell Sh converges to 0. In this section, we prove
that this blow-up, under tangential boundary condition is only due to the presence
of Killing vector fields. In particular, if the Killing fields are treated as the kernel of
the rigidity estimate, then the corresponding constants Ch on Sh are uniform in h.

As in section 3.6, we consider a family {Sh}h>0 of thin shells around a smooth,
closed hypersurface S ⇢ RN , given by:

Sh = {x = z+ tn(z); z 2 S, �gh
1(z)< t < gh

2(z)}, (3.56)

whose boundary is determined by some positive functions {gh
1,g

h
2 2 C 1(S,R)}h>0.

Fig. 3.3 The midsurface S and the lower and upper boundaries in Theorem 3.35.

By nh we denote the outward unit normal to ∂Sh, while n is the unit normal to S.
Recall the following spaces of Killing fields on S:

I (S) =
�

w 2 H1(S,RN); w(z) 2 TzS and sym—w(z) = 0 for all z 2 S
 
,

Ig1,g2(S) =
�

w 2 I (S); hw(z),—(g1 +g2)(z)i= 0 for all z 2 S
 
.

(3.57)
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We have the following first main result, which can be seen as the homogeneous and
thickness-independent version of the Korn-Poincaré inequality in Corollary 3.26:

Theorem 3.35. Let S ⇢ RN be a smooth, closed hypersurface and let the
boundary functions of {Sh}h>0 in (3.56) satisfy, with constants C1,C2,C3 > 0:

C1h  gh
i (z)C2h, |—gh

i (z)|C3h for all z 2 S, h ⌧ 1. (3.58)

Let a 2 [0,1). Then, for all v 2 H1(Sh,RN) satisfying one of the conditions:

hv,nhi= 0 on ∂+Sh = {z+gh
2(z)n(z); z 2 S},

or hv,nhi= 0 on ∂�Sh = {z�gh
1(z)n(z); z 2 S},

(3.59)

and also satisfying:

��
Z

Sh
hv(x),w(p(x))i dx

�� akvkL2(Sh)kwpkL2(Sh) for all w 2 I (S), (3.60)

there holds, with C independent of v and h ⌧ 1:

k—vkH1(S) Cksym—vkL2(Sh).

As shown in the second result, replacing condition (3.58) by a more restrictive
requirement (3.61) below, one can prove uniform Korn’s inequality for a larger class
of vector fields, namely those forming a cone and satisfying the angle condition
(3.59) with the subspace Ig1,g2(S) rather than the whole I (S). We note that (3.61)
implies (3.58) upon taking C1 ⌘ 1

2 min{gi(z); z 2 S, i = 1,2}, C2 ⌘ 2maxi kgikL•(S)
and C3 ⌘maxi k—gikL•(S) +1. Our second main result is:

Theorem 3.36. Let S ⇢ RN be a smooth, closed hypersurface and let the
boundary functions of {Sh}h>0 in (3.56) satisfy, with constants C1,C2,C3 > 0:

1
h

gh
i ! gi in C 1(S,R) as h ! 0, for i = 1,2. (3.61)

Let a 2 [0,1). Then, for all v 2 H1(Sh,RN) satisfying hv,nhi= 0 on ∂Sh and:

��
Z

Sh
hv(x),w(p(x))i dx

�� akvkL2(Sh)kwpkL2(Sh) for all v 2 Ig1,g2(S),

(3.62)
there holds, with C independent of v and h ⌧ 1:

k—vkH1(S) Cksym—vkL2(Sh).


