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Abstract. We prove equivalence of the C1,1 regularity of a bounded domain Ω ⊂ RN , with
the two-sided, uniform radius supporting spheres condition. We relate the maximal radius of
the supporting spheres to the optimal global Lipschitz constant (in the Euclidean metric of the
ambient space RN ) of the unit normal vector on ∂Ω. These results are not surprising and indeed
rather folklore in Analysis, however their elementary and self-contained proofs below are, to our
best knowledge, new. We also offer an extension to Lp spaces, p ∈ (1,∞).

1. Introduction

In this note, we propose a simple proof of the equivalence of two geometric boundary regularity
conditions that are often used in Analysis and PDEs. Let Ω ⊂ RN be an open, bounded, connected,
nonempty set. The first condition is called the uniform (two-sided) supporting sphere condition:

(S)

[
For some radius r > 0 we have: for every x0 ∈ ∂Ω there exist a, b ∈ RN with:

Br(a) ⊂ Ω, Br(b) ⊂ RN \ Ω̄ and |x0 − a| = |x0 − b| = r.

The second condition is the C1,1 regularity of ∂Ω:

(C)


For every x0 ∈ ∂Ω there exist ρ, h > 0 and a rigid map T : RN → RN with T (x0) = 0,
along with a C1,1 function φ : RN−1 ⊃ Bρ(0)→ (−h, h) with φ(0) = 0, ∇φ(0) = 0, such
that the following holds. Consider the cylinder C = Bρ(0)× (−h, h) ⊂ RN , then:

C ∩ T (Ω) = {(x′, xN ) ∈ C; xN < φ(x′)},
C ∩ T (∂Ω) = {(x′, xN ) ∈ C; xN = φ(x′)}.

We recall that T is a rigid map when it is a composition of rotation and translation: T (x) = Ax+b
for some A ∈ SO(N) and b ∈ RN . A function φ is said to be of class C1,1 if it is differentiable
and its gradient is Lipschitz continuous, in the domain where φ is defined.

The geometric meaning of both conditions (S) and (C) is explained in Figure 1.1. Condition (C)
states that, locally, ∂Ω coincides with the graph of a C1,1 function φ. In particular, the external
unit normal vector ~n : ∂Ω→ RN is then well defined and given in the local coordinates of φ (for
simplicity we assume here that T (x) = x) by:

~n(x′, φ(x′)) =
(−∇φ(x′), 1)√
|∇φ(x′)|2 + 1

It is easy to observe that ~n is Lipschitz, as it is a composition of two Lipschitz functions: the
projection on xN = 0 and the vector field given in the right hand side of the above formula. Our
goal is to give an elementary, self-contained proof of the following result:
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Figure 1.1. The uniform two-sided supporting spheres condition (S), and the boundary

C1,1 regularity condition (C).

Theorem 1. Conditions (S) and (C) are equivalent and the global Lipschitz constant of ~n can be
taken as the inverse of the uniform supporting spheres radius:

(1.1) |~n(x0)− ~n(y0)| ≤ 1

r
|x0 − y0| for all x0, y0 ∈ ∂Ω.

The estimate (1.1) is sharp and achieved for Ω = Br(0) where we have ~n(x0) = 1
rx0. It is also

consistent with the well known fact that if φ ∈ C2, φ(0) = 0, ∇φ(0) = 0, then the surface patch
given by the graph of φ has, at x0 = 0, an external supporting sphere of radius r, for any r > 0
satisfying 1

r ≥ λmax, where λmax is the maximal eigenvalue of the symmetric matrix ∇2φ(0). More

generally, the two-sided supporting sphere radius r at a point x0 of a C2 surface S is the inverse
of the largest (in absolute value) eigenvalue of the second fundamental form of S at x0.

In Theorem 1 we show that this (local) optimal statement persists globally, in connection with
the Lipschitz constant of ~n, rather than that of ∇φ. Indeed, the smooth “thin neck” set in Figure
1.2 has small Lipschitz constant of each ∇φ (and thus small local Lipschitz constant of the unit
normal vector ~n), but it does not allow the internal supporting sphere radius exceed a prescribed
0 < δ � 1. On the other hand, the global Lipschitz constant of ~n in this example must be at least
|~n(x0)−~n(y0)|
|x0−y0| = 2

2δ , so there is no contradiction with (1.1).
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Figure 1.2. For each φ in the local construction in (C), we have ‖∇φ‖C0 ≤ 1, but the

maximal internal ball at x0 has only a small radius δ � 1.
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For completeness, we mention that an entirely equivalent notion of C1,1 regularity of ∂Ω is:

(C’)


For every x0 ∈ ∂Ω there exist ρ, h > 0 and a C1,1 diffeomorphism Φ : C → U between
cylinder C = Bρ(0)× (−h, h) ⊂ RN and an open neighbourhood U ⊂ RN of x0, so that:

Φ
(
(x′, xN ) ∈ C; xN < 0

)
= U ∩ Ω,

Φ
(
(x′, xN ) ∈ C; xN = 0

)
= U ∩ ∂Ω,

We recall that Φ is a C1,1 diffeomorphism when it is invertible and when both Φ and Φ−1 have
regularity C1,1. We leave proving the equivalence of (C) and (C’) as a (not hard) exercise.

Condition (C’) is at the heart of the technique of “straightening the boundary”. This technique
is familiar to analysts and it relies on reducing an argument (e.g. constructing extension operator,
deriving estimates on a solution to some PDE) needed in a proximity of a boundary point of a
domain, to the much simpler case of a flat boundary to the half-space. The two cases are then
related via the diffeomorphism Φ with controlled derivatives (of course, sometimes one needs more
than just one derivative!). On the other hand, it is often more straightforward to deal with the
geometric condition (S) rather than with charts and requirements on φ in (C) or Φ in (C’).

We close the discussion by observing that the key ingredient in the proof of (S) implying (1.1),
called the “four ball lemma”, remains valid in the Lebesgue spaces Lp, p ∈ (1,∞). This will be
derived in Section 5. As a consequence, we obtain that if a bounded domain Ω ⊂ Lp satisfies (S),
then its unit normal vector is Hölder continuous, with exponent 2/p for p ≥ 2 and p/2 for p ≤ 2.

To our best knowledge, the proofs in this note are new, though equivalence of (S) and (C) in the
finite-dimensional case (without the sharp bound (1.1) and at the expense of more complicated
calculations) has been shown in [2]. Similarly, Section 1.2 in [4] discusses the relation of the
tangent paraboloids (rather than spheres) condition and second order differentiability, yielding
(locally and without specifying the constants) equivalence of (S) and (C).

2. The four ball lemma

The key ingredient of the proof of Theorem 1 is a geometrical lemma about four balls in RN .
The balls have the same radius r > 0 and they come in two couples (see Figure 2.1), with balls in
each couple tangent to each other. It turns out that if we change the pairings and ensure that the
two balls in each newly formed pair are disjoint, then the directions perpendicular to the tangency
planes differ at most by the distance between the tangency points. More precisely:

Lemma 2 (The four ball lemma). Let x, u, v ∈ RN with |u| = |v| = r > 0. Assume that
Br(x+ u) ∩Br(−x− v) = ∅ and Br(x− u) ∩Br(−x+ v) = ∅. Then |u− v| ≤ 2|x|.

Proof. Consider the vector z = x+ u+v
2 and observe that:

u− v
2

= (x+ u)− z = (−x− v) + z ∈ B̄|z|(x+ u) ∩ B̄|z|(−x− v),

so that the first disjointness assumption gives:

r2 ≤ |z|2 =
∣∣∣x+

u+ v

2

∣∣∣2.
Exchange x with −x and u with v, and apply the second disjointness assumption to obtain:

r2 ≤
∣∣∣x− u+ v

2

∣∣∣2.
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Finally, summing the two above inequalities and using (twice) the parallelogram identity, we get:

2r2 ≤
∣∣∣x+

u+ v

2

∣∣∣2 +
∣∣∣x− u+ v

2

∣∣∣2 = 2|x|2 + 2
∣∣∣u+ v

2

∣∣∣2 = 2|x|2 +
1

2
|u+ v|2

= 2|x|2 +
1

2

(
2|u|2 + 2|v|2 − |u− v|2

)
.

(2.1)

Recalling that |u| = |v| = r, this results in |u− v|2 ≤ 4|x|2. The claim is proved.

rB (−x−v)

B (−x+v)r

−x x

v
u

r

r

B (x+u)

B (x−u)

0

Figure 2.1. The four balls in Lemma 2: the “vertical” couples are tangential, the “dia-

gonal” couples are disjoint.

A similar result remains valid for domains Ω ⊂ Lp in Lebesgue spaces Lp(Z), p ∈ (1,∞), as
will be shown in Lemma 8 in Section 5.

3. A proof of Theorem 1: (C) implies (S)

In this and the next Sections we propose a proof of Theorem 1. Its first implication follows
through a straightforward calculus argument below; in particular it does not require Lemma 2.

Lemma 3. Assume condition (C) at a given boundary point x0 = 0 ∈ ∂Ω, where T = id. Then:

(3.1) |φ(x′)| ≤
maxB̄|x′|(0) |∇φ|2 + 1

2r
|x′|2 for all x′ ∈ Bρ(0),

for every r > 0 satisfying (1.1). In particular, x0 has some supporting balls Bδ0(0, δ0), Bδ0(0,−δ0).

Proof. Since T = id, the bound (1.1) implies, in view of x0 = 0 and ~n(x0) = (0, 1):

|~n(x′, φ(x′))− (0, 1)|2 ≤ 1

r2

(
|x′|2 + |φ(x′)|2

)
.

Consequently, for all x′ ∈ Bρ(0) there holds:

(3.2) |∇φ(x′)|2 ≤ |∇φ(x′)|2 + 1

r2

(
|x′|2 + |φ(x′)|2

)
≤

(
maxB̄|x′|(0) |∇φ|2 + 1

)2
r2

|x′|2,

where we have used the fact that φ(0) = 0 and ∇φ(0) = 0 to get:

|φ(x′)| =
∣∣∣ ˆ 1

0
〈∇φ(tx′), x′〉 dt

∣∣∣ ≤ |x′|ˆ 1

0
|∇φ(tx′)| dt.
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Applying (3.2) in the right hand side above, we derive (3.1) and deduce that the graph of φ is
contained between some parabolas x′ 7→ ±C|x′|2. It easily follows that for δ0 = 1

2C :

(3.3) |(x′, φ(x′))− (0,±δ0)|2 ≥ 1

C
|φ(x′)|+ |φ(x′)∓ δ0|2 ≥ |φ(x′)|

( 1

C
− 2δ0

)
+ δ2

0 = δ2
0 ,

hence the balls Bδ0(0, δ0) and Bδ0(0,−δ0) are supporting at x0.

Lemma 4. Assume that Ω satisfies (C). Then (S) holds, for every radius r > 0 satisfying (1.1).

Proof. Assume (C) and (1.1). For a boundary point x0 ∈ ∂Ω, let φ be as described in condition
(C), where without loss of generality we take T = id, so that we may use Lemma 3. We argue by
contradiction. If Br(0, r) was not supporting, then Br(0, r) ∩ Ω 6= ∅ and further:

r̄
.
= inf

{
δ ≥ δ0; B̄δ(0, δ) ∩ ∂Ω 6= {0}

}
< r.

Take a sequence of radii: δn ↘ r̄ as n→∞, and a sequence of points: yn ∈ B̄δn(0, δn)∩
(
∂Ω\{0}

)
.

Without loss of generality, yn → y0 ∈ B̄r̄(0, r̄) ∩ ∂Ω. By the minimality of r̄, there must be:

y0 ∈ ∂Br̄(0, r̄) ∩ ∂Ω.

Since the inward normal −~n(y0) coincides with the normal to ∂Br̄(0, r̄) at y0 and since the same
is valid at x0 = 0, we get the following equality, which in virtue of (1.1) implies:∣∣∣1

r̄
y0 −

1

r̄
x0

∣∣∣ =
∣∣~n(x0)− ~n(y0)

∣∣ ≤ 1

r
|x0 − y0|.

This results in the contradictory statement r̄ ≥ r, provided that we prove y0 6= x0. To this end,
it suffices to show that {yn} must be bounded away from 0. Let σ > 0 satisfy:(

sup
B̄σ(0)

|∇φ|2 + 1
)
σ2 ≤ 2rr̄ ≤ 2rδn for all n.

Using (3.1) we refine the bound in (3.3) on x′ ∈ Bσ(0), to:

|(x′, φ(x′))− (0, δn)|2 = |x′|2 + |δn − φ(x′)|2 ≥ |x′|2 +
∣∣∣δn − supB̄σ(0) |∇φ|2 + 1

2r
|x′|2

∣∣∣2
≥ |x′|2 + δ2

n −
δn
r

(
sup
B̄σ(0)

|∇φ|2 + 1
)
|x′|2.

Note that for all large n, the ratio δn
r is smaller than and bounded away from 1. It follows that

for sufficiently small σ > 0 there also holds: δn
r

(
supB̄σ(0) |∇φ|2 + 1

)
< 1 for all n. Consequently:

|(x′, φ(x′))− (0, δn)|2 ≥ δ2
n for all x′ ∈ Bσ(0) and all n,

where equality only takes place at x′ = 0. This implies that |y′n| ≥ σ and hence |y0| ≥ σ as well,
as claimed. We conclude that the ball Br(0, r) is external supporting. The proof that Br(0,−r)
is an internal supporting ball follows in the same manner.

4. A proof of Theorem 1: (S) implies (C)

The reverse implication uses Lemma 2 in several places. In particular, we have:

Lemma 5. Assume that Ω satisfies (S). For each x0 ∈ ∂Ω, define p(x0) = b−a
|b−a| . Then:

|p(x0)− p(y0)| ≤ 1

r
|x0 − y0| for all x0, y0 ∈ ∂Ω.
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Proof. We first observe that the function p : ∂Ω → RN is indeed well defined, in view of (S).
Applying, if needed, a rigid transformation that maps a given x0, y0 ∈ ∂Ω to some symmetric points
x and −x, we now use Lemma 2 to u = rp(x0), v = rp(y0) and conclude that |rp(x0)− rp(y0)| ≤
|x0 − y0|. This proves the claim.

Ω

rn(x )

x y
0 0

0
rn(y )0

Figure 4.1. The supporting balls at two boundary points x0 and y0. The “external”

supporting balls are shaded.

Lemma 6. Assume that Ω satisfies (S). Then (C) holds, together with (1.1).

Proof. By applying some rigid transformation T , we may without loss of generality assume that
x0 = 0 and p(0) = eN , with the vector field p given in Lemma 5. We now claim that choosing
h� δ > 0 sufficiently small, for each x′ ∈ Bδ(0) ⊂ RN−1 there is a unique φ(x′) ∈ R, satisfying:

(x′, φ(x′)) ∈ ∂Ω ∩ C, where C = Bδ(0)× (−h, h).

Indeed, when δ < r
2 then the line x′ + ReN intersects both supporting balls at 0, so for a small

fixed h and sufficiently small δ, there is at least one φ(x′) with the indicated property. To prove
uniqueness, take δ̄ small enough for Lemma 5 to guarantee that the angle between p(y0) and eN
is less that r π4 for all y0 ∈ ∂Ω∩Bδ̄(0). Then, if y0, ȳ0 ∈ ∂Ω∩Bδ̄(0) satisfy ȳ0− y0 = teN for some
t > 0, it follows that ȳ0 belongs to the external supporting ball at y0, contradicting that ȳ0 ∈ ∂Ω.
It now suffices to ensure that C ⊂ Bδ̄(0) by taking h, δ � 1.

We have thus defined the function φ whose graph locally coincides with ∂Ω. By (S), φ must be
continuous, differentiable and also:

~n(x′, φ(x′)) =
(−∇φ(x′), 1)√
|∇φ(x′)|2 + 1

= p(x′, φ(x′)) for all x′ ∈ ∂Bδ(0).

The displayed formula and Lemma 5 imply that, for every j = 1, . . . , N − 1, the function:

∂iφ(x′) =
〈p(x′, φ(x′)), ej〉
〈p(x′, φ(x′)), eN 〉

is continuous on Bδ(0) as the quotient of two continuous functions, whose denominator is bounded
away from 0. It now follows that functions involved in the above quotient are actually Lipschitz,
so ∇φ must be Lipschitz as well. This ends the proof of φ ∈ C1,1 and the proof of the Lemma.

From the proof of Lemma 4 and Lemma 5 one can easily deduce the following geometric
statement, which is yet another equivalent version of (S):
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Corollary 7. (S) is equivalent to the Lipschitz regularity of the normal vector condition:

(N) For every x0 ∈ ∂Ω, the normal vector ~n(x0) is well defined and it satisfies (1.1).

5. An extension of the four ball lemma to the Lebesgue spaces

We now discuss an extension of our main results to infinitely dimensional Banach spaces. We
focus on the Lebesgue spaces Lp = Lp(Z) where Z is an arbitrary measure space; we denote by
‖u‖ the Lp norm of a given u ∈ Lp. Observe that the four ball lemma (Lemma 2) remains valid
in any inner product space, i.e. in a space where one can use the parallelogram identity. Hence,
Lemma 2 holds true in L2. On the other hand, for p 6= 2 we still get the following:

Lemma 8 (The four ball lemma in Lp). Let x, u, v ∈ Lp with ‖u‖ = ‖v‖ = r > 0. Assume
that Br(x+ u) ∩Br(−x− v) = ∅ and Br(x− u) ∩Br(−x+ v) = ∅. Then:

‖u− v‖p ≤ 2p−1p(p− 1)rp−2‖x‖2 for p ∈ [2,∞)

‖u− v‖2 ≤ 8

p(p− 1)
r2−p‖x‖p for p ∈ (1, 2].

(5.1)

Proof. By the same reasoning as in the first part of the proof of Lemma 2, we obtain:

r ≤
∥∥∥x+

u+ v

2

∥∥∥ and r ≤
∥∥∥x− u− v

2

∥∥∥.
We will now replace the parallelogram identity argument in Lemma2, with a somewhat more
involved estimate, derived separately in the two cases indicated in (5.1).

When p ≥ 2, we use first the 2-uniform smoothness inequality [1, Proposition 3], followed by
the first Clarkson’s inequality [3, page 95] and recall that ‖u‖ = ‖v‖ = r, to get:

2r2 ≤
∥∥∥x+

u+ v

2

∥∥∥2
+
∥∥∥x− u+ v

2

∥∥∥2
≤ 2(p− 1)‖x‖2 + 2

∥∥∥u+ v

2

∥∥∥2

≤ 2(p− 1)‖x‖2 + 2
(1

2
‖u‖p +

1

2
‖v‖p −

∥∥∥u+ v

2

∥∥∥p)2/p

= 2(p− 1)‖x‖2 + 2
(
rp −

∥∥∥u+ v

2

∥∥∥p)2/p
.

(5.2)

Further, concavity of the function a 7→ a2/p implies that (a− b)2/p ≤ a2/p − 2
pa

(2/p)−1b whenever

a, b, a− b ≥ 0. Applying this bound to a = rp and b = ‖u−v2 ‖
p in (5.2), yields:

2r2 ≤ 2(p− 1)‖x‖2 + 2
(
r2 − 2

p
r2−p

∥∥∥u− v
2

∥∥∥p),
which directly results in (5.1) in case p ∈ [2,∞).

For p ≤ 2, we denote the conjugate exponent by q = p
p−1 and use the second Clarkson’s

inequality [3, page 97], followed by the 2-uniform smoothness inequality [1, Proposition 3] to get:

2rq ≤
∥∥∥x+

u+ v

2

∥∥∥q +
∥∥∥x− u+ v

2

∥∥∥q ≤ 2
(
‖x‖p +

∥∥∥u+ v

2

∥∥∥p)q/p = 2
(
‖x‖p +

(∥∥∥u+ v

2

∥∥∥2)p/2)q/p
≤ 2
(
‖x‖p +

(1

2
‖u‖2 +

1

2
‖v‖2 − (p− 1)

∥∥∥u− v
2

∥∥∥2)p/2)q/p
= 2
(
‖x‖p +

(
r2 − (p− 1)

∥∥∥u− v
2

∥∥∥2)p/2)q/p
.
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As before, concavity of the function a 7→ ap/2 applied to a = r2 and b = (p− 1)‖u−v2 ‖
2, yields:

2rq ≤ 2
(
|x|p + rp − (p− 1)p

2
rp−2

∥∥∥u− v
2

∥∥∥2)q/p
.

Dividing both sides of the above inequality by 2rq we obtain:

1 ≤ |x|
p

rp
+ 1− (p− 1)p

2
r−2
∥∥∥u− v

2

∥∥∥2

which directly gives (5.1) in case p ∈ (1, 2].

By the same reasoning as in Lemma 5, there follows Hölder’s regularity of the normal vector
to domains satisfying the uniform supporting sphere condition:

Corollary 9. Let Ω ⊂ Lp be a nonempty, open, bounded and connected domain that satisfies the
condition (S). Then the unit normal vector, defined for each x0 ∈ ∂Ω by p(x0) = b−a

‖b−a‖ , is Hölder

continuous with exponent: min{2/p, p/2}. More precisely, we have:

‖p(x0)− p(y0)‖ ≤ Cp ·


1

r2−2/p
‖x0 − y0‖2/p for p ∈ [2,∞)

1

rp/2
‖x0 − y0‖p/2 for p ∈ (1, 2],

for all x0, y0 ∈ ∂Ω, and with a constant Cp > 0 that depends only on p ∈ (1,∞).
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