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Abstract

We investigate existence and stability of viscoelastic shock profiles for a class of
planar models including the incompressible shear case studied by Antman and Malek-
Madani. We establish that the resulting equations fall into the class of symmetrizable
hyperbolic–parabolic systems, hence spectral stability implies linearized and nonlin-
ear stability with sharp rates of decay. The new contributions are treatment of the
compressible case, formulation of a rigorous nonlinear stability theory, including verifi-
cation of stability of small-amplitude Lax shocks, and the systematic incorporation in
our investigations of numerical Evans function computations determining stability of
large-amplitude and or nonclassical type shock profiles.

1 Introduction

In this paper, generalizing work of Antman and Malek–Madani [AM] in the incompressible
shear flow case, we carry out the numerical and analytical study of the existence and
stability of planar viscoelastic traveling waves in a 3d solid, for a simple prototypical elastic
energy density, both for the general compressible and the incompressible shear flow case.
We establish that the resulting equations fall into the class of symmetrizable hyperbolic–
parabolic systems studied in [MaZ2, MaZ3, MaZ4, RZ, Z4], hence spectral stability implies
linearized and nonlinear stability with sharp rates of decay. This important point was
previously left undecided, due to a lack of the necessary abstract stability framework.

The new contributions beyond what was done in [AM] are: treatment of the com-
pressible case, consideration of large-amplitude waves (somewhat artificial given our simple
choice of energy density; however, the methods used clearly generalize to more physically
correct models), formulation of a rigorous nonlinear stability theory including verification
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of stability of small-amplitude Lax waves, and the systematic incorporation in our investi-
gations of numerical Evans function computations determining stability of large-amplitude
and or nonclassical type shock profiles. For related analysis in various different settings, see
[BHRZ, HLZ, HLyZ, CHNZ, BHZ, BLZ].

In preparation for future generalizations, we also discuss the case of phase-transitional
viscoelasticity. It would be interesting to carry out similar analysis for more general classes
of elastic energy density, as well as for the phase-transitional case which involves, at the
technical level higher order dispersive terms relating to surface energy, and at the physical
level, presumably, interesting new behaviors.

Acknowledgment. Thanks to Stuart Antman and Constantine Dafermos for several
helpful conversations, and to Stuart Antman for making available the working notes [A].

2 The equations of viscoelasticity

The equations of isothermal viscoelasticity are given by the balance of linear momentum:

(2.1) ξtt −∇X ·
(
DW (∇ξ) + Z(∇ξ,∇ξt)

)
= 0.

Here, ξ : Ω×R+ −→ R3 denotes the deformation of a reference configuration Ω ⊂ R3 which
models a viscoelastic body with constant temperature and density. A typical point in Ω is
denoted by X, so that the deformation gradient is given as:

F = ∇ξ ∈ R3×3,

with the key constraint of:
detF > 0.

In (2.1) the operator ∇X · stands for the divergence of an appropriate field. We use the
convention that the divergence of a matrix field is taken row-wise. In what follows, we
shall also use the matrix norm |F | = (tr(F TF ))1/2, which is induced by the inner product:
F1 : F2 = tr(F T1 F2).

The mapping DW : R3×3 −→ R3×3 is the Piola-Kirchhoff stress tensor which, in agree-
ment with the second law of thermodynamics, is expressed as the derivative of an elastic
energy density W : R3×3 −→ R+. The viscous stress tensor is given by the mapping
Z : R3×3 × R3×3 −→ R3×3, depending on the deformation gradient F and the velocity
gradient Q = Ft = ∇ξt = ∇v, where v = ξt.

The first order version of the inviscid part of (2.1):

(2.2) ξtt −∇X ·
(
DW (∇ξ)

)
= 0

is:

(2.3) (F, v)t +
3∑
i=1

∂Xi
(
G̃i(F, v)

)
= 0.
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Above, (F, v) : Ω −→ R12 represents conserved quantities, while G̃i : R12 −→ R12 given by:

−G̃i(F, v) = v1ei ⊕ v2ei ⊕ v3ei ⊕
[

∂

∂Fki
W (F )

]3

k=1

, i = 1..3

are the fluxes, and ei denotes the i-th coordinate vector of R3.

2.1 The elastic energy density W

The principle of material frame invariance imposes the following condition on W , with
respect to the group SO(3) of proper rotations in R3:

(2.4) W (RF ) = W (F ) ∀F ∈ R3×3 ∀R ∈ SO(3).

Also, the material consistency requires that:

(2.5) W (F )→ +∞ as detF → 0.

In what follows, we shall restrict our attention to the class of isotropic materials, for whom
the energy W satisfies additionally:

(2.6) W (FR) = W (F ) ∀F ∈ R3×3 ∀R ∈ SO(3).

Recall [Ba] that hyperbolicity of (2.2) is equivalent to rank-one convexity of W .

A particular example of W satisfying (2.4) and (2.6) is:

(2.7) W0(F ) =
1

4
|F TF − Id|2 =

1

4
(|F TF |2 − 2|F |2 + 3)

and by a direct calculation, we obtain:

DW0(F ) = F (F TF − Id).

Note that W0 in (2.7) is not quasiconvex (or polyconvex) as it is not globally rank-one
convex. This follows by checking the Legendre-Hadamard condition. Indeed, for any A ∈
R3×3 one has: ∂2

AAW0(F ) = (FATF + FF TA + AF TF − A) : A. Taking A = Id and
F ∈ skew we obtain ∂2

AAW0(F ) = |F |2 − 3 which is negative for |F | <
√

3.
On the other hand we see that ∂2

AAW0(R) = 2|sym(ART )|2 for R ∈ SO(3). If rank A = 1
then rank(ART ) = 1 so sym(ART ) 6= 0. Therefore ∂2

AAW0(R) ≥ c|A|2 for every R ∈ SO(3)
and every rank-one matrix A, with a uniform c > 0. This implies that W0 is rank-one
convex in a neighborhood of SO(3).

Notice also that W0 has quadratic growth close to SO(3). Indeed, write F = R + E,
where for F close to SO(3) we have: R = PSO(3)F and |E| = dist(F, SO(3)). Since E

is orthogonal to the tangent space to SO(3) at R, we see that RTE must be symmetric.
Therefore: W0(F ) = 1

4 |R
TE + ETR+ ETE|2 = 1

4 |2R
TE + ETE|2 = |E|2 +O(|E|3).

For other examples of W satisfying (2.4) and (2.6), see (3.7) and Appendix A.1.
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2.2 The viscous stress tensor Z

The viscous stress tensor Z : R3×3×R3×3 −→ R3×3 should be compatible with the following
principles of continuum mechanics: balance of angular momentum, frame invariance, and
the Claussius-Duhem inequality. That is, for every F,Q ∈ R3×3 with detF 6= 0, we require
that:

(2.8)

(i) skew
(
F−1Z(F,Q)

)
= 0, i.e. Z = FS with S symmetric.

(ii) Z(RF,RtF +RQ) = RZ(F,Q) for every path of rotations R : R+ −→ SO(3),
i.e. in view of (i): S(RF,RKF +RQ) = S(R,Q) ∀R ∈ SO(3) ∀K ∈ skew.

(iii) Z(F,Q) : Q ≥ 0, i.e. in view of (i): S : sym(F TQ) ≥ 0.

Examples of Z satisfying the above are:

Z1(F,Q) = 2F sym(F TQ),

Z2(F,Q) = 2(detF )sym(QF−1)F−1,T .
(2.9)

We note that in the case of Z2, the related Cauchy stress tensor T2 = 2(detF )−1Z2F
T =

2sym(QF−1) is the Lagrangian version of the stress tensor 2sym∇v written in Eulerian co-
ordinates. For incompressible fluids 2div(sym∇v) = ∆v, giving the usual parabolic viscous
regularization of the fluid dynamics evolutionary system. For more general viscous stress
tensors, see Appendix A.2.

2.3 An extension: the surface energy

A phenomenological modification that is sometimes used is to replace (2.1) with

(2.10) ξtt −∇X ·
(
DW (∇ξ) + Z(∇ξ,∇ξt)− E(∇2ξ)

)
= 0,

where the surface energy E is given by:

E(∇2ξ) = ∇X ·DΨ(∇2ξ) =

[
3∑
i=1

∂

∂Xi

(
∂

∂(∂ijζk)
Ψ(∇2ξ)

)]
j,k:1...3

for some convex density Ψ : R3×3×3 −→ R, compatible with frame indifference (and
isotropy). A typical example is Ψ0(G) = 1

2 |G|
2, so that:

(2.11) E0(∇2ξ) = ∇X · ∇2ξ = ∆XF

which is an extension of the 1d case of [Sl].
Writing the variation of the energy

∫
Ψ(∇2ξ) in the direction of a test function φ ∈

C∞c (Ω,R3) we obtain:

(2.12)

∫
Ω
DΨ(∇2ξ) : ∇2φ =

∫
Ω

(
∇X · E(∇2ξ)

)
· φ,
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which justifies the last divergence term in (2.10).
The addition of surface energy is motivated by the van der Waals/Cahn–Hilliard ap-

proach to the stationary equilibrium theory [Sl, Z8, CGS, SZ]. This would be an interesting
direction for further investigation.

2.4 Entropy

After integrating (2.1) against ξt on Ω, and then integrating by parts, we obtain:

1

2

∫
∂t|ξt|2 +

∫ (
DW (∇ξ) + Z(∇ξ,∇ξt)

)
: ∇ξt = 0,

where we used that:

ξTt
(
DW (∇ξ) + Z(∇ξ,∇ξt)

)
~n = 0 on ∂Ω,

a natural assumption following from either (Dirichlet) clamped boundary conditions ξ|∂Ω =
const or else free (Neumann) conditions

(
DW (∇ξ) +Z(∇ξ,∇ξt)

)
|∂Ω

= 0 corresponding to

the absence of stress on the boundary.
Consequently:

∂t

∫ (
1

2
∂t|ξt|2 +DW (∇ξ)

)
= −

∫
Z(∇ξ,∇ξt) : ∇ξt ≤ 0

by the Clausius–Duhem inequality, and we see that the integral
∫
η of the quantity:

(2.13) η(F, v) =
1

2
|v|2 +W (F )

along F = ∇ξ and v = ξt, is nonincreasing in time. In case of (2.10), using (2.12) with
φ = ξt we obtain that

∫
η̃ is nonincreasing, for:

η̃ =
1

2
|ξt|2 +W (∇ξ) +DΨ(∇2ξ).

Further, notice that η : R12 −→ R defined in (2.13) is an entropy [D] associated to (2.3).
Indeed, the scalar fields:

qi(F, v) = −v ·
[

∂

∂Fik
W (F )

]3

k=1

i = 1..3

define the respective entropy fluxes, in the sense that:

∇qi(F, v) = ∇η(F, v)DG̃i(F, v).
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3 The planar case

We now restrict our attention to the interesting subclass of planar solutions, which are
solutions in full 3d space that depend only on a single coordinate direction. Namely, we
assume that the deformation ξ has the form:

ξ(X) = X + U(z), X = (x, y, z), U = (u, v, w) ∈ R3,

which yields the following structure of the deformation gradient:

(3.1) F =

 1 0 uz
0 1 vz
0 0 1 + wz

 =

 1 0 a1

0 1 a2

0 0 a3

 .
We shall denote V = (a, b) = (a1, a2, a3, b1, b2, b3), where a1 = uz, a2 = vz, a3 = 1 + wz and
b1 = ut, b2 = vt, b3 = wt, with the constraint:

(3.2) a3 > 0,

corresponding to detF > 0 in the region of physical feasibility of V .

Writing W (a) = W (

 1 0 a1

0 1 a2

0 0 a3

), we see that for all F as in (3.1) there holds:

∇X · (DW (F )) = (DaW (a))z.

That is, the planar equations inherit a vector-valued variational structure echoing the
matrix-valued variational structure, and thus (2.2) has the following form:

Vt +G(V )z = 0

(3.3) G(V ) = (−b,−DaW (a))T , DG(V ) =

[
0 −Id3

−M 0

]
, M = D2

aW (a).

It follows that strict hyperbolicity of (3.3) is equivalent to strict convexity of W with M
having 3 distinct (positive) eigenvalues. Also, η(V ) = 1

2 |b|
2+W (a) is then a convex entropy:

(3.4) ∇η(V )DG(V ) = ∇q(V ), q(V ) = −b ·DaW (a).

3.1 Energy density W0 and viscosities Zi
By a straightforward calculation, we have:

(3.5) W0(a) =
1

4
(|a|2 − 1)2 +

1

2
(a2

1 + a2
2)
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and:

div(DW0(F )) =
(
uzz + (uz|Uz|2 + 2uzwz)z, vzz + (vz|Uz|2 + 2vzwz)z,

2wzz + (|Uz|2 + wz|Uz|2 + 2w2
z)z

)T
=
(

(|a|2a1)z, (|a|2a2)z, ((|a|2 − 1)a3)z

)T
,

(3.6)

More generally, one may consider densities of the form:

(3.7) W (F ) =
1

4
|F TF − Id|2 + c2(|F |2 − 3)2 + c3(|detF | − 1)2.

The c2 term contributes to DW (F ) as: 4c2(|F |2− 3)F in the planar case; this is 4c2(2wz +
|Uz|2)F , with divergence:

4c2

(
(uz|Uz|2 + 2uzwz)z, (vz|Uz|2 + 2vzwz)z, (|Uz|2 + 2wz + wz|Uz|2 + 2w2

z)z

)T
= 4c2

(
((|a|2 − 1)a1)z, ((|a|2 − 1)a2)z, ((|a|2 − 1)a3)z

)T
.

The c3 term contributes to DW (F ) the term: 2(detF − 1)cofF , for F with detF > 0. In
the planar case, divergence of this term reads 2c3(0, 0, wzz)

T = 2c3(0, 0, (a3)z)
T .

Combining, we obtain the general form:
(3.8)

div(DW (F )) =
(

((µ1|a|2 + µ2)a1)z, ((µ1|a|2 + µ2)a2)z, ((µ1|a|2 + µ2)a3 + (µ3 − 1)a3)z

)T
,

with µ1 = 1 + 4c2, µ2 = −4c2, µ3 = 2c3, corresponding to elastic potential

W (a) =
1

4
µ1|a|4 +

1

2
µ2|a|2 +

1

2
µ3(a3 − 1)2 + C,

where C is a constant. The above potential is strictly convex at the identity (a = (0, 0, 1))
whenever µ1 + µ2 > 0 and 3µ1 + µ2 + µ3 > 0. It is a simple case of the general form
W (a) = σ̃(|a|2, a3) described in Appendix A.1. Restricted to the incompressible planar case
of Section 3.2.2, (3.8) recovers the class of equations studied in [AM].

Regarding the viscous tensors, we obtain:

div
(
Z1(F, Ḟ )

)
=
(
uzzt + (uz(2wzt + (|Uz|2)t))z, vzzt + (vz(2wzt + (|Uz|2)t))z,

2wzzt + (|Uz|2)zt + (wz(2wzt + (|Uz|2)t))z

)T
=
((
b1,z + 2a1a · bz

)
z
,
(
b2,z + 2a2a · bz

)
z
,
(

2a3a · bz
)
z

)T
,

(3.9)

div
(
Z2(F, Ḟ )

)
=

(( uzt
1 + wz

)
z
,
( vzt

1 + wz

)
z
,
( 2wzt

1 + wz

)
z

)T
=

((b1,z
a3

)
z
,
(b2,z
a3

)
z
, 2
(b3,z
a3

)
z

)T
,

(3.10)
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where a · bz = a1b1,z + a2b2,z + a3b3,z.

Hence, (2.1) with W and Z as in (2.7) and (2.9), has the hyperbolic-parabolic form:

(3.11) Vt +G(V )z = (B(V )Vz)z

with G(V ) as in (3.3) and:

M = D2
aW0 = diag

(
|a|2, |a|2, |a|2 − 1

)
+ 2a⊗ a

in view of (3.5). Further:

(3.12) B =

[
0 0
0 B0,i

]
, B0,1 = diag

(
1, 1, 0

)
+ 2a⊗ a or B0,2 =

1

a3
diag

(
1, 1, 2

)
in case of Z1 and Z2, respectively. Both tensors B0,i are symmetric and positive definite on
the entire physical region a3 > 0.

3.2 The full and the restricted systems in hyperbolic–parabolic form

3.2.1 Compressible viscoelasticity

For the viscous stress tensor Z1, system (3.11) reads:

(3.13)
a1,t − b1,z = 0,
a2,t − b2,z = 0,
a3,t − b3,z = 0,

b1,t − (|a|2a1)z = (b1,z + 2a1a · bz)z
b2,t − (|a|2a2)z = (b2,z + 2a2a · bz)z
b3,t − ((|a|2 − 1)a3)z = (2a3a · bz)z .

For the viscous tensor Z2 we have:

(3.14)
a1,t − b1,z = 0,
a2,t − b2,z = 0,
a3,t − b3,z = 0,

b1,t − (|a|2a1)z =

(
b1,z
a3

)
z

,

b2,t − (|a|2a2)z =

(
b2,z
a3

)
z

,

b3,t − ((|a|2 − 1)a3)z = 2

(
b3,z
a3

)
z

.

3.2.2 The 2D incompressible shear case

For an incompressible medium and a shear deformation where w = 0, the system (3.14)
reduces to the following one (naturally, we now denote a = (a1, a2) and |a|2 = a2

1 + a2
2):

(3.15)
a1,t − b1,z = 0,
a2,t − b2,z = 0,

b1,t − ((|a|2 + 1)a1)z = b1,zz,

b2,t − ((|a|2 + 1)a2)z = b2,zz,

with an associated pressure of p = |a|2 whose gradient (0, 0, (|a|2)z)
T cancels the term

−(|a|2)z in the b3 equation of (3.14). Note that the viscous stress tensor in this case reduces
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to the Laplacian. Equations (3.15) are a special case of the equations studied in [AM]; they
may be also recognized as the model for an elastic string.

For the choice Z1, we obtain:

(3.16)
a1,t − b1,z = 0,
a2,t − b2,z = 0,

b1,t − ((|a|2 + 1)a1)z = (b1,z + 2a1a · bz)z,
b2,t − ((|a|2 + 1)a2)z = (b2,z + 2a2a · bz)z.

The incompressible model may be viewed as the formal limit as µ→ +∞ of a system with
potential W0(a) + µ3(a3 − 1)2, penalizing variations in density detF = a3. Operationally,
this amounts to fixing a3 = 1 in a given (compressible) elastic potential and dropping the
equation for a3, to obtain a reduced shear potential W̌ (a1, a2) = W (a1, a2, 1) and equations
whose first-order part have the same variational structure (3.3) as the full 3d system.

3.2.3 The 2D compressible case

Another reduced version of (3.14), restricted to the v−w plane is obtained by setting u = 0.
This is an equally simple system as (3.15), but with essentially different structure (we now
write |a|2 = a2

2 + a2
3):

(3.17)
a2,t − b2,z = 0,
a3,t − b3,z = 0,

b2,t − (|a|2a2)z =

(
b2,z
a3

)
z

,

b3,t − ((|a|2 − 1)a3)z = 2

(
b3,z
a3

)
z

,

while for Z1, writing a · bz = a2b2,z + a3b3,z, we have:

(3.18)
a2,t − b2,z = 0,
a3,t − b3,z = 0,

b2,t − (|a|2a2)z = (b2,z + 2a2a · bz)z ,
b3,t − ((|a|2 − 1)a3)z = (2a3a · bz)z .

3.2.4 The 1D cases

Taking v = w = 0, (3.14) further reduces to a model of the transverse unidirectional
perturbations in a beam or string:

(3.19) a1,t − b1,z = 0, b1,t − (a3
1 + a1)z = b1,zz.

Setting u = v = 0, (3.14) yields the 1D compressible model for longitudinal perturba-
tions in a viscoelastic rod:

(3.20) a3,t − b3,z = 0, b3,t − (a3
3 − a3)z = 2

(
b3,z
a3

)
z

.
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3.2.5 Extension: surface energy and higher-order dispersion

We mention briefly the effects of modifying by the addition of surface energy term. In the
planar, incompressible shear case, (2.10) with (2.11) becomes:

(3.21)
a1,t − b1,z = 0,
a2,t − b2,z = 0,

b1,t − (a1 + (a2
1 + a2

2)a1)z = b1,zz − a1,zzz,

b2,t − (a2 + (a2
1 + a2

2)a2)z = b2,zz − a2,zzz.

See [Sl] for a corresponding treatment of the one-dimensional case.

3.3 Hyperbolic characteristics

3.3.1 Compressible case

Consider the inviscid version of (3.11): Vt + DG(V )Vz = 0. Using the block structure of
DG in (3.3) we obtain that its eigenvalues are {±√mj}3j=1 with corresponding eigenvectors

({rj , ∓
√
mjrj)}3j=1, where mj (and rj) are the eigenvalues (and corresponding eigenvectors)

of the symmetric matrix M . Also, since mj are independent of b, the linear degeneracy or
genuine nonlinearity of the ±√mj characteristic fields of DG is equivalent to the same
properties of the mj characteristic fields of M .

Using now the following formula, valid for 3× 3 matrices: det(A+B) = detA+ (cofA) :
B + (cofB) : A+ detB, we obtain:

m1 = |a|2,

m2 =
1

2

(
4|a|2 − 1−

√
(2|a|2 − 1)2 + 8(a2

1 + a2
2)

)
,

m3 =
1

2

(
4|a|2 − 1 +

√
(2|a|2 − 1)2 + 8(a2

1 + a2
2)

)
.

(3.22)

Note that at a = (0, 0, 1) we have m1 = m2 = 1 and m3 = 2; hence DG is (nonstrictly)
hyperbolic at V0 = (0, 0, 0, b1, b2, b3). Further calculations show that, whenever defined:

(i) r1 = (a2, −a1, 0)T and the eigenvalues ±√m1 correspond to two linearly degenerate
fields of DG.

(ii) r2 = (−2a1a3, − 2a2a3, 3|a|2 − 2a2
3 −m2)T

(iii) r3 = (−2a1a3, − 2a2a3, 3|a|2 − 2a2
3 −m3)T and in the vicinity of V0 the eigenvalues

±√m3 correspond to two genuinely nonlinear fields of DG.

3.3.2 The 2D incompressible shear case

The system (3.15) can be written as:

at − bz = 0, bt − (DaW (a))z = bzz.
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Its flux matrix depends on a = (a1, a2) and has the form:

(3.23) DG1−2 =

(
0 −Id2

−M1−2 0

)
, M1−2 = D2

aW0(a) = (|a|2 + 1)Id2 + 2a⊗ a,

where W0(a) = 1
4 |a|

4+ 1
2 |a|

2. We see that strict hyperbolicity, convexity of W0 and existence
of strictly convex entropy are equivalently satisfied here.

Calculating as before, DG1−2 has two genuinely nonlinear characteristic fields, with
eigenvalues ±

√
1 + 3|a2| and corresponding eigenvectors

(±a1,±a2, a1

√
1 + 3|a|2, a2

√
1 + 3|a|2)T

in fast modes, and two linearly degenerate fields with eigenvalues ±
√

1 + |a2| and eigenvec-
tors (±a2,∓a1, a2

√
1 + |a|2,−a1

√
1 + |a|2)T in slow modes. The linear degeneracy reflects

the rotational degeneracy of the underlying system [F] .

3.3.3 The 2D compressible case

The flux matrix in (3.17) depends on a = (a2, a3) and has the form:

(3.24) DG2−3 =

(
0 −Id2

−M2−3 0

)
, M2−3 = diag

(
|a|2, |a|2 − 1

)
+ 2a⊗ a,

and we find that DG2−3 has two couples of eigenvalues {±√mj}j=2,3 with correspond-

ing eigenvectors (rj , ∓
√
mjrj), where: m2 = 1

2

(
4|a|2 − 1−

√
(2|a|2 − 1)2 + 8a2

2

)
, m3 =

1
2

(
4|a|2 − 1 +

√
(2|a|2 − 1)2 + 8a2

2

)
, while rj = (−2a2a3, 3|a|2−2a2

3−mj)
T (or r2 = (1, 0)T

when a2 = 0). We see that the in the vicinity of (0, 1, b2, b3) the matrix DG2−3 is strictly
hyperbolic, the two eigenfields corresponding to ±√m3 are genuinely nonlinear.

3.3.4 The 1D incompressible case

For system (3.19) the characteristic speeds are ±
√

1 + 3a2
1, while for the system (3.20) they

are ±
√

3a2
3 − 1. Hence the second model is strictly hyperbolic for |a3| > 1/

√
3 and elliptic

otherwise; this can be recognized as agreeing with certain phase-transitional viscoelasticity
models, except that the region a3 ≤ 0 (where detF ≤ 0) is unphysical.

4 Nonlinear stability framework

We now briefly recall the general stability theory of [Z4, R, RZ], which reduces the question
of nonlinear stability in (3.11) to verification of an Evans function condition. Namely, given
two endstates V− and V+ belonging to the regions of strict hyperbolicity of DG, we make
a smooth change of coordinates V 7→ S(V ) with S : R6 −→ R6 given by: S(V ) = Dη(V ) =
DaW (a)⊕ b. The system (3.11) is equivalent to:

Ã0(S)St + Ã(S)Sz = (B̃(S)Sz)z,

11



where with a slight abuse of notation we use S = S ◦ V : [0,∞)× R3 −→ R12. Above:

Ã = DG(V )Ã0 =

[
0 −Id3

−MQ 0

]
, B̃ = B(V )Ã0 = B(V ), Ã0 =

[
Q 0
0 Id3

]
,

where Q = Q(V ) is defined as follows. In some open neighborhoods of V− and V+ (where
M is positive definite) we set Q = M−1, in which case:

Ã0 =
∂V

∂S
= (D2

V η)−1 =

[
M−1 0

0 Id3

]
.

In the region where M is negative definite, we set Q = Id3. In between the two above
mentioned regions, Q is a smooth, symmetric and positive definite interpolation of the two
matrix fields M and Id3. This construction allows us to treat also the case of profiles passing
through elliptic regions, but with hyperbolic endstates (in a similar spirit as for the van der
Waals gas dynamics examples mentioned in [MaZ4, Z4]).

We first check the validity of the structural conditions (A1)–(A3) of [Z4]:

(A1) Ã(V−) and Ã(V+) are symmetric matrices. Ã0 is symmetric and positive definite
(on the whole R6). Also, the 3 × 3 principal minor of Ã, corresponding to the purely
hyperbolic part of the system (3.11), equals identically 03 hence it is always symmetric, as
required.

(A2) At the endstates V± there holds: no eigenvector of DG belongs to the kernel of B.
In the region of strict hyperbolicity of DG this condition is equivalent to: no eigenvector of
M is in the kernel of B0,1, readily satisfied.

(A3) B̃ has the required block structure B̃ =

[
03 03

03 B0

]
as in (3.12). The symmetriza-

tion of the minor corresponding to the parabolic part of the system (3.11): sym B0,i = B0,i

is uniformly elliptic in any region in V of the form: 0 < a3 < C in case of B0,2, and
a2

3 > c(1 + a2
1 + a2

2) in case of B0,1 (where c, C > 0 are some uniform constants).

We hence find that shock profiles of each of the planar systems considered in this paper
satisfy conditions (A1)–(A3) of [Z4] defining the class of symmetrizable hyperbolic–parabolic
systems and profiles to which the theory of nonlinear stability of viscous shock profiles
developed in [MaZ2, MaZ3, MaZ4, Z4, R, RZ] applies, provided:

(i) the endstates V± lie in the region of strict hyperbolicity of DG,
(ii) The profile {V̄ (·)} lies in some region where the chosen B0,i is uniformly elliptic.

We now validate the additional technical conditions (H0)–(H3) of [Z4]. Note that the
remaining conditions (H4)–(H5) are needed only for the multi-dimensional systems, as they
automatically hold for systems in 1 space dimension.

(H0) G,B, S ∈ C5.

(H1) the shock speed s under consideration is non-zero (note that 0 is the only eigenvalue
of the 3 × 3 principal minor of DG, which indeed is 03). As remarked in section 5, s 6= 0
for any profile with endstates belonging to the strict hyperbolicity region of DG.
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(H2) s is distinct from the eigenvalues of DG(V±).

(H3) local to V̄ (·), the set of traveling wave solutions to (3.11) connecting (V−, V+)
(with thus determined speed s), forms a smooth finite-dimensional submanifold {V̄ δ(·)} of
C1(R,R6), parametrized by δ ∈ B(0, r) ⊂ R`, and V̄ 0 = V̄ .

4.1 The Evans condition

Linearizing the hyperbolic-parabolic system (3.11) about its viscous shock solution of (3.11):

V (z, t) = V̄ (z − st), lim
z→±∞

V̄ (z) = V±,

which satisfies: −sV̄+(G(V̄ ))z = (B(V̄ )V̄z)z, and further changing to co-moving coordinates
z̃ = z − st, we obtain the equivalent evolution equations:

(4.1) Vt = LV := (BVz)z − (GV )z.

Here G and B are the following matrix fields depending on z:

G(z) = DG(V̄ (z))− sId−DB(V̄ (z))T V̄z(z), B(z) = B(V̄ (z)),

and converging asymptotically to values G(±∞) = DG(V±) − sId and B(±∞) = B(V±).
Towards investigating stability of (4.1), one seeks eigenvalues λ ∈ C of L, that is solutions
to the system LV = λV written in its first-order form:

(4.2) Z ′(z, λ) = A(z, λ)Z(z, λ).

The augmented “phase variable” Z consists of V = (a, b) and the derivative b′ of its
parabolic-like component.

As shown in [GZ, ZH, MaZ3, MaZ4, Z4], under conditions (H0), (H1), (H2) it is possible
to define an analytic Evans function D : {λ ∈ C;Re λ ≥ 0} −→ C associated with (4.2)
and hence consequently associated with L and with the original problem (3.11). We shall
now briefly sketch this construction, for further details see e.g. [AGJ, GZ, Z4, HuZ].

In the first step one observes that the complex matrix field A(z, λ) ∈ CN×N in (4.2) is
analytic in λ and has an exponential decay to the respective A±(λ) as z → ±∞ (uniformly
in bounded λ). The second step consists in proving that (4.2) on each of the half-lines
(−∞, 0] and [0,∞), is equivalent to:

Z̃ ′(z) = A−(λ)Z̃(z), z ≤ 0 and Z̃ ′(z) = A+(λ)Z̃(z), z ≥ 0,

under change of variables Z(z) = P−(z, λ)Z̃(z) for z ≤ 0, and Z(z) = P+(z, λ)Z̃(z) for
z ≥ 0. Existence of such (non-unique) analytic in λ and invertible matrix fields P±(z, λ) ∈
CN×N , decaying exponentially to Id as z → ±∞, is achieved by a conjugation lemma [Z4].

Further, denote by {Z̃+
i (λ)}i=1..k the (analytic in λ) basis of the stable space S of A+(λ),

and likewise let {Z̃−i (λ)}i=k+1..N be the basis of the unstable space U of A−(λ), where the
consistency of the dimensions follows from assumptions (H1), (H2). Define:

Z+
i (z, λ) = P+(z, λ)Z̃+

i (λ), z ≥ 0 and Z−i (z, λ) = P−(z, λ)Z̃−i (λ), z ≤ 0.
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Clearly, given any Z0 ∈ span{Z+
i (z0, λ)}i=1..k, z0 ≥ 0, there exists a solution to (4.2) on

[z0,∞) decaying exponentially to 0 as z →∞, and with initial data Z(z0) = Z0. It has the
property that Z(z, λ) ∈ span{Z+

i (z, λ)}i=1..k for all z ≥ z0. A similar assertion of backward
resolvability of (4.2) is true for Z0 ∈ span{Z−i (z0, λ)}i=k+1..N , z0 ≤ 0 with exponential
decay at z → −∞.

The Evans function is now introduced as the following Wronskian:

(4.3) D(λ) = det
(
Z+

1 (0, λ), . . . , Z+
k (0, λ), Z−k+1(0, λ), . . . , Z−N (0, λ)

)
.

Away from the origin λ = 0, D vanishes at λ with Re λ ≥ 0 if and only if λ is an eigenvalue
of L, corresponding to existence of a solution Z(z, λ) of LZ = λZ, decaying to 0 at both
z → ±∞. Indeed, the multiplicity of the root is equal to the multiplicity of the eigenvalue
[GJ1, GJ2, MaZ3, Z4]. The meaning of the multiplicity of the root of D at embedded
eigenvalue λ = 0 is less obvious, but is always greater than or equal to the order of the
embedded eigenvalue [MaZ3, Z4].

In agreement with [MaZ3, Z4], we define the Evans stability condition:

(D) D has no root in {Re λ ≥ 0} except for λ = 0, which is the root of multiplicity `.

Note that under assumption (H3), the condition (D) is equivalent to D having precisely
` zeros in {Re λ ≥ 0}.

4.2 Type of the shock

Define:

˜̀= dimension of the unstable subspace of DG(V−)

+ dimension of the stable subspace of DG(V+)− dimV,

where dimV = 6 is the dimension of the whole space. Then, the hyperbolic shock (V−, V+)
is defined to be:

(i) of Lax type if ˜̀= 1,
(ii) of overcompressive type if ˜̀> 1,
(iii) of undercompressive type if ˜̀< 1.

If ˜̀ = ` ≥ 1 or ˜̀ < ` = 1, with ` as in (H3), then the viscous shock V̄ is defined to
be of pure Lax, overcompressive, or undercompressive type, according to the hyperbolic
classification just above. Otherwise, V̄ is defined as mixed under-overcompressive type,
[LZu, ZH, MaZ3, Z4]. All the shocks considered in this paper appear to be of pure type.
Indeed, though artificial examples are easily constructed [LZu, ZH], we do not know of any
physical example of a mixed-type shock.

4.3 Linear and nonlinear stability

Consider a planar viscoelastic shock for which the endstates V± lie in the region of strict
hyperbolicity and profile {V̄ (·)} lies in the region for which B0,i is uniformly elliptic.

We have the following basic results relating the Evans condition (D) to stability.
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Proposition 4.1 ([MaZ3]). Assume (H0), (H2) and (H3). The Evans condition (D) is
necessary and sufficient for the linearized stability L1 ∩ Lp → Lp of V̄ , for all 1 ≤ p ≤ ∞:

‖etLf‖Lp ≤ C (‖f‖L1 + ‖f‖Lp) .

Proposition 4.2 ([MaZ4, RZ]). Assume (H0), (H2), (H3) and (D). Then we have:
(i) Stability. For any initial data Ṽ (·, 0) with:

E0 := ‖(1 + |z|2)3/4(Ṽ (·, 0)− V̄ )‖H5 << 1

sufficiently small, a solution Ṽ of (3.11) exists for all t ≥ 0 and:

(4.4) ‖(1 + |z|2)3/4(Ṽ (·, t)− V̄ (· − st))‖H5 ≤ CE0.

(ii) Phase-asymptotic orbital stability. There exist α(t) and α∞ such that:

(4.5) ‖Ṽ (·, t)− V̄ α(t)(· − st)‖Lp ≤ CE0(1 + t)−(1−1/p)/2

and:

(4.6) |α(t)− α∞| ≤ CE0(1 + t)−1/2, |α̇(t)| ≤ CE0(1 + t)−1,

for all 1 ≤ p ≤ ∞.

Lemma 4.3. Assume (H0), (H2) and (D). If ˜̀ = ` or ` = 1, with ` as in (D), then
(H3) holds with the same value `. In particular, these conditions together imply nonlinear
time-asymptotic orbital stability.

Proof. The claim follows by the existence theory of [MaZ3], relating the dimensions of stable
and unstable manifolds of the rest points V± in the traveling-wave ODE, to the hyperbolic
index ˜̀. Further [GZ, ZH, MaZ3], stability condition (D) implies “maximal transversality”
consistent with existence of a profile of the traveling-wave connection as a solution of the
traveling-wave ODE (i.e. actual transversality), yielding (H3) with ˜̀= ` in the case ˜̀≥ 1,
and (H3) with ` = 1.

Combining Proposition 4.2 with Lemma 4.3, we obtain:

Theorem 4.4. For each of the planar systems considered in this paper, every viscous Lax,
overcompressive, or undercompressive shock satisfying:

(i) condition (H2) (noncharacteristicity),

(ii) with endstates lying in the region of strict hyperbolicity of DG,

(iii) with profile lying in the region of uniform ellipticity of B0,i,

(iv) satisfying (D),

is linearly and nonlinearly orbitally stable.
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In particular, Propositions 4.1, 4.2 and Theorem 4.4 apply to profiles with a ∈ R3 such
that the corresponding F of the form (3.1) is contained in a sufficiently small neighborhood
of SO(3). In the incompressible shear case, they apply to any profile with endstates a± 6= 0.

The condition (H2) corresponds to noncharacteristicity of the shock, which holds gener-
ically. It guarantees also exponential decay of the shock to its endstates [MaZ3, Z4], which
is needed for efficient numerical approximation of the profile.

Finally, we remark that strict hyperbolicity at V± is not necessary for existence of pro-
files, but only to apply the basic stability framework developed in this section. When
hyperbolicity fails, the corresponding endstate is unstable as a constant solution; however,
this instability can be stabilized by convective effects if unstable modes are convected suffi-
ciently rapidly into the shock zone; see Appendix C. This situation cannot occur for shear
flows, for which all states are hyperbolic, but would be interesting to investigate in the
compressible case.

4.4 The integrated Evans condition

Making the substitution Ṽ (z) =
∫ z
−∞ V (y) dy and integrating the equations in (4.2) from

−∞ to z, we obtain after dropping the tilde notation:

(4.7) λV = L̃V := BV ′′ − GV ′.

We conclude for any λ 6= 0, satisfaction of (4.2) for a solution V decaying exponentially up
to one derivative, implies that Ṽ (z) is also exponentially decaying and satisfies (4.7).

Associated with L̃ is an integrated Evans function D̃(λ), which like D is analytically
defined on the nonstable half-plane {Re λ ≥ 0}, through the construction sketched in
section 4.1. In the Lax and overcompressive cases, the change to integrated coordinates
has the effect of removing the zeros of D at the origin, making the Evans function easier to
compute numerically and hence the stability condition easier to verify.

Proposition 4.5 ([ZH, MaZ3]). Assume (H0), (H2). Then the Evans condition (D) is
equivalent to the following integrated Evans condition:

(i) for the Lax and overcompressive shock types:

(D̃) the integrated Evans function D̃ is nonvanishing on {Re λ ≥ 0},

(ii) for the undercompressive shock type:

(D̃′) the function D̃ has on {Re λ ≥ 0} a single zero of multiplicity 1 + |˜̀|, at λ = 0.

Note that the inclusion of term |˜̀| repairs an omission in [HLZ], for which ˜̀≡ 0 in the
undercompressive case. Propositions 4.5, 4.4, 4.2 and 4.1 give together a simple and readily
numerically evaluated test for stability of large-amplitude and or non-Lax-type waves.
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4.5 Small-amplitude stability

The following proposition gives a first nonlinear stability result for planar viscoelastic shocks,
answering a conjecture posed in [AM] for the shear wave case.

Proposition 4.6 ([HuZ]). Assume (H0). Let V0 be a point of strict hyperbolicity of DG
and let λ0 be one of its eigenvalues, associated with a genuinely nonlinear characteristic
field. Then there exists ε > 0 sufficiently small such that for any viscous shock V̄ with speed
s satisfying:

‖V̄ − V0‖L∞ < ε and |s− λ0| < ε,

we have:
(i) the shock is of Lax type,
(ii) the Evans condition (D) holds, hence V̄ is linearly and nonlinearly phase-asympto-

tically orbitally stable.

5 Existence of viscous shock profiles

Let us now seek traveling waves connecting given endstates:

V− = V (−∞) = (α, 0), V+ = V (+∞) = (a+, b+).

Indeed, by invariance of (2.1) under change in coordinate frame ξ 7→ ξ+b0t, we may without
loss of generality assume that b(−∞) = 0.

Hereafter we restrict to the simpler (and apparently more physical) case of viscosity
tensor Z2. The case Z1 may be treated similarly. We note that the type and location of
equilibria of the traveling wave ODE under are assumptions are independent of the choice
of Z, by the general results of [MaZ3]; see [BLZ] for further discussion in the somewhat
similar context of MHD.

Writing the profile equation for (3.11) with (2.7) and (2.9), we obtain:

(5.1) −sa′ − b′ = 0, −sb′ −DW0(a)′ =
((b′1, b

′
2, 2b

′
3)

a3

)′
.

Note that s 6= 0 for profiles satisfying the nonlinear stability conditions (namely, the end-
states belonging to the strict hyperbolicity region of DG). For otherwise b′ = 0 and
DW0(a)′ = 0 hence M(a)a′ = 0 along the profile, contradicting the invertibility of M
in the neighborhood of a(−∞).

Now, substituting the first equation into the second, making the change of variable
z 7→ sz, and defining σ = s2, we get the following reduced profile equation:

(5.2) −σa′ +DW0(a)′ =
((a′1, a

′
2, 2a

′
3)

a3

)′
,
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recognized as associated with the strictly parabolic gradient flux system in a alone:

(5.3) at +DW0(a)z =
((a1, a2, 2a3)z

a3

)
z
.

Note that η(a) = |a|2
2 is the convex entropy for (5.2) as:

∇η(a) ·D2
aW (a) = ∇q(a), q(a) = a ·DaW (a)−W (a).

Evidently, (5.2) may be written as a generalized gradient flow:

(5.4)
(a′1, a

′
2, 2a

′
3)

a3
= ∇aφ(a), φ(a) = W0(a)− σ |a|

2

2
− (DW0(α)− σα) · a,

where α = a(−∞). Making the change of variable z 7→ z̃(z) where z̃ solves the ODE:
z̃′(z) = 1/a3(z̃(z)), the system (5.4) becomes:

(5.5) (a′1, a
′
2, 2a

′
3) = ∇aφ(a).

We see that the function z 7→ φ(a(z)) is non-decreasing:

(5.6) (φ ◦ a)′ = (∇φ)a′ = a3 diag

(
1, 1,

1

2

)
∇φ(a)⊗∇φ ≥ 0

in the admissible region a3 > 0. This is a simple instance of a more general fact concerning
parabolic conservation laws possessing a viscosity-compatible strictly convex entropy [G,
CS1, CS2, BLZ]. Moreover, the type of the shock connection of the original viscoelasticity
equations is the same as the type for the reduced equations (5.3), which is in turn determined
by the relative Morse index of the endstates/equilibria considered as critical points a:

DW0(a)− σa− (DW0(α)− σα) = 0

of φ. See also the general results and discussion of [MaZ3, BLZ].

Finally, a straightforward calculation shows that:

sφ(a) =sη(V )−
(
q(V ) + ζ

)
+∇q(V ) ·

(
G(V )−G(V−)− s(V − V−)

)
for V = (a, b) with b = −s(a− α),

(5.7)

where the inviscid flux G, entropy η and entropy flux q are as in (3.3) and (3.4). The relation
b = −s(a − α) is valid along the profile, and it follows by integrating the first equation in
(5.1) from −∞ to z. The vector ζ = sDW (α)α − 1

2s
3|α|2, which is independent of V , can

be seen as an adjustment of the entropy flux q, naturally defined up to a constant.
The quantity in the right hand side of (5.7) is related to the dissipative quantity:

ψ(V ) = −sη(V ) + q(V )
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which decreases across any viscous profile connection lying within the region of strict hy-
perbolicity of the reference hyperbolic-parabolic system and the region of strict convexity
of its entropy η (see[BLZ] and references therein):

ψ(V+)− ψ(V−) < 0.

Indeed, by (5.7) and the Rankine-Hugoniot relations, it follows that:

ψ(V−) = −sφ(α) and ψ(V+) = −sφ(a+).

Thus, in view of (5.6), we conclude that in the present setting ψ is decreases across any
viscous profile with positive speed s > 0, even one passing the elliptic region. This clarifies
somewhat the role of φ in the original system.

5.1 The 3D compressible system

Recalling (3.5), (5.5) becomes:

(5.8)

a′1 = (|a|2 − σ)a1 − (|α|2 − σ)α1,

a′2 = (|a|2 − σ)a2 − (|α|2 − σ)α2,

2a′3 = (|a|2 − 1− σ)a3 − (|α|2 − 1− σ)α3.

As |a| → ∞, φ(a) ∼ |a|4
4 , hence the phase portrait of (5.4) always possesses a minimum,

or repellor. More, ∇φ(a) ∼ |a|2a points in the outward radial direction, and hence the
index of this vector field on a suitably large ball is +1, and it must be equal to the sum of
the indices of the equilibria (generically five - see Section 5.4 and Figure 2), defined as the
signs of the associated Jacobians sgn det(D2W0 − σId). The same argument shows that a
sufficiently large ball is absorbing in backwards z, so that we can conclude that any orbit
lying in the stable manifold of an equilibrium must connect in backward z to some other
equilibrium possessing an unstable manifold.

Further, when a3 = 0 we have ∂3φ = −(|α|2 − 1 − s2)α3, which is independent of
(a1, a2). Since ∇φ ∼ |a|2a as |a| → +∞, it follows that the index of ∇φ on a large half-ball:
BR(0)∩{a3 > 0} equals +1 for (|α|2−1−σ)α3 > 0, and it equals 0 for (|α|2−1−σ)α3 < 0.
In the former case, the region BR(0) ∩ {a3 > 0} is invariant in backward z and so we
may conclude that any orbit lying in the stable manifold of an equilibrium in {a3 > 0}
must connect in backward z to some other equilibrium in {a3 > 0} possessing an unstable
manifold.

5.2 The 2D incompressible shear case

The incompressible case can be analyzed similarly as above, with (5.3) becoming:

at +DW0(a)z = azz,
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where a = (a1, a2) and W0(a) = 1
4 |a|

4 + 1
2 |a|

2. That gives a 2 × 2 rotationally symmetric
model:

(5.9) at + ((|a|2 + 1)a)z = azz,

of a form at + (h(|a|)a)z = azz that has been much studied as a prototypical example of a
system with rotational degeneracy [F]. Further, the counterpart of (5.4) reads:

a′ = ∇aφ(a), φ(a) = W0(a)− σ |a|
2

2
− (DW0(α)− σα) · a.

Expanded in coordinate form, the profile ODE reads:

a′1 = (|a|2 + 1− σ)a1 − (|α|2 + 1− σ)α1,

a′2 = (|a|2 + 1− σ)a2 − (|α|2 + 1− σ)α2.

Again, we find by an asymptotic development of φ that the vector index of this ODE on a
suitably large ball is +1, and there exists always at least one repellor, with index +1. In
the generic case (see below), there are three nondegenerate equilibria, each of index ±1:
one is of index +1 and of one index −1.

Writing α = a(−∞) and a+ = a(+∞), the Rankine–Hugoniot relations for (5.9) are:

(5.10) (|a+|2 + 1− σ)a+ − (|α|2 + 1− σ)α = 0.

By rotation invariance, we may restrict our attention to α = (α1, 0). We shall distinguish
two cases.

Case (i) α1 = 0. We find that there is a circle of solutions a+ to (5.10), given by
|a+|2 = σ − 1, surrounding the rest state a+ = 0 at the center. Along each radius of the
circle, there is a viscous shock connection a(t, z) = ρ(z−σt)eiθ solution to (5.9) whose norm
ρ = |a| satisfies:

(5.11) ρt + (ρ3 + ρ)z = ρzz

and connects ρ+ = ρ(+∞) =
√
σ − 1 to ρ− = ρ(−∞) = 0. Note that (5.11) is also the

associated parabolic equation to the flow:

a′1 = (a2
1 + 1− σ)a1 − (α2 + 1− σ)α,

which is the counterpart of (5.4) for the 1d incompressible model (3.19). When α1 =
a1(−∞) = 0 then a1+ = a1(+∞) =

√
σ − 1 and thus we obtain:

a′1 = (a2
1 − α2

1)a1,

which has the explicit solution:

(5.12) a1(z) =
α1 exp(−α2

1z)√
k + exp(−2α2

1z)

with k > 0. Note that this solution connects a(−∞) =
√
σ − 1 to a(+∞) = 0; that is, the

connection goes in opposite direction from the one sought. Setting now a(t, z) = a1(z−σt)eiθ
(with constant rotation angle θ) gives the traveling viscous shock solution to (5.9).
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Remark 5.1. Though noncharacteristic when considered as one-dimensional solutions, as
reflected by uniform exponential convergence to their endstates (see discussion below The-
orem 4.4), such shocks are always characteristic with respect to the transverse (rotational)
modes, which have characteristic speeds ±

√
|a|2 + 1 equal to ±

√
σ = ±s.

Case (ii) α1 6= 0. When a2+ = 0 then (5.10) reduces to (a2
1++1−σ)a1+ = (α2

1+1−σ)α1

corresponding to the associated scalar equation (5.11).
When a2+ 6= 0 then the second equation in (5.10) becomes a2

1+ + a2
2+ = |a+|2 = σ − 1

whence, from the first equation: α2
1 = |α|2 = σ − 1. That is, solutions with a2+ 6= 0 exist

only if σ is equal to the linearly degenerate characteristic speed, which has no profile.
Thus we may without loss of generality restrict to the (at most) triples of possible rest

states (α
(i)
1 , 0) with (to fix the ideas):

α
(3)
1 < 0 < α

(2)
1 < α

(1)
1

and ((α
(i)
1 )2 +1−σ)α

(i)
1 < 0 sufficiently small. Considering the equation (5.11), we find that

the outermost rest points (α
(3)
1 , 0) and (α

(1)
1 , 0) are connected to the innermost (α

(2)
1 , 0) by

a scalar (1d) shock profile. Indeed:

• (α
(1)
1 )2 + 1− σ < 0 < 3(α

(1)
1 )2 + 1− σ, so (α

(1)
1 , 0) is a saddle,

• (α
(2)
1 )2 + 1− σ < 3(α

(2)
1 )2 + 1− σ < 0, so (α

(2)
1 , 0) is an attractor,

• 3(α
(3)
1 )2 + 1− σ > (α

(3)
1 )2 + 1− σ > 0, so (α

(3)
1 , 0) is a repellor.

The phase portrait thus consists of a family of overcompressive profiles connecting (α
(3)
1 , 0)

and (α
(2)
1 , 0), bounded by Lax shocks between (α

(3)
1 , 0) and (α

(1)
1 , 0), and between (α

(1)
1 , 0)

and (α
(2)
1 , 0), similarly as for the closely related “cubic model” studied, e.g., in [F, Br]. See

Figure 1 for typical phase portraits computed numerically using MATLAB.

5.3 The 2D compressible case

Here (5.3) simplifies to:

(5.13)

a2,t + (|a|2a2)z =

(
a2,z

a3

)
z

,

a3,t + ((|a|2 − 1)a3)z = 2

(
a3,z

a3

)
z

,

where a = (a2, a3) and Rankine–Hugoniot relations are:

(5.14)
(|a+|2 − σ)a2+ − (|α|2 − σ)α2 = 0

(|a+|2 − 1− σ)a3+ − (|α|2 − 1− σ)α3 = 0,
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Figure 1: Typical phase portrait for the 2D shear case. In (a) we have α1 = 1 and σ = 11/4,
and in (b) we have α1 = 5 and σ = 121/4.

where α = (α2, α3) = a(−∞), a+ = (a2+, a3+) = a(+∞) and a3+, α3 > 0. We shall
distinguish two cases.

Case (i) α2 = 0. Strict hyperbolicity of (3.24) enforces that α3 > 1/
√

3 and α3 6= 1/
√

2.
When a2+ = 0 then (5.14) implies that:

a3+ = −1

2
α3 ±

1

2

√
4(1 + σ)− 3α2

3,

with at most one physically feasible solution a3+ > 0. For every α3 the range of σ, for
which a3+ > 1/

√
3 and a3+ 6= 1/

√
2 is:

σ ∈ (α2
3 +

1√
3
α3 −

2

3
,+∞) \ {α2

3 +
1√
2
α3 −

1

2
}.

An associated 1d traveling wave of the type (0, a3(z)) must satisfy:

−σa′3 + (a3
3 − a3)′ = 2

(
a′3
a3

)′
.

If a2+ 6= 0, then the first equation in (5.14) implies |a+|2 = σ, while by the second
equation: a3+ = (1 + σ − α2

3)α3, hence:

a2+ = ±
√
σ − (1 + σ − α2

3)2α2
3.

We see that there is a pattern of at most four physically feasible equilibria, corresponding
to two 1d solutions plus two more symmetrically disposed about the a3 axis, There are at
most five equilibria in total, counting a fifth possible infeasible radial solution with a3 < 0.
Here, we are ignoring the line of nonphysical equilibria a3 = 0 induced by the form of the
viscosity tensor. See Figures 2 (a) (c) for a typical phase portrait computed numerically
using MATLAB.
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Figure 2: Typical three and five-equilibrium phase portraits for the 2D compressible case.
The dark dashed lines bound the physically relevant region a3 > 0 and the light dashed
lines surround the region m2 < 0 where the system (3.17) loses hyperbolicity, see Section
3.3.3. In (a) we have α2 = 0, α3 = 0.6, and σ = 0.64, in (b) α2 = 0.2, α3 = 0.1, and σ = 4,
in (c) α2 = 0, α3 = 2, σ = 4.84, and in (d) α2 = 0.2, α3 = 2, σ = 5.29.
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Case (ii) α2 6= 0. Setting x = |a+|2 − |α|2 we see that (5.14) is solved by:

a2+ =
(|α|2 − σ)

(x+ |α|2 − σ)
α2, a3+ =

(|α|2 − 1− σ)

(x+ |α|2 − 1− σ)
α3.

Substituting into the definition of x and rearranging we obtain:

(x+ |α|2)(x+ |α|2 − σ)2(x+ |α|2 − 1− σ)2 =(|α|2 − σ)2(x+ |α|2 − 1− σ)2α2
2

+ (x+ |α|2 − σ)2(|α|2 − 1− σ)2α2
3,

(5.15)

yielding the quintic:

(5.16) y(y − σ)2(y − 1− σ)2 = (|α|2 − σ)2(y − 1− σ)2α2
2 + (y − σ)2(|α|2 − 1− σ)2α2

3,

where y = |a+|2. From the roots of (5.16) a+ may be recovered through:

(5.17) a2+ =
|α|2 − σ
y − σ

α2, a3+ =
|α|2 − 1− σ
y − 1− σ

α3.

Evidently, these solutions are not 1d, as a2+/a3+ 6= α2/α3, unless y = |α|2, in which case
other roots of (5.16) are: σ, 1 + σ, contradicting (5.17).

Recall that the nonphysical solutions with a3+ ≤ 0 are discarded and that the further
condition of hyperbolicity of endstates is not necessary for existence of profiles, but is
needed to apply the basic stability framework of Section 4. We shall discuss profiles with
nonhyperbolic endstates in Appendix C. See Figures 2 (b) (d) for a typical phase portrait
computed numerically using MATLAB.

5.4 The 3D compressible case - continued

In the full 3D compressible case, (5.3) can be written as:

ãt + (|a|2ã)z =

(
ãz
a3

)
z

,

a3,t + ((|a|2 − 1)a3)z = 2

(
a3,z

a3

)
z

,

with a = (ã, a3) and ã = (a1, a2). The corresponding Rankine–Hugoniot relations read:

(5.18)
(|a+|2 − σ)ã+ − (|α|2 − σ)α̃ = 0

(|a+|2 − 1− σ)a3+ − (|α|2 − 1− σ)α3 = 0

where α = (α̃, α3) = a(−∞) and a+ = (ã+, a3+) = a(+∞) and a3+, α3 > 0. Also, by
invariance with respect to rotations in the ã plane, we will assume that α1 = 0, without
loss of generality.
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Case (i) α2 = 0. Here, the phase portrait can be easily deduced from that in (i) Section
5.3 of the 2d compressible case. That is, there is at most one physically feasible 1d profile
connecting to rest point a+ = (0, 0, (−α3 +

√
4(1 + σ)− 3α2

3)/2), and a ring of rest points

a+ = (r cos θ, r sin θ, a3+) with a3+ = (1 + σ − α2
3)α3 and r = ±

√
σ − a2

3+. Again, we are

ignoring possible equilibria in the nonphysical plane a3 = 0.

Case (ii) α2 6= 0. This case includes the 2d portrait of case (ii) in Section 5.3 for the
2D compressible case when a1 ≡ 0.

If a1+ 6= 0, then |a+|2 = σ, and so |α2|2 = σ (in view of the second equation in (5.18)).
Thus, except in this degenerate case, the set of equilibria is only that of the planar case
already treated. The types of shock connections may be different than in Section 5.3, and
profiles may go out of plane to yield new connections.

The above situation is quite reminiscent of the case of MHD [BLZ]. In particular, if α2

is varied slightly from the rotationally symmetric situation α2 = 0, then one may conclude
by persistence of invariant sets as in [FS] that “Alfven”-type profiles must arise in the
rotationally degenerate characteristic field.

6 Numerical stability analysis

In this section, we describe the numerical Evans function method, based on the numerical
approximation using the polar-coordinate algorithm developed in [HuZ]; see also [BHRZ,
HLZ, HLyZ, BHZ]. Since the Evans function is analytic in the region {Reλ ≥ 0} of interest,
we can numerically compute its winding number around a large semicircle B(0, R)∩{Reλ ≥
0}, enclosing all possible nonstable roots. This allows us to determine stability through the
Evans condition (D); alternatively, as we shall do here, through its integrated version (D̃)
(resp., (D̃′)). In the case of instability, one may go further to locate the roots and study
stability and bifurcation boundaries as model parameters are varied. This approach was
introduced in basic form by Evans and Feroe [EF] and it has since been elaborated and
greatly generalized. For applications to successively more complicated systems, see for
example [PSW, AS, Br, BrZ, BDG, HuZ, HLZ, HLyZ, BHZ, BLZ].

6.1 The Evans systems

Linearizing about a traveling wave solution (ā, b̄) = (ā1, ā2, ā3, b̄1, b̄2, b̄3) of (3.14), we obtain
the eigenvalue problem:

λaj − sa′j − b′j = 0 for j = 1, 2

λa3 − sa′3 − b′3 = 0

λbj − sb′j − (|ā|2aj + 2(ā · a)āj)
′ = (b′j/ā3 − a3b̄

′
j/ā

2
3)′

λb3 − sb′3 − ((|ā|2 − 1)a3 + 2(ā · a)ā3)′ = 2(b′3/ā3 − a3b̄
′
3/ā

2
3)′.

(6.1)
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We make the substitution ãi(z) =
∫ z
−∞ ai(y) dy and b̃i(z) =

∫ z
−∞ bi(y) dy into (6.1) and

then integrate from −∞ to z to obtain, after dropping the tilde notation:

λaj − sa′j − b′j = 0

λa3 − sa′3 − b′3 = 0

λbj − sb′j − (|ā|2a′j + 2(ā · a′)āj) = b′′j /ā3 − a′3b̄′j/ā2
3

λb3 − sb′3 − ((|ā|2 − 1)a′3 + 2(ā · a′)ā3) = 2(b′′3/ā3 − a′3b̄′3/ā2
3).

(6.2)

6.1.1 The 3D compressible case

In the full 3D case (6.2) may be written as a first order system Z ′ = A(z, λ)Z, with

Z = (b1, a1, a
′
1, b2, a2, a

′
2, b3, a3, a

′
3)T

and

(6.3) A(z, λ) =

[
B(z, λ) C(z, λ)
D(z, λ) E(z, λ)

]
,

where:

B(z, λ) =


0 λ −s

0 0 1

−λā3

s
λā3

λ+ ā3(|ā|2 − s2 + 2ā2
1)

s

 ,(6.4)

C(z, λ) =


0 0 0 0 0 0

0 0 0 0 0 0

0 0
2ā1ā2ā3

s
0 0

2ā1ā
3
3 − b̄′1
sā3

 ,

D(z, λ) =


0 0 0 0 0 0

0 0 0 0 0 0

0 0
2ā1ā2ā3

s
0 0

ā1ā
2
3

s



T

,
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(6.5)

E(z, λ) =



0 λ −s 0 0 0

0 0 1 0 0 0

−λā3
s

λā3
λ+ ā3(|ā|2 − s2 + 2ā22)

s
0 0

−b̄′2 + 2ā2ā
3
3

sā3

0 0 0 0 λ −s

0 0 0 0 0 1

0 0
ā2ā

2
3

s

−λā3
2s

λā3
2

ā23(|ā|2 − 1− s2 + 2ā23)− 2b̄′3 + 2ā3λ

2sā3



.

6.1.2 The 2D incompressible shear case

For (3.15), the same procedure as in (6.1) yields:

λa− sa′ − b′ = 0,

λb− sb′ − ((1 + |ā|2)a+ 2(ā · a)ā)′ = b′′.
(6.6)

Substituting ãi(z) =
∫ z
−∞ ai(x) dx, b̃i(z) =

∫ z
−∞ bi(y) dy, into (6.6) and integrating from

−∞ to z we obtain, after dropping the tilde notation:

λai − sa′i − b′i = 0, for i = 1, 2

λbi − sb′i − ((1 + |ā|2)a′i + 2(ā · a′)āi) = b′′i .
(6.7)

Let Z = (a1, b1, b
′
1, a2, b2, b

′
2)T . Then (6.7) may be written as (4.2), where:

A(z, λ) =

λ

s
0

−1

s
0 0 0

0 0 1 0 0 0

−λ(1 + 3ā21 + ā22)

s
λ

1− s2 + 3ā21 + ā22
s

−2λā1ā2
s

0
2ā1ā2
s

0 0 0
λ

s
0 −1

s

0 0 0 0 0 1

−2λā1ā2
s

0
2ā1ā2
s

−λ(1 + ā21 + 3ā22)

s
λ

1− s2 + ā21 + 3ā22
s



.
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Figure 3: (a) Traveling wave profile V̄ for the shear case with parameters values α1 = 1,
α2 = 0, and s = 1.8547 corresponding to a Lax shock connecting endstates (1, 0) an (0.8, 0).
(b) The image of the semicircle under Evans function D̃.
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Figure 4: (a) Traveling wave profile V̄ for the shear case with parameter values α1 = 1,
α2 = 0, s = 1.8547 corresponding to an overcompressive wave connecting endstates (0.8, 0)
and (−1.8, 0). (b) The image of the semicircle under Evans function D̃.

6.1.3 The 2D compressible case

With j = 2 in (6.2) and using b′j = λaj − sa′j , (6.2) can be equivalently written as (4.2)

with Z = (b2, a2, a
′
2, b3, a3, a

′
3)T and A(z, λ) = E(z, λ) given in (6.5) where a = (a2, a3).
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6.1.4 Transverse equations

Consider now a 2D compressible solution as a solution of the full 3D system (3.14). We
find that the integrated eigenvalue equations (6.2) decouple into the 2D equations plus the
transverse system, obtained from the equations corresponding to j = 1 in system (6.2) after
putting ā1 = b̄1 = 0:

(6.8)

λa1 − sa′1 − b′1 = 0,

λb1 − sb′1 − |ā|2a′1 =
b′′1
ā3
,

The system (6.8) has the form of as (4.2) with Z = (b1, a1, a
′
1) and A(z, λ) = B(z, λ) given

in (6.4), after putting ā1 = 0.

6.2 Approximation of the profile and of the Evans function

Following [BHRZ, HLZ], we approximate the traveling wave profile using one of MAT-
LAB’s boundary-value solvers bvp4c [SGT], bvp5c [KL], or bvp6c [HM]. These are adap-
tive Lobatto quadrature schemes that can be interchanged for our purposes; for rigorous
error/convergence bounds for such algorithms, see e.g. [Be1, Be2]. The calculations are
performed on a finite computational domain [−L,L], where the values of approximate plus
and minus spatial infinity L are determined experimentally by the requirement that the
absolute error |V̄ (±L) − V±| ≤ TOL be within a prescribed tolerance, say TOL = 10−3.
Here V̄ and V± are the profile and limiting endstates as defined in Section 4.1.

Using now the notation of section 4.1, define for z ≥ 0 and z ≤ 0, respectively:

Z+(z, λ) = Z+
1 (z, λ) ∧ . . . ∧ Z+

k (z, λ) and Z−(z, λ) = Z−k+1(z, λ) ∧ . . . ∧ Z−N (z, λ),

so that the Evans function is given by:

(6.9) D(λ) = Z+(0, λ) ∧ Z−(0, λ).

Since for L > 0 large, P±(±L, λ) approximately equals Id, we obtain:

(6.10) Z±i (±L, λ) ∼ e±A±(λ)LZ̃±i (λ),

where the “+” sign is taken with indices i = 1 . . . k and the “−” sign with i = k +
1 . . . N . Recall that S(λ) = span{Z̃+

i (λ)}i=1..k is the stable space of A+(λ), while U(λ) =
span{Z̃−i (λ)}i=k+1..N represents the unstable space of A−(λ).

The analytic bases {Z̃±i (λ)}i are obtained by the following procedure [HuZ, Z2]. First,
one computes the eigenprojections P+(λ) and P−(λ) onto, respectively, the space S(λ) and
U(λ). This can be done by setting:

P± = R±
(
L±R±

)−1
L±,
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where R±(λ) and L±(λ) are matrices consisting of any orthonormal right and left bases of
S(λ) (when with subscript “+”) and U(λ) (when with subscript “–”). Then, a standard
result in matrix perturbation theory [K] states that the analytic in λ bases Z̃±(λ) can be
prescribed constructively as the solution of Kato’s ODE:

(Z̃±)′ =
(
P ′±P± − P±P ′±

)
Z̃±, Z̃±(λ0) = R±(λ0),

where ′ denotes the differentiation with respect to λ. This prescription is also minimal in
the sense that P±R′± = 0.

We now continue the construction of the approximate Evans function. As a consequence
of (6.10), for large L we set:

Z+(L, λ) ∼ Z+
app(L, λ) := etr(A+(λ)|S(λ))LZ̃+

1 (λ) ∧ . . . ∧ Z̃+
k (λ),

Z−(−L, λ) ∼ Z−app(−L, λ) := e−tr(A−(λ)|U(λ))LZ̃−k+1(λ) ∧ . . . ∧ Z̃−N (λ).

The objective is now to trace the evolution of the differential form Z+
app(·, λ) backward in

z, and the evolution of Z−app(·, λ) forward in z, starting from, respectively, the initial data
Z+
app(L, λ) and Z−app(−L, λ), and according to the system as in (4.2):

(6.11) Z ′app(z, λ) = A(z, λ)Zapp(z, λ).

The numerical approximation of D(λ) in (6.9) is then recovered through:

(6.12) D(λ) ∼ Dapp(λ) := Z+
app(0, λ) ∧ Z−app(0, λ).

To solve (6.11) for Z±app we use the polar-coordinate method described in [HuZ], which
encodes Z±app as product of a complex scalar r± and the exterior product Ω± of an orthonor-

mal basis {ω+
i } of S or, respectively, an orthonormal basis {ω−i } of U :

Z±app(z, λ) = r±(z, λ)Ω±(z, λ), Ω+ = ω+
1 ∧ . . . ∧ ω

+
k , Ω− = ω−k+1 ∧ . . . ∧ ω

−
N .

The above quantities Ω evolve by some implementation (e.g. Drury’s method below) of
continuous orthogonalization, where the “radius” r satisfies a scalar ODE slaved to Ω,
related to Abel’s formula for evolution of a full Wronskian. Namely (6.11), is equivalent to:

Ω′(z, λ) =
(

IdN − ΩΩ∗
)
A(z, λ)Ω(z, λ)

r′(z, λ) = tr
(

Ω∗A(z, λ)Ω
)
· r(z, λ)

(6.13)

and we recover, in view of (6.12):

Dapp(λ) = r+(0, λ)r−(0, λ) · Ω+(0, λ) ∧ Ω−(0, λ),

see [HuZ, Z2, Z3] for further details. The rationale for solving the system (6.13) for the de-
composition of Zapp, rather than the original (6.11) is that the imposition of orthonormality
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on Ω prevents the collapse of the various columns (solutions) onto a single fastest-growing
mode, as would otherwise be the case. For a discussion of this and other numerical issues
connected with the polar coordinate method, see [HuZ, Z3].

The calculations of (6.13) for individual λ are carried out using MATLAB’s ode45

routine, an adaptive 4th-order Runge-Kutta-Fehlberg method (RKF45) with excellent ac-
curacy and automatic error control. Typical runs involved roughly 60 mesh points per side,
with error tolerance set to AbsTol = 1e-8 and RelTol = 1e-6. To produce analytically
varying Evans function output, the initializing bases {Z̃±i } are chosen analytically using
Kato’s ODE [GZ, HuZ, BrZ, BHZ]. Numerical integration of Kato’s ODE is carried out
using a second-order algorithm introduced in [Z2, Z3].

6.3 Winding number computation

Recall that the Evans condition amounts to checking for the existence of unstable zeros of
the integrated Evans function D̃, described in section 4.4. We first observe (Proposition 6.10
[HLZ]), that for shock profiles of the hyperbolic–parabolic systems of the type we consider,
there holds:

(6.14) lim
|λ|→∞

D̃(λ)

eα
√
λ

= C uniformly on Re λ ≥ 0,

with constants α and C 6= 0. When D̃ is initialized in the standard way on the real axis,
so that D̃(λ) = D̃(λ̄), α and C are necessarily real. The knowledge that limit in (6.14)
exists allows actually to determine α and C by curve fitting of log D̃(λ) = logC + αλ1/2

with respect to λ1/2, for large |λ|.
One further determines the radius R > 0 so that:

D̃(λ) 6= 0 for |λ| ≥ R and Re λ ≥ 0,

by taking R to be a value for which the relative error between D̃(λ) and Ceα
√
λ becomes

less than 0.2 on the entire semicircle:

SR = ∂
(
B(0, R) ∩ {Re λ ≥ 0}

)
,

indicating sufficient convergence to ensure nonvanishing. For many parameter combinations,
R = 2 was sufficiently large. Alternatively, we could use energy estimates or direct tracking
bounds as in [HLZ] and [HLyZ], respectively, to eliminate the possibility of eigenvalues of
sufficiently high frequency. However, we have found the convergence study to be much more
efficient in practice; see [HLyZ].

We now compute the winding number I(R) of the image curve D̃(SR) with respect to
0, which equals the degree of the 2d vector field given by D̃ in the interior region of SR.
Since the index of any nondegenerate zero of a holomorphic function is +1, the condition

I(R) = 0

31



is hence equivalent to D̃ having no zeros in the open interior of the curve SR. Since all the
shocks considered here are of Lax or overcompressive type, condition I(R) = 0 is equivalent
to the Evans stability condition (D̃).

The winding number I(R) is now computed by varying values of λ along 20 points of
the contour S, with mesh size taken quadratic in modulus to concentrate sample points
near the origin where angles change more quickly, and summing the resulting changes in
arg(D̃(λ)), using = log D̃(λ) = argD̃(λ)(mod2π). To ensure winding number accuracy, we
test a posteriori that the change in D̃ for each step is less than 0.2, and add mesh points as
necessary to achieve this. (Recall, by Rouché’s Theorem, that accuracy is preserved so long
as relative variation of D̃ along each mesh interval is ≤ 1.0.) In Tables 2 and 1 we give the
radius of the domain contour, the number of mesh points, the relative error for change in
argument of D̃(λ) between steps, and the numerical approximation of spatial infinity ±L.

6.4 Results of numerical experiments

In our numerical study, we sampled from a broad range of parameters and checked stability
of the resulting Lax and over-compressive profiles whenever their endstates fell into the
hyperbolic region as required by our stability framework. We did not find any undercom-
pressive profiles for the model considered here, either in the incompressible shear or the
compressible case, nor did Antman and Malek–Madani find undercompressive profiles in

α s R points error L α s R points error L

0.2 1.8 2 38 0.1947 16.25 1 1.8 2 27 0.1787 6.3

1 2.8 2 21 0.1791 2.5 2 2.8 2 21 0.1878 3

3 3.8 2 20 0.1103 1.8 5 5.8 2 20 0.0903 1.05

Table 1: Table demonstrating contour radius, number of mesh points, relative error, and
spatial domain for the incompressible case.

α2 α3 s R points error L α2 α3 s R points rel error L
0.1 1 1.9 2 20 0.13 15.01 0.1 6.6 9.5 2 20 0.00 2.01
0.9 2.6 8.7 2 20 0.01 2.01 1.3 3.4 8.3 2 20 0.01 2.01
3.7 4.2 7.1 2 20 0.02 2.01 1.7 0.2 3.9 2 20 0.08 19.01
6.1 2.6 8.7 2 20 0.01 2.01 4.1 4.6 8.3 2 20 0.01 2.01
6.9 0.6 8.3 4 20 0.17 7.01 6.9 0.2 8.3 2 20 0.12 15.01

Table 2: Table demonstrating contour radius, number of mesh points, relative error, and
spatial domain. The data on the left side corresponds to the compressible 2D system, and
that on the right to the transverse system.
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their investigations of the incompressible shear case [AM]. As shown in Section D, under-
compressive connections cannot occur in the incompressible shear case for any choice of
potential. However, we do not see why they could not occur for other choices of elastic
potential in the compressible case.

All our computations yielded zero winding number, consistent with stability. All to-
gether, our study consisted of over 8,000 Evans function computations. The following
parameter combinations were examined for Evans stability.

The 2D incompressible shear case. The following parameter combinations yielded
Evans function output with winding number zero, consistent with stability:

(α, s) ∈ {0.2 : 0.2 : 5} × {0.2 : 0.2 : 7}.

The 2D compressible case. In the compressible 2D case and the transverse case following,
we computed the Evans function for the stated parameter combinations whenever the profile
end-states did not lie in the elliptic region. For α2 6= 0, we restricted our attention to the
profiles connecting rest-points corresponding to solutions of (5.16) in the interval [−50, 50].

We computed the Evans function for all 2 point configurations (Lax connections) coming
from the following parameter combinations. All computations yielded zero winding number,
consistent with stability:

(α2, α3, s) ∈ {0} × {1.1 : 0.5 : 25.6} × {0.5 : 0.5 : 20}.
(α2, α3, s) ∈ {0.1 : 0.4 : 25.3} × {0.2 : 0.4 : 25.4} × {0.3 : 0.4 : 25.5}.

For the following parameter combinations, we investigated the 4 point configurations com-
puting all Lax connections, and 5 overcompressive connections passing through evenly
spaced points on the segment in phase space connecting the saddle points:

(α2, α3, s) ∈ {0} × {0.03 : 0.07 : 1.03} × {0.05 : 0.07 : 1.05},
(α2, α3, s) = {(0.08, 0.59, 0.75), (0.08, 0.87, 0.82), (0.22, 0.66, 0.75)}.

The transverse case. We computed the transverse Evans function for the two point
configurations (Lax connections) for the following parameter combinations:

(α2, α3, s) ∈ {0.1 : 0.4 : 25.3} × {0.2 : 0.4 : 25.4} × {0.3 : 0.4 : 25.5}.

In addition we examined the 4 point configuration corresponding to (α2, α3, s) = (0.1, 0.8, 0.8)
computing the Evans function for the 4 Lax connections and for 5 overcompressive connec-
tions passing through points evenly spaced along the line in phase space between the two
saddle points.

6.4.1 Numerical performance

The Evans function computations for the most part worked reliably and well, showing
performance comparable to that seen in previous studies for gas dynamics [HLZ, HLyZ]

33



and MHD [BHZ, BLZ]. A typical winding number computation for a single profile took
approximately 30 seconds and computation of the profile approximately 5 seconds.

As expected, performance degraded catastrophically in various boundary situations: the
small-amplitude limit as |a+−a−||a+|+|a−| → 0; the characteristic limit as one or more characteristic

speeds approach the shock speed; the large-amplitude limit as |a±| approach infinity or
a3 approaches the physical (infinite compression) boundary a3 = 0; and the elliptic limit
as one or both endstates a± approach the elliptic region where characteristic speeds are
complex. For discussion of causes of and (partial) cures for these numerical issues, see, e.g.,
[HLZ, BHZ, BLZ, Z3]. In the present study, such boundary cases were omitted.

7 Discussion and open problems

In this paper, we have obtained the first analytical stability results for viscoelastic shock
waves, stability of small-amplitude Lax shocks, and set up a theoretical framework for
future numerical and analytical studies of shock waves of essentially arbitrary viscoelastic
models. A large-scale numerical Evans study for the canonical model (2.7) yielded a result
of numerical stability for each of the more than 8,000 profiles tested, of both classical Lax
and nonclassical overcompressive type, and with amplitudes varying from near zero to 50.

Interesting problems for the future are the treatment of more realistic potentials with
physically correct asymptotic behavior, systematic numerical and asymptotic investigation
across parameters as in [HLZ, HLyZ, BHZ, BLZ], and the treatment of phase transitional
elasticity by incorporation of dispersive surface energy terms.

A Appendix: General facts

Though the investigations of this paper were carried out for special choices of W , Z, the
methods we use apply to much more general choices. With an eye toward future work, we
collect in this appendix the information needed to carry out such extensions.

A.1 General elastic potential

Theorem A.1. Let W : R3×3 −→ R+ satisfy (2.4) and (2.6). Then there exists a scalar
function σ : R3 −→ R+, such that:

W (F ) = σ(|F |2, |FF T |2, detF ).

The derivative DW (F ) ∈ R3×3, wherever defined at F ∈ R3×3 (so that ∂AW (F ) = DW (F ) :
A), is given by:

DW (F ) = ∇σ(|F |2, |FF T |2, detF ) ·
(

2F, 4FF TF, cofF
)
.

If W (Id) = 0 and W is C2 in a neighborhood of SO(3), then:

DW (Id) = 0, D2W (Id) : A = λ(trA)Id + µsymA ∀A ∈ R3×3,
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with the convention ∂2
A1,A

W (Id) = (D2W (Id) : A) : A1 and the Lamé constants λ and µ:

λ = ∇2σ(3, 3, 1) :
(

(2, 4, 1)⊗ (2, 4, 1)
)
, µ = ∇σ(3, 3, 1) · (0, 8,−2)

satisfying: µ ≥ 0 and 3λ+ µ ≥ 0.

Proof. According to the representation theorem [TN], every frame invariant and isotropic
W depends only on the principal invariants of the left Cauchy deformation tensor FF T , that
is W (F ) = σ̄(tr(FF T ), tr cof (FF T ),det(FF T )). Since tr cof Q = 1

2(tr Q)2− 1
2tr (Q2), the

claim on the form of W follows directly.
The formula for derivative DW (F ) follows from:

∂A|F |2 = 2F : A, ∂A|FF T |2 = 4FF TF : A, ∂AdetF = cof F : A,

where for the last expression we used det(F +Q) = detF + F : cof Q+Q : cof F + detQ,
valid for 3× 3 matrices F,Q.

The vanishing of DW (Id) is clear since W is minimized at Id. The formula for D2W (Id)
follows by chain rule and Lemma A.2. Further, notice that ∂2WA,A(Id) ≥ 0, which reads:

(A.1) λ|tr A|2 + µ| sym A|2 ≥ 0 ∀A ∈ R3×3.

Evaluating (A.1) first at a traceless A and then at A = Id we see that:

(A.2) µ ≥ 0, 3λ+ µ ≥ 0.

To prove that (A.2) implies (A.1), write sym A a the sum of orthogonal matrices: sym A =
diag(a11, a22, a33) +B. Then: |sym A|2 =

∑3
i=1 a

2
ii + |B|2, so:

λ|tr A|2 + µ| sym A|2 = λ(

3∑
i=1

aii)
2 + µ

3∑
i=1

a2
ii + µ|B|2 ≥ (λ+ µ/3)(

3∑
i=1

aii)
2 + µ|B|2,

which ends the proof.

For the behavior of W close to the energy well SO(3) it is important to know the
derivatives of W at R ∈ SO(3). It follows by frame invariance that:

∂nRF1,...RFnW (R) = ∂nF1,...FnW (Id) ∀F1 . . . Fn ∈ R3×3 ∀R ∈ SO(3).

Hence, it suffices to find the derivatives of W at Id. Direct calculation yields the following:

Lemma A.2. For F ∈ R3×3, let α(F ) = |F |2, β(F ) = |FF T |2 and γ(F ) = detF . Then,
for any A1, A ∈ R3×3 we have:

(α, β, γ)(Id) = (3, 3, 1)

∂A1(α, β, γ)(Id) =
(

Id : A1

)
(2, 4, 1)

∂2
A1,A(α, β, γ)(Id) =

(
A : A1

)
(2, 4, 1) +

(
symA : A1

)
(0, 8,−2)

∂3
A1,A,A(α, β, γ)(Id) = −

(
cofA : A1

)
(0, 8,−2) +

(
(cofA+AAT + 2A2) : A1

)
(0, 8, 0)

∂4
A1,A,A,A(α, β, γ)(Id) = 3

(
(AATA) : A1

)
(0, 8, 0)
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For F as in (3.1), we have:

α(F ) = 2 + |a|2, β(F ) = 2 + |a|4 + 2(|a|2 − a2
3), γ(F ) = a3.

Hence, and without loss of generality, the reduced function W (a) must be of the form
W (a) = σ̃(|a|2, a3), for some σ̃ : R2 −→ R+.

In the incompressible shear case, it reduces to:

(A.3) W̌ (a) = σ̌(|a|2) = σ̃(|a|2, 1),

leading to a profile equation agreeing with that of the 2× 2 rotationally symmetric model:

(A.4) at + (2∇σ̌(|a|2)a)z = azz.

This clarifies and puts in a more familiar context the investigations of Antman and Malek-
Madani [AM] on existence of viscous profiles for the 2D incompressible shear model.

A.2 General viscous stress tensor

We do not have a complete categorization of possible Z satisfying (i)–(iii) corresponding
to that of Theorem A.1 for the elastic energy density W . However, we note the related
discussion of Antman [A] for the class of systems of strain-rate type:

Z(F,Q) = FS(C,D),

where S is a symmetric dissipation tensor depending on the the metric C = F TF and on
its time derivative D = F TQ + QTF = 2sym(F TQ). These automatically satisfy (i) and
(ii) because sym

(
(RF )T (RKF + RQ)

)
= sym(F TQ + F TKF ) = sym(F TQ). Thus only

(iii) need be checked, in the form:

(A.5) S(C,D) : D ≥ 0.

Both of the examples (2.9) are of this type. For Z1 = FS1, we have:

S1(C,D) = sym(F TQ) =
1

2
D,

which evidently satisfies the strict version of inequality (A.5):

(A.6) S(C,D) : D ≥ γ|D|2, γ > 0.

For Z2 = FS2, we have S2 = (detF )F−1sym(QF−1)F−1,T = 1
2(detC)1/2C−1DC−1, hence:

S2(C,D) : D =
1

2
(detC)1/2C−1CtC

−1 : D =
1

2
(detC)1/2|C−1/2DC−1/2|2 ≥ γ|D|2,

where γ depends on C, but is uniform for F bounded and detF bounded away from zero.
In [A], Antman proposes as a sufficient condition for (A.6), that S be monotone in D

in the sense that ∂S
∂DA : A ≥ γ|A|2, γ > 0, for A symmetric. This implies (A.6) under the

additional assumption S(·, 0) ≡ 0 (i.e. viscous force vanishes at zero velocity), by:

S(C,D) : D − S(C, 0) : D =

∫ 1

0

∂S

∂D
(C, θD)D : D dθ ≥ γ|D|2.

It is easily checked that monotonicity holds for both of the choices Z1, Z2.
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B Appendix: Phase-transitional elasticity

Another interesting direction for future investigations is the phase-transitional case, as we
now briefly discuss. A typical model, as described in [FP], has the form:

W (F ) = |F TF − C−|2 · |F TF − C+|2,

where:

C± = F T±F± =

 1 0 0
0 1 ±ε
0 ±ε 1 + ε2

 , F± =

 1 0 0
0 1 ±ε
0 0 1

 .
Evidently, W is minimized among planar deformation gradients F at the two equilibria F±.

A particularly interesting class of solutions to (2.1) are stationary phase-transitional
shocks connecting the two equilibria (b±, a±), a± = (0,±ε, 1), that is, zero-speed shocks
compatible with the Rankine-Hugoniot condition for (3.11) with (3.3): b+ = b−, DW (a+) =
DW (a−). Similarly as in section 5 and as in 1d case treated by Slemrod [Sl], such connec-
tions do not exist under the viscoelastic effects alone, but their existence requires also the
inclusion of third-order surface energy terms as in Section 2.3.

Solving the system (5.1) augmented by the term γdiv E coming from the surface energy
E0 as in (2.11), we obtain (for s = 0) that b = const and DW (a)z = γazzz. Take the capil-
larity coefficient γ 6= 0 and assume that DW (a±) = 0 (the end-states in the potential well).
Integrating, we obtain a harmonic oscillator equation: DW (a) = γazz, with Hamiltonian:

H(a, az) = W (a)− γ

2
|az|2 = const.

Hence, a question is whether the connected component of the level set of H, containing
(a−, 0), contains also (a+, 0). Contrary to the 1d case in [Sl], this is only a necessary
condition for profile’s existence. Existence or nonexistence of such connections would be an
interesting question for further analytical and numerical investigation.

A second question would be to determine stability of such stationary transitions, should
they exist. We conjecture that, similarly as in [Z8] for the 1d case, the spectral stability fol-
lows automatically by energy-considerations. Stability of nonstationary phase-transitional
profiles has not been treated even in the 1d case, and would be another interesting problem.

Finally, we point out that the equations with surface energy do not fit the stability theory
of Section 4, since they are third- and not second-order. However, we expect that the basic
methods should still apply, after suitable modifications. It would be very interesting, for
the sake of this and other applications involving dispersive phenomena (for example, the
Hall effect in MHD), to carry out a complete analysis extending the nonlinear stability
framework to this higher-order case.
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C Appendix: Nonhyperbolic endstates

Consider the 1D compressible equations (3.20) with the associated profile equation, obtained
by setting a1 = a2 = 0 in (5.8):

(C.1) 2a′3 = (a3
3 − a3 − σa3)− (α3 − α− σα), α := a3− = a3(−∞).

As noticed in section 3.3.4, strict hyperbolicity of (3.20) corresponds to |a3| > 1/
√

3. On
the other hand, when α > a3+ > 0,

√
(1 + σ)/3 < α <

√
1 + σ and σ = a2

3+ + a3+α+α2 >
0, the equation (C.1) posseses a solution a3(z), decreasing from its unstable equilibrium
α = a3(−∞) to the stable one a3+ = a3(+∞). This solution corresponds to a viscous shock
profile of the associated scalar equation a3,t + (a3

3− a3)z = a3,zz and the 2d viscous system:

(C.2) a3,t − b3,z = 0, b3,t − (a2
3 − a3)z = b3,zz.

Thus, there exist shock profiles of (3.20) for which the left end-state is hyperbolic, with
one characteristic greater than the shock speed s and the other smaller than s, but the
right end-state is not hyperbolic as it has two pure imaginary characteristics with real parts
c+ < s. This is a “complex Lax shock” of the type considered in [AMPZ, OZ].

Writing the system (C.2) in the operator form (a3, b3)Tt = Q · (a3, b3)T where:

Q =

[
0 ∂z

(3a2
3 − 1)∂z ∂zz

]
,

we determine the spectrum of the constant solution (a+, b+) through the dispersion relation:

0 = det

[
λ −ik

−(3a2
3+ − 1)ik λ+ k2

]
= λ2 + k2λ+ (3a2

3+ − 1)k2.

Consequently:

λ(k) ∼ −1

2
k2 ± k

√
1− 3a2

3+ for k ∼ 0,

yielding a maximal growth rate ert with r = Re λmax(k) ∼ (1 − 3a2
3+)/2. As discussed in

[AMPZ, OZ], for speed |s| sufficiently large compared to the growth rate r, the shock profile
can be seen to be stable, despite instability of its right end-state as a constant solution.
It also can be shown, by weighted coordinate techniques as in [Sat, LRTZ], that Evans
stability together with such a convection vs. growth condition on the essential spectrum,
implies linearized and nonlinear stability for perturbations that are exponentially localized
on the half-line z > 0. Another direction for further investigation might be to understand
whether there are interesting physical phenomena corresponding to shocks of this type.

In contrast with the situations considered in [AMPZ, OZ], for which profiles associated
with complex Lax shocks are oscillatory at the complex end, the profiles here are of ordinary
monotone type. Other complex Lax connections, genuinely two-dimensional, may be seen
in Fig. 2(b). Provided that all characteristics are incoming on the complex side z → +∞,
nonlinear stability may again be established by weighted norm methods assuming Evans
stability plus an appropriate convection vs. growth condition as described in [AMPZ, OZ].
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D Appendix: Nonexistence of undercompressive profiles

We show that undercompressive profiles do not occur for general shear models as in (A.3).
The same argument implies that undercompressive profiles cannot occur also in the 2D
compressible case, for the special class of potentials W (a) depending only on |a|2.

Note first that every undercompressive profile (a(z), b(z)) of (3.15), with speed s, induces
an undercompressive profile of (5.9) given by z 7→ a(sz) with speed σ = s2. This statement
follows from a more general observation in [MaZ3, BLZ] relating the type of inviscid shocks
to the connection number for the traveling wave in the reduced ODE (5.2). Alternatively,
the same can be checked directly: if the sum of the number of eigenvalues λ for (3.15) at
a(−∞) with λ > s, and the number of eigenvalues µ at a(+∞) with µ < s, is less than 5
(the dimension of the system increased by 1), then the sum of the number of eigenvalues of
(5.9) λ2 > σ and the number of eigenvalues µ2 < σ is less than 3, when s > 0. When s < 0
we likewise have that the number of µ2 < σ plus the number of µ2 > σ, is less than 3.

We shall prove that the system:

(D.1) at + (h(|a|2)a)z = azz,

generalizing (5.9) and (A.4), where h = 2∇σ̌, admits no undercompressive shocks.
After integrating in z, the traveling wave ODE for (D.1) reads:

(D.2) a′ = −σa+ h(|a|2)a−
(
− σa− + h(|a−|2)a−

)
,

where σ is the speed of the shock and a− = (a1−, a2−) = a(−∞) is its left end-state. Note
that all possible right end-states a+ = (a1+, a2+) which can be connected to a−, satisfying
hence the Rankine-Hugoniot condition:

(D.3) h(|a−|2)a− − σa− = h(|a+|2)a+ − σa+,

must lie on the same line through the origin, due to rotational invariance of the system (D.1).
We may, without loss of generality, assume it to be the a1 axis, so that: a2− = a2+ = 0.

The gradient of the right hand side in (D.2):

D
(
h(|a|2)a− σa

)
=
(
h(|a|2)− σ

)
Id + 2∇h(|a|2)a⊗ a

has two eigenvalues: λ1(a) = h(|a|2)−σ+2∇h(|a|2)|a|2, with the radial direction eigenvector
a, and λ2(a) = h(|a|2)− σ with the eigenvector a⊥ in the transverse (rotational) direction.

Observe further that an undercompressive shock profile must necessarily be a saddle to
saddle connection, and that any saddle point has one of its invariant manifolds (the one
corresponding to λ1) confined to the a1 axis. We find that the profile must either lie entirely
on the a1 axis, or else entirely off the axis, leaving a− and entering a+ along the transverse
direction (orthogonal to the axis). We now distinguish 3 cases:

Case (i) a1+a1− > 0. In this situation, in view of (D.3), the transverse eigenvalues
λ2(a−) = h(a2

1−) − σ and λ2(a+) = h(a2
1+) − σ must also have a common sign. Thus

39



the profiles may only leave or only enter along the transverse directions, contradicting the
assumed behavior.

Case (ii) a1+a1− < 0, and the profile connection is radial. Without loss of
generality, assume that a1− > 0 and a1+ > 0 so that a′1(z) < 0 along the whole profile. In
particular, a′1(z0) < 0 at z0 where a1(z0) = 0. By (D.2) it follows that:

h(a2
1−)a1− − σa1− = −a′1(z0) > 0,

hence h(a2
1−)−σ > 0. This means that the transverse eigenvalue corresponds to the unstable

direction, contradicting the profile being radial and a− being a saddle equilibrium point.

Case (iii) a1+a1− < 0, and the profile connection is transverse. In this situation
λ2(a−) > 0 and λ2(a+) < 0. Observe that on the circle |a|2 = a2

1−, we have:

a′ =
(
h(a2

1−)− σ
)
(a− a−) = λ2(a−)(a− a−),

and thus the exterior of this circle is a positively invariant set. Likewise, by (D.2) and (D.3),
on the circle |a|2 = a2

1+ there holds:

a′ =
(
h(a2

1+)− σ
)
(a− a+) = λ2(a+)(a− a+),

and hence the exterior of this circle is a negatively invariant set. Consequently, at that of
the two saddle points a− and a+ which has larger norm, the invariant curve tangent to the
transverse direction must lie, for all times, outside the corresponding circle. This is clearly
a contradiction and ends the proof, as the case a1+ = −a1− is ruled out by comparing the
right hand sides of the above ODEs.
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