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Abstract. We prove the quantitative equivalence of two important geometrical conditions, per-
taining to the regularity of a domain Ω ⊂ RN . These are: (i) the uniform two-sided supporting
sphere condition, and (ii) the Lipschitz continuity of the outward unit normal vector. In par-
ticular, the answer to the question posed in our title is: “Those domains whose unit normal is
well defined and has Lipschitz constant one.” We also offer an extension to infinitely dimensional
spaces Lp, p ∈ (1,∞).

1. Introduction

In this note, we prove the quantitative equivalence of two geometric boundary regularity con-
ditions, that are often used in Analysis and PDEs: the uniform supporting sphere condition and
the Lipschitz continuity of the unit normal vector. This latter condition is often referred to as the
C1,1 regularity of the domain Ω. In particular, the answer to the question in the title: “Which
domains have two-sided supporting unit spheres at every boundary point?” is: “Those whose
outward unit normal vector is well defined and has Lipschitz constant one.”

Given r > 0, we say that Ω ⊂ RN satisfies the two-sided supporting r-sphere condition, if:

(Sr)

[
For every x0 ∈ ∂Ω there exist a, b ∈ RN such that:

Br(a) ⊂ Ω, Br(b) ⊂ RN \ Ω̄ and |x0 − a| = |x0 − b| = r.

We also say that Ω satisfies the condition of 1/r-Lipschitz continuity of the normal vector, if:

(Lr)

 The boundary ∂Ω is C1 regular and the outward unit normal ~n : ∂Ω→ RN obeys:

|~n(x0)− ~n(y0)| ≤ 1

r
|x0 − y0| for all x0, y0 ∈ ∂Ω.

It is easy to note that for Ω = Br(0) where (Sr) holds trivially, the property (Lr) holds as well. It
turns out that this observation can be generalized, as stated in our main result below:

Theorem 1. Let Ω ⊂ RN be a domain (i.e. an open, connected set). For any r > 0, conditions
(Sr) and (Lr) are equivalent.

Recall that ∂Ω being C1 regular, signifies that it is locally a graph of a C1 function, namely:

(C1)


For every x0 ∈ ∂Ω there exist ρ, h > 0 and a rigid map T : RN → RN with T (x0) = 0,
along with a C1 function φ : RN−1 ⊃ B̄ρ(0) → (−h, h) such that φ(0) = 0, ∇φ(0) = 0,
and the following holds. Consider the cylinder C = Bρ(0)× (−h, h) ⊂ RN , then:

C ∩ T (Ω) = {(x′, xN ) ∈ C; xN < φ(x′)},
C ∩ T (∂Ω) = {(x′, xN ) ∈ C; xN = φ(x′)}.

Saying that T is a rigid map means that it is a composition of a rotation and a translation:
T (x) = Ax+ b for some A ∈ SO(N) and b ∈ RN . Further, a function φ is said to be of class C1 if
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it is differentiable and its gradient is continuous in the domain where φ is defined. The geometric
meaning of (Sr) and (C1) is sketched in Figure 1.1. We note in passing that under condition

(C1), the outward unit normal ~n is always well defined and given in the local coordinates φ (for
simplicity we assume here that T (x) = x) by:

~n(x′, φ(x′)) =
(−∇φ(x′), 1)√
|∇φ(x′)|2 + 1

.
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Figure 1.1. The two-sided supporting r-spheres condition (Sr), and the boundary reg-

ularity definitions (C
1
) and (C

1,1
).

Recall that for a domain Ω ⊂ R2 whose boundary coincides with a C2 simple curve γ,
parametrized by the arc-length s, the radius of curvature at a point γ(s0) is: |d~nds (s0)|−1. Similarly
in higher dimensions, the radius of curvature at x0 ∈ ∂Ω is the reciprocal of the Lipschitz constant
of ~n on a neighbourhood of x0, in the limit when the neighbourhood shrinks to the point {x0}
itself. In Theorem 1 we argue that this local statement persists globally, in connection with the
(global) Lipschitz constant of ~n rather than the (locally defined) curvature. Indeed, the smooth
“thin neck” set in Figure 1.2 has small curvature (i.e. small local Lipschitz constant of ~n and,
equivalently, small ‖∇φ‖C0), but it does not allow the radius of the internal supporting sphere
to exceed a prescribed 0 < δ � 1. On the other hand, the global Lipschitz constant of ~n in this

example must be at least |~n(x0)−~n(y0)|
|x0−y0| = 2

2δ , so there is no contradiction with Theorem 1.
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Figure 1.2. The normal vector ~n has local Lipschitz constant less than 1, but the

maximal internal ball at x0 has only a small radius δ � 1.
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The main result will be proved in Sections 2–4. In parallel, we will also deduce a consequence
of Theorem 1, previously shown in [4, Section 1.2] and [2], via more complex calculations:

Corollary 2. A bounded domain Ω ⊂ RN satisfies (Sr), for some r > 0, if and only if there holds:

(C1,1)

[
The statement in (C1) is valid with C1,1 regular functions φ, i.e. with each φ having
its gradient Lipschitz continuous.

In Section 5 we will then adapt a key ingredient of the proofs of Theorem 1 and Corollary 2,
called the “four ball lemma”, to the setting of the Lebesgue spaces Lp, p ∈ (1,∞). As a result,
we obtain that if a domain Ω ⊂ Lp satisfies (Sr) for some r > 0, then its outward unit normal
vector is Hölder continuous, with exponent 2/p for p ≥ 2 and p/2 for p ≤ 2. In the last Section 6
we will gather some final remarks.

2. The four ball lemma

The key ingredient in the proof of Theorem 1 is a geometrical lemma about four balls in RN .
The balls have the same radius r > 0 and they come in two couples (see Figure 2.1), with balls
in the same couple tangent to each other. It turns out that if we change the pairings and ensure
that the two balls in each newly formed pair are disjoint, then the directions perpendicular to
the tangency planes differ at most by the distance between the tangency points. A similar result
remains also valid for domains Ω ⊂ Lp(Z), p ∈ (1,∞), as will be shown in Lemma 9 in Section 5.

Lemma 3 (The four ball lemma). Let x, u, v ∈ RN with |u| = |v| = r > 0. Assume that
Br(x+ u) ∩Br(−x− v) = ∅ and Br(x− u) ∩Br(−x+ v) = ∅. Then |u− v| ≤ 2|x|.

Proof. Define the vector z = x+ u+v
2 and observe that:

u− v
2

= (x+ u)− z = (−x− v) + z ∈ B̄|z|(x+ u) ∩ B̄|z|(−x− v),

so that the first disjointness assumption yields:

r2 ≤ |z|2 =
∣∣∣x+

u+ v

2

∣∣∣2.
Exchange now x with −x and u with v, and apply the second disjointness assumption to obtain:

r2 ≤
∣∣∣x− u+ v

2

∣∣∣2.
Finally, summing the two above inequalities and using (twice) the parallelogram identity, we get:

2r2 ≤
∣∣∣x+

u+ v

2

∣∣∣2 +
∣∣∣x− u+ v

2

∣∣∣2 = 2|x|2 + 2
∣∣∣u+ v

2

∣∣∣2 = 2|x|2 +
1

2
|u+ v|2

= 2|x|2 +
1

2

(
2|u|2 + 2|v|2 − |u− v|2

)
,

(2.1)

which results in |u− v|2 ≤ 4|x|2 in view of |u| = |v| = r. The claim is proved.

As an immediate consequence, we derive the following:

Lemma 4. Assume that a domain Ω ⊂ RN satisfies (Sr). For each x0 ∈ ∂Ω, define ~p(x0) = b−a
|b−a| .

Then:

|~p(x0)− ~p(y0)| ≤ 1

r
|x0 − y0| for all x0, y0 ∈ ∂Ω.
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Figure 2.1. The four balls in Lemma 3: the “vertical” couples are tangential, the “dia-

gonal” couples are disjoint.

Proof. We first observe that the function ~p : ∂Ω → RN is indeed well defined, in view of (Sr).
Applying, if needed, a rigid transformation that maps a given x0, y0 ∈ ∂Ω to some symmetric points
x and −x, we now use Lemma 3 to u = r~p(x0), v = r~p(y0) and conclude that |r~p(x0)− r~p(y0)| ≤
|x0 − y0|. This proves the claim (see Figure 2.2).

Ω

rn(x )

x y
0 0

0
rn(y )0

Figure 2.2. The supporting balls at two boundary points x0 and y0. The “external”

supporting balls are shaded.

3. A proof of Theorem 1 and Corollary 2: (Sr) implies (Lr) and (C1,1)

It is geometrically clear that, given (Sr), the normal vector ~n(x0) must coincide with the,
previously introduced, normalized shift between the two supporting balls at x0 ∈ ∂Ω:

~p(x0) =
b− a
|b− a|

,

and thus the statement in Lemma 4 is essentially that of (Sr) implies (Lr) in Theorem 1. Below,
we verify this statement formally, together with the parallel implication in Corollary 2.

Lemma 5. Assume that a domain Ω ⊂ RN satisfies (Sr). Then ~p = ~n on ∂Ω and (C1,1) holds.

Proof. By applying some rigid transformation T , we may without loss of generality assume that
x0 = 0 and ~p(0) = eN . We now claim that choosing h � δ > 0 sufficiently small, for each
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x′ ∈ Bδ(0) ⊂ RN−1 there exists a unique φ(x′) ∈ R, satisfying:

(x′, φ(x′)) ∈ ∂Ω ∩ C, where C = Bδ(0)× (−h, h).

Indeed, consider the two supporting balls Br(−reN ) and Br(reN ) at 0; when δ < r
2 then the line

x′ + ReN intersects both of them, so for a small fixed h and sufficiently small δ, there is at least
one φ(x′) with the indicated property. To prove uniqueness, take δ̄ < r

2 small enough for Lemma
4 to guarantee that the angle between ~p(y0) and eN is less than π

4 for all y0 ∈ ∂Ω ∩Bδ̄(0). Then,
if y0, ȳ0 ∈ ∂Ω ∩ Bδ̄(0) satisfy ȳ0 − y0 = teN for some t ∈ (0, r), it follows that ȳ0 belongs to the
external supporting ball at y0, contradicting the fact that ȳ0 ∈ ∂Ω. It now suffices to ensure that
C ⊂ Bδ̄(0) by taking h, δ � 1.

We have thus defined the function φ whose graph locally coincides with ∂Ω. By similar argu-
ments as above, (Sr) implies that φ must be continuous, differentiable and also:

~n(x′, φ(x′)) =
(−∇φ(x′), 1)√
|∇φ(x′)|2 + 1

= ~p(x′, φ(x′)) for all x′ ∈ ∂Bδ(0).

The above formula and Lemma 4 give that, for every j = 1, . . . , N − 1, the function:

∂jφ(x′) =
〈~p(x′, φ(x′)), ej〉
〈~p(x′, φ(x′)), eN 〉

is continuous on Bδ(0) as the quotient of two continuous functions, whose denominator is bounded
away from 0. It now follows that functions involved in the above quotient are actually Lipschitz,
so ∇φ must be Lipschitz as well. This ends the proof of φ ∈ C1,1 and the proof of the Lemma.

4. A proof of Theorem 1 and Corollary 2: both (Lr) and (C1,1) imply (Sr)

We now complete the proofs of our main results.

Lemma 6. Let Ω ⊂ RN be a domain. At a given x0 = 0 ∈ ∂Ω, let φ represent the local coordinates
of ∂Ω as in (C1), and with T = id, so that φ(0) = 0 and ∇φ(0) = 0. Then:

(4.1) |φ(x′)| ≤
maxB̄|x′|(0) |∇φ|2 + 1

2r
|x′|2 for all x′ ∈ Bρ(0)

is valid, in the following two cases:

(i) condition (Lr) holds,

(ii) condition (C1,1) holds and 1
r bounds the Lipschitz constant of ∇φ from above.

Consequently, in both cases, x0 has the supporting balls Bδ0(0, δ0), Bδ0(0,−δ0) with the radius:

δ0 = min
{ r

maxB̄ρ(0) |∇φ|2 + 1
, ρ,

h

2

}
.

Proof. Since ~n(x0) = eN , condition (Lr) implies:

|~n(x′, φ(x′))− eN |2 ≤
1

r2

(
|x′|2 + |φ(x′)|2

)
.

Consequently, in case (i), for all x′ ∈ Bρ(0) there holds:

(4.2) |∇φ(x′)|2 ≤ |∇φ(x′)|2 + 1

r2

(
|x′|2 + |φ(x′)|2

)
≤

(
maxB̄|x′|(0) |∇φ|2 + 1

)2
r2

|x′|2,

where we have used the fact that φ(0) = 0 and ∇φ(0) = 0 to get:

(4.3) |φ(x′)| =
∣∣∣ ˆ 1

0
〈∇φ(tx′), x′〉 dt

∣∣∣ ≤ |x′|ˆ 1

0
|∇φ(tx′)| dt.
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Clearly, in case (ii) we have: |∇φ(x′)| ≤ 1
r |x
′|, so (4.2) holds then as well. Applying now (4.2) in

the right hand side of (4.3), we derive (4.1).
To prove the final statement, we first note from (4.1) that the graph of φ is contained between

two parabolas x′ 7→ ± 1
2δ |x

′|2, where δ = r
maxB̄ρ(0) |∇φ|2+1

. It hence easily follows that:

(4.4) |(x′, φ(x′))− (0,±δ)|2 ≥ 2δ|φ(x′)|+ |φ(x′)∓ δ|2 ≥ 2δ|φ(x′)|+
(
δ2 − 2δ|φ(x′)|

)
= δ2.

Decreasing the radius, if necessary, to the indicated value δ0 ≤ δ, we obtain that the balls Bδ0(0, δ0)
and Bδ0(0,−δ0) are supporting at x0.

We readily deduce:

Lemma 7. Let Ω ⊂ RN be a bounded domain, satisfying (C1,1). Then (Sr) holds with some r > 0.

Proof. For each x0 ∈ ∂Ω, denote by C(x0) = Bρ(0) × (−h, h) ⊂ RN the cylinder with radius

ρ = ρ(x0) and height h = h(x0), to which the definition (C1) applies. We first observe that fixing
a sufficiently small η = η(x0), every point y0 ∈ ∂Ω ∩ Bη(x0) has the property that the halved

cylinder C1/2(x0) = B ρ
2
(0)× (−h

2 ,
h
2 ) can also be taken as its corresponding C. In particular, since

(Ty0)−1
(
C1/2(x0)

)
⊂ (Tx0)−1

(
C(x0)

)
and the graph of φy0 is a rigid motion of a part of the graph

of φx0 , it follows that the radius δ0 of the supporting balls guaranteed in Lemma 6, is the same
for every y0 ∈ ∂Ω ∩ Bη(x0). By compactness, ∂Ω may be covered by finitely many balls in the
family {Bη(x0)}x0∈∂Ω. Taking the smallest of such constructed radii {δ = δ0(x0)} proves (Sr).

The following final argument completes the proof of Theorem 1:

Lemma 8. Assume that a domain Ω ⊂ RN satisfies (Lr). Then (Sr) holds.

Proof. For a boundary point x0 ∈ ∂Ω, let φ be as described in condition (C1), where without
loss of generality we take T = id, so that Lemma 6 may be used. We argue by contradiction. If
Br(reN ) was not supporting, then Br(reN ) ∩ Ω 6= ∅ and further:

r̄
.
= inf

{
δ ≥ δ0; B̄δ(0, δ) ∩ ∂Ω 6= {0}

}
< r.

Take a sequence of radii: δn ↘ r̄ as n→∞, and a sequence of points: yn ∈ B̄δn(δneN )∩
(
∂Ω\{0}

)
.

Without loss of generality, yn → y0 ∈ B̄r̄(r̄eN ) ∩ ∂Ω. By the minimality of r̄, there must be:

y0 ∈ ∂Br̄(r̄eN ) ∩ ∂Ω.

Since the inward normal −~n(y0) coincides with the normal to ∂Br̄(r̄eN ) at y0 and since the same
is valid at x0 = 0, we get the following equality, which in virtue of (Sr) implies:∣∣∣1

r̄
y0 −

1

r̄
x0

∣∣∣ =
∣∣~n(x0)− ~n(y0)

∣∣ ≤ 1

r
|x0 − y0|.

This results in the contradictory statement r̄ ≥ r, provided that we show y0 6= x0. To this end, it
suffices to argue that {yn} must be bounded away from 0. Let σ > 0 satisfy:(

sup
B̄σ(0)

|∇φ|2 + 1
)
σ2 ≤ 2rr̄ ≤ 2rδn for all n.

Using (4.1) we refine the bound in (4.4) for x′ ∈ Bσ(0), to:

|(x′, φ(x′))− δneN |2 = |x′|2 + |δn − φ(x′)|2 ≥ |x′|2 +
∣∣∣δn − supB̄σ(0) |∇φ|2 + 1

2r
|x′|2

∣∣∣2
≥ |x′|2 + δ2

n −
δn
r

(
sup
B̄σ(0)

|∇φ|2 + 1
)
|x′|2.
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Note that for all large n, the ratio δn
r is smaller than and bounded away from 1. It follows that

for sufficiently small σ > 0 there also holds: δn
r

(
supB̄σ(0) |∇φ|2 + 1

)
< 1 for all n. Consequently:

|(x′, φ(x′))− δneN |2 ≥ δ2
n for all x′ ∈ Bσ(0) and all n,

where equality only takes place at x′ = 0. This implies that |y′n| ≥ σ and hence |y0| ≥ σ as well,
as claimed. We conclude that the ball Br(reN ) is external supporting. The proof that Br(−reN )
is an internal supporting ball follows in the same manner.

5. An extension of the four ball lemma to the Lebesgue spaces

We now discuss an extension of our results to infinitely dimensional Banach spaces Lp = Lp(Z),
where Z is an arbitrary measure space. We denote by ‖u‖ the Lp norm of a given u ∈ Lp. Observe
that the “four ball lemma” (Lemma 3) remains valid in any inner product space, i.e. in a space
where one can use the parallelogram identity. Thus, it is valid in L2, whereas for p 6= 2 we still
get the following:

Lemma 9 (The four ball lemma in Lp). Let x, u, v ∈ Lp with ‖u‖ = ‖v‖ = r > 0. Assume
that Br(x+ u) ∩Br(−x− v) = ∅ and Br(x− u) ∩Br(−x+ v) = ∅. Then:

‖u− v‖p ≤ 2p−1p(p− 1)rp−2‖x‖2 for p ∈ [2,∞)

‖u− v‖2 ≤ 8

p(p− 1)
r2−p‖x‖p for p ∈ (1, 2].

(5.1)

Proof. By the same reasoning as in the first part of the proof of Lemma 3, we obtain:

r ≤
∥∥∥x+

u+ v

2

∥∥∥ and r ≤
∥∥∥x− u− v

2

∥∥∥.
We will now replace the parallelogram identity argument in Lemma 3, with a somewhat more
involved estimate, derived separately in the two cases indicated in (5.1).

When p ≥ 2, we use first the 2-uniform smoothness inequality [1, Proposition 3], followed by
the first Clarkson’s inequality [3, page 95] and recall that ‖u‖ = ‖v‖ = r, to get:

2r2 ≤
∥∥∥x+

u+ v

2

∥∥∥2
+
∥∥∥x− u+ v

2

∥∥∥2
≤ 2(p− 1)‖x‖2 + 2

∥∥∥u+ v

2

∥∥∥2

≤ 2(p− 1)‖x‖2 + 2
(1

2
‖u‖p +

1

2
‖v‖p −

∥∥∥u+ v

2

∥∥∥p)2/p

= 2(p− 1)‖x‖2 + 2
(
rp −

∥∥∥u+ v

2

∥∥∥p)2/p
.

(5.2)

Further, concavity of the function a 7→ a2/p implies that (a− b)2/p ≤ a2/p − 2
pa

(2/p)−1b whenever

a, b, a− b ≥ 0. Applying this bound to a = rp and b = ‖u−v2 ‖
p in (5.2), yields:

2r2 ≤ 2(p− 1)‖x‖2 + 2
(
r2 − 2

p
r2−p

∥∥∥u− v
2

∥∥∥p),
which directly results in (5.1) in case p ∈ [2,∞).
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For p ≤ 2, we denote the conjugate exponent by q = p
p−1 and use the second Clarkson’s

inequality [3, page 97], followed by the 2-uniform smoothness inequality [1, Proposition 3] to get:

2rq ≤
∥∥∥x+

u+ v

2

∥∥∥q +
∥∥∥x− u+ v

2

∥∥∥q ≤ 2
(
‖x‖p +

∥∥∥u+ v

2

∥∥∥p)q/p = 2
(
‖x‖p +

(∥∥∥u+ v

2

∥∥∥2)p/2)q/p
≤ 2
(
‖x‖p +

(1

2
‖u‖2 +

1

2
‖v‖2 − (p− 1)

∥∥∥u− v
2

∥∥∥2)p/2)q/p
= 2
(
‖x‖p +

(
r2 − (p− 1)

∥∥∥u− v
2

∥∥∥2)p/2)q/p
.

As before, concavity of the function a 7→ ap/2 applied to a = r2 and b = (p− 1)‖u−v2 ‖
2, yields:

2rq ≤ 2
(
|x|p + rp − (p− 1)p

2
rp−2

∥∥∥u− v
2

∥∥∥2)q/p
.

Dividing both sides of the above inequality by 2rq we obtain:

1 ≤ |x|
p

rp
+ 1− (p− 1)p

2
r−2
∥∥∥u− v

2

∥∥∥2

which directly gives (5.1) in case p ∈ (1, 2].

Similarly to Lemma 4, there follows Hölder’s regularity of the unit normal to domains satisfying
the two-sided uniform supporting sphere condition:

Corollary 10. Let Ω ⊂ Lp be a domain satisfying (Sr). Then the outward unit normal vector,

defined for each x0 ∈ ∂Ω by ~p(x0) = b−a
‖b−a‖ , is Hölder continuous with exponent: min{2/p, p/2}.

Namely:

‖~p(x0)− ~p(y0)‖ ≤ Cp ·


1

r2−2/p
‖x0 − y0‖2/p for p ∈ [2,∞)

1

rp/2
‖x0 − y0‖p/2 for p ∈ (1, 2],

holds for all x0, y0 ∈ ∂Ω, with a constant Cp > 0 that depends only on p ∈ (1,∞).

6. Concluding remarks

Theorem 1 is consistent with the fact that if φ ∈ C2, φ(0) = 0, ∇φ(0) = 0, then the surface
patch given by the graph of φ has, at x0 = 0, an external supporting sphere of radius r, for any
r > 0 satisfying 1

r ≥ λmax where λmax is the maximal eigenvalue of the symmetric matrix ∇2φ(0).

More generally, the two-sided supporting sphere radius r at a point x0 of a C2 surface S is the
inverse of the largest (in absolute value) eigenvalue of the second fundamental form of S at x0.

Observe also that condition (Sr) is more restrictive than the merely assuming existence of the
two-sided supporting spheres at each boundary point, even for a bounded domain (see Figure 6.1).

For completeness, we mention that an entirely equivalent notion of C1,1 regularity of ∂Ω is:

(C1,1
Φ )


For every x0 ∈ ∂Ω there exist ρ, h > 0 and a C1,1 diffeomorphism Φ : C → U between
the cylinder C = Bρ(0) × (−h, h) ⊂ RN and an open neighbourhood U ⊂ RN of x0,
such that:

Φ
(
(x′, xN ) ∈ C; xN < 0

)
= U ∩ Ω,

Φ
(
(x′, xN ) ∈ C; xN = 0

)
= U ∩ ∂Ω,

We recall that Φ is a C1,1 diffeomorphism when it is invertible and when both Φ and Φ−1 have
regularity C1,1. Condition (C1,1

Φ ) is at the heart of the technique of “straightening the boundary”.
This technique is familiar to analysts and relies on reducing an argument (e.g. constructing an
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x0

y
0

Figure 6.1. A bounded domain Ω satisfying the nonuniform two-sided supporting

spheres condition. The maximal radii converge to 0 as y0 → x0.

extension operator, deriving estimates on a solution to some PDEs, etc) needed in a proximity of
a boundary point of a domain, to the simpler case of flat boundary to the half-space. The two
cases are then related via the diffeomorphism Φ with controlled derivatives (sometimes more than
just one derivative is needed!). On the other hand, it is often more straightforward to deal with

the geometric condition (Sr) rather than with requirements on φ in (C1,1) or Φ in (C1,1
Φ ).

To our best knowledge, result as in Theorem 1 has first appeared in an unpublished technical
report [7], referenced in [6]. The proof is based on a geometrical argument as in the proof of
Lemma 3. The equivalence of the two-sided supporting sphere condition and the C1,1 regularity
of the boundary, has been also shown in [4] and in [2] via more complex calculations. The one-
sided supporting sphere condition, called the “positive reach” was studied in [5], however it does
not suffice to lead to C1,1 regularity.
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