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Abstract. We prove convergence of critical points to the nonlinear elastic energies Jh of 3d
thin incompressible plates, to critical points of the 2d energy obtained as the Γ-limit of Jh in the
von Kármán scaling regime. The presence of incompressibility constraint requires to restrict the
class of admissible test functions to bounded divergence-free variations on the 3d deformations.
This poses new technical obstacles, which we resolve by means of introducing 3d extensions and
truncations of the 2d limiting deformations, specific to the problem at hand.

1. Introduction and the main result

The derivation of asymptotic theories for thin elastic films has been a longstanding problem in
the mathematical theory of elasticity [3]. Recently, various lower dimensional theories have been
rigorously derived from the nonlinear three-dimensional model, through Γ-convergence methods.
Consequently, what seemed to be competing and contradictory theories for elastica (rods, plates,
shells, etc) are now revealed to be each valid in their own specific range of parameters such as
material elastic constants, boundary conditions and force magnitudes. In this line, Friesecke,
James and Müller gave a detailed description of the so called hierarchy of plate theories in [8],
corresponding to distinct energy scaling laws in terms of the plate thickness. Similar results have
been obtained for elastic shells [6, 12, 13, 14], elastic incompressible plates [4, 5, 17] and in presence
of residual stress [15, 10, 11].

The variational approach, described in detail in the below subsections, provides, among its
other features, a rigorous justification of convergence of three-dimensional energy minimizing
deformations, to minimizers of suitable lower dimensional limit energies. As shown in [20] (see
also the first result [18] where the converge of equilibria is considered, although in the setting of
beams, not plates), one can also expect convergence of stationary points, in the same regimes.
The results in [20] relied on the crucial assumption that the elastic energy density is differentiable
everywhere and its derivative satisfies a linear growth condition. This assumption is contradictory
with the physically expected non-interpenetration condition, and subsequently it has been removed
in [19] and exchanged with Ball’s related notion of the outer variations.

In the present paper, we prove convergence of critical points of the nonlinear elastic energies
of thin incompressible plates, to critical points of the limiting energy in the von Kármán scaling
regime, derived in [17]. We follow the same approach as in [19]; indeed the concept of outer
variations comes up naturally in the context of incompressible elasticity. The presence of incom-
pressibility constraint requires to modify the class of admissible test functions in the stationarity
conditions, and subsequently one is allowed to work only with bounded divergence-free variations
on the three-dimensional deformations. On the other hand, the limiting two-dimensional displace-
ments may be arbitrary, while the incompressibility constraint is seen in the limiting equations
only by tracelessness of the limiting stress. This poses new technical obstacles, which we resolve
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by means of introducing 3d extensions and truncations of the 2d limiting deformations, specific
to the problem at hand.

We now turn to describing the framework of the problem and our results in detail.

1.1. Elastic energy of thin incompressible plates. Let Ω ⊂ R2 be an open, bounded, simply
connected domain. For h > 0, define Ωh to be the 3d plate with the midplate Ω and thickness h:

Ωh =

{
x = (x′, x3); x′ ∈ Ω, x3 ∈

(
−h

2
,
h

2

)}
.

The elastic energy of a deformation uh ∈ W 1.2(Ωh,R3) of the homogeneous plate Ωh, scaled by
its unit thickness, is given by:

(1.1) Ih(uh) =
1

h

ˆ
Ωh
Win(∇uh) dx,

while the total energy, relative to the external force with the density fh ∈ L2(Ωh,R3), is:

(1.2) Jh(uh) =
1

h

ˆ
Ωh
Win(∇uh) dx− 1

h

ˆ
Ωh
fh · uh dx.

The elastic energy density Win : R3×3 → [0,∞] in (1.1) is assumed to be infinite at compressible
deformations:

Win(F ) =

{
W (F ) if detF = 1,
+∞ otherwise.

The effective density W : R3×3 → [0,∞) above, which acts when detF = 1, is required to satisfy
the following conditions:

(i) (frame invariance) W (RF ) = W (F ), for each proper rotation R ∈ SO(3), and each
F ∈ R3×3.

(ii) (normalisation) W (F ) = 0 for all F ∈ SO(3).
(iii) (non-interpenetration) W (F ) = +∞ if detF ≤ 0, and W (F )→ +∞ as detF → 0+.
(iv) (bound from below) W (F ) ≥ c dist2(F, SO(3)) with a constant c > 0 independent of F .
(v) (bound from above) There exists a constant C > 0 such that for each F with detF > 0,

i.e. for each F ∈ R3×3
+ there holds:

(1.3) |DW (F )F T | ≤ C(W (F ) + 1).

(vi) (regularity) W is of class C1 on R3×3
+ .

(vii) (local regularity) W is of class C2 in a small neighborhood of SO(3).

The growth conditions in (iv) and (v) will be crucial in the present analysis. Condition (iv) has
been introduced in the context of [8] and it allows to use the nonlinear version of Korn’s inequality
[7], ultimately serving to control the local deviations of the deformation uh from rigid motions,
by the elastic energy Ih(uh). Condition (v) has been introduced in [1] (see also [2]) in the context
of outer variations, in order to control the related strain in terms of the energy. Both conditions
are compatible with other requirements above. Indeed, examples of W satisfying (i) – (vii) are:

W1(F ) = |(F TF )1/2 − Id|2 + | log detF |q,

W2(F ) = |(F TF )1/2 − Id|2 +

∣∣∣∣ 1

detF
− 1

∣∣∣∣q for detF > 0,

where q > 1 and W equals +∞ if detF ≤ 0 [19].
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1.2. Notation. Given a matrix F ∈ Rn×n, we denote its trace by Tr F and its transpose by F T .
The symmetric part of F is given by sym F = 1

2(F +F T ). The cofactor of F is the matrix: cof F ,

where [cof F ]ij = (−1)i+j det F̂ij and each F̂ij ∈ R(n−1)×(n−1) is obtained from F by deleting its
ith row and jth column. The identity matrix is denoted by Idn.

In what follows, we shall use the matrix norm |F | = (Tr(F TF ))1/2, which is induced by the
inner product: F1 : F2 = Tr(F T1 F2). To avoid notational confusion, we will often write 〈F1 : F2〉
instead of F1 : F2. In general, 3 × 3 matrices will be denoted by F and 2 × 2 matrices will be
denoted by F ′′. Unless noted otherwise, F ′′ is the principal 2× 2 minor of F .

Finally, by Ckb (Rn,Rs) we denote the space of continuous functions whose derivatives up to the
order k are continuous and bounded in Rn.

1.3. The limiting energy. The following 2d energy functional has been rigorously derived in
[17] as the Γ-limit of the scaled incompressible energies h−4Ih in (1.1), when h→ 0:

(1.4) I(w, v) =
1

2

ˆ
Ω
Qin2

(
sym∇u+

1

2
∇v ⊗∇v

)
dx+

1

24

ˆ
Ω
Qin2

(
∇2v

)
dx,

acting on couples w ∈ W 1,2(Ω,R2), v ∈ W 2,2(Ω,R). The fields (w, v) may be identified as the
in-plane and the out-of-plane displacements, respectively. Roughly speaking, any minimizing
sequence of h−4Jh, where fh(x) ≈ h3f(x′)e3 and

´
Ω f = 0, will have the structure:

uh|Ω ≈ (R̄)T
(
id + hve3 + h2w

)
− ch

asymptotically as h → 0, with (w, v) as above and R̄ ∈ SO(3) maximizing
´

Ω f(x′)e3 · Rx′ dx′

among all rotations R, while ch ∈ R3 are constant translation vectors. Moreover, (w, v, R̄) mini-
mize the following total limiting energy:

J (w, v, R̄) = I(w, v)− R̄33

ˆ
Ω
fv.

A precise formulation of the statements above can be found in [12].
The energy in (1.4) is the incompressible version of the von Kármán functional, which has

been derived (for compressible case, i.e. without the assumption that det∇uh = 1) by means of
Γ-convergence in [8]. The quadratic forms Qin2 differ from the standard Q2 in [8] in as much as
minimization in (1.5) below is taken over the out-of-plane stretches which preserve the incom-
pressibility constraint. Namely, Qin2 in (1.4) are given as:

∀F ′′ ∈ R2×2 Qin2 (F ′′) = min
d∈R3

{
Q3(F ′′ + d⊗ e3 + e3 ⊗ d); Tr(F ′′ + d⊗ e3 + e3 ⊗ d) = 0

}
,

∀F ∈ R3×3 Q3(F ) = D2W (Id)(F, F ).
(1.5)

Both forms Q above are positive semidefinite, and strictly positive definite on symmetric matrices.
We also introduce the linear operators Lin2 : R2×2 → R2×2 and L3 : R3×3 → R3×3 such that:

∀F ′′ ∈ R2×2 〈Lin2 (F ′′) : F ′′〉 = Qin2 (F ′′),

∀F ∈ R3×3 〈L3(F ) : F 〉 = Q3(F ).
(1.6)

Note that symmetric operators L are uniquely given by: 〈L(F1) : F2〉 = 1
4 (Q(F1 + F2)−Q(F1 − F2)).
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1.4. Critical points and the incompressible outer variations. Following [2], we now define
the critical points uh of the functionals Jh in (1.2) with respect to outer variations, that is
requesting that the derivative of Jh at an incompressible equilibrium uh be zero:

d

dε |ε=0
Jh(uhε ) = 0,

along all curves ε 7→ uhε of incompressible deformations of Ωh having the form: uhε (x) = Φ(ε, uh(x)),
with uh0 = uh at ε = 0. This requirement is translated into the following condition:
(1.7)ˆ

Ωh

〈
DW (∇uh)(∇uh)T : ∇φ(uh(x))

〉
dx =

ˆ
Ωh
fh · φ(uh) dx, ∀φ ∈ C1

b (R3,R3) with div φ = 0.

We refer to section 2 for the derivation and discussion of (1.7). Let us only note now that the
incompressible outer variations:

uhε (x) = Φ(ε, uh(x)) = uh(x) + εφ(uh(x)) +O(ε2).

replace the classical variations uhε (x) = uh(x) + εwh(x) used in definition of minimizers of Jh, and
also they replace the outer variations uhε (x) = uh(x) + εφ(uh(x)) considered in [2] and [19] in the
compressible case.

1.5. The main result. The following is our main result:

Theorem 1.1. For each h << 1, let uh ∈ W 1,2(Ωh,R3) be a critical point of Jh, i.e. it satisfies
(1.7) subject to the external forces fh(x) = h3f(x′)e3. Assume that:

(1.8) Ih(uh) ≤ Ch4,

for a constant C > 0 independent of h. Then there exists a sequence of proper rotations R̄h ∈
SO(3), and translations ch ∈ R3, such that for the renormalized deformations:

(1.9) yh(x′, x3) = (R̄h)Tuh(x′, hx3)− ch ∈W 1,2(Ω1,R3),

the following convergences hold, up to a subsequence in h, as h→ 0:

(i) R̄h → R̄ = [R̄ij ]i,j:1..3 ∈ SO(3).

(ii) yh → x′ in W 1,2(Ω1).
(iii) For the scaled out-of-plane displacements:

(1.10) vh(x′) =
1

h

ˆ 1/2

−1/2
yh3 (x′, x3) dx3,

there exists v ∈W 2,2(Ω,R) such that vh → v strongly in W 1,2(Ω).
(iv) For the scaled in-plane displacements:

(1.11) wh(x′) =
1

h2

ˆ 1/2

−1/2

(
(yh)′(x′, x3)− x′

)
dx3

there exists w ∈W 1,2(Ω,R2) such that wh ⇀ w weakly in W 1,2(Ω,R2).
(v) The limiting displacements (w, v) solve the following Euler-Lagrange equations of the func-

tional (1.4), expressed in the variational form:

(1.12)

ˆ
Ω

〈
Lin2

(
sym∇w +

1

2
∇v ⊗∇v

)
: ∇w̃

〉
dx′ = 0
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Ω

〈
Lin2

(
sym∇w +

1

2
∇v ⊗∇v

)
: (∇v ⊗∇ṽ)

〉
dx′

+
1

12

ˆ
Ω

〈
Lin2 (∇2v) : ∇2ṽ

〉
dx′ = R̄33

ˆ
Ω
fṽ dx′,

(1.13)

for every w̃ ∈W 1,2(Ω,R2) and every ṽ ∈W 2,2(Ω,R).

We note that (1.8) are automatically satisfied by any minimizing sequence of uh of the total
energy Jh, under the assumption that fh(x) = h3f(x′)e3 [8]. Also, (1.7) holds for every minimum
of Jh (see Theorem 2.3), and the assertions (i) - (v) are then a direct consequence [17] of the fact
that 1

h4
Jh Γ-converges to J . In general, Γ-convergence does not assure that a limit of a sequence

of equlibria is an equilibrium of the Γ-limit. In the present situation, this turns out to be the case.

1.6. The isotropic case. For an isotropic energy density W with the Lamé constants λ and µ,
the Euler-Lagrange equations (1.12) – (1.13) of (1.4) are:

(1.14)
µ

3
∆2v = [v,Φ], ∆2Φ = −3µ

2
[v, v],

where v is the out-of-plane displacement, while the in-plane displacement w can be recovered
through the Airy stress potential Φ, by means of:

cof∇2Φ = 2µ
[
sym∇w +

1

2
∇v ⊗∇v +

(
divw +

1

2
|∇v|2

)
Id
]
.

The Airy’s bracket [·, ·] is defined as: [v,Φ] = ∇2v : (cof∇2Φ). As expected, the system (1.14) can
be now obtained as the incompressible limit, i.e. when passing with the Poisson ratio ν → 1

2 , of
the classical (compressible) von Kármán system:

B∆2v = [v,Φ], ∆2Φ = −S
2

[v, v],

where S = 2µ(1 + ν) is Young’s modulus, ν = λ
2(µ+λ) is the Poisson ratio, and B = S

12(1−ν2)
is

bending stiffness. By the change of variable Φ = 2µΦ1 one can eliminate the parameter µ entirely
and write (1.14) in its equivalent form:

∆2v = 6[v,Φ1], ∆2Φ1 = −3

4
[v, v].

1.7. Relation to other works and the layout of the paper. To put our work in a larger
perspective, recall that one of the fundamental questions in the mathematical theory of elasticity
has been to rigorously justify various 2d plate models present in the engineering literature, in
relation to the three-dimensional theory. This goal has been largely accomplished in [8], where a
hierarchy of limiting 2d energies has been derived; the distinct theories are differentiated by their
validity in the corresponding scaling regimes hβ, β ≥ 2, i.e. in presence of assumption (1.8) where
h4 is replaced by hβ.

Under the additional incompressibility constraint, the works [4, 5] proved compactness proper-
ties and the Γ-convergence of the functionals 1

hβ
Ih as in (1.1), for the so-called Kirchhoff scaling

β = 2, while [17] treated the case β = 4 including as well a more complex case of shells when
the midsurface Ω is a generic 2d hypersurface in R3. In view of the fundamental property of
Γ-convergence, it follows that the global almost-minimizers of the energies (1.2) converge to the
minimizers of the limiting energy (given by (1.4) in the von Kármán regime).

Regarding convergence of stationary points for thin plates, the first result has been obtained
in [20] under the von Kármán scaling β = 4 (see also [9] for an extension to thin shells). The
first result on converge of equilibria for beams has been obtained in [18]. These results relied on
the crucial assumption that the elastic energy density W is differentiable everywhere and that:
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|DW (F )| ≤ C(|F |+1). This linear growth condition is, however, contradictory with the physically
expected non-interpenetration condition. In [19], it has been exchanged with Ball’s condition
(1.3), while the equilibrium equations have been rephrased in terms of the outer variations. In
the present paper we follow the same approach; indeed the concept of outer variations comes up
naturally in the context of incompressible elasticity.

Our analysis is inspired by [20] and [19], with necessary improvements to overcome the difficul-
ties imposed by the incompressibility constraint, which in particular requires to modify the class
of admissible test functions in the stationarity conditions. These conditions are derived in section
2, along with introducing the incompressible outer variations and the corresponding weak form of
the Euler-Lagrange equations, relying on the flow (2.2) with divergence-free velocity field.

In section 3 we obtain the equilibrium equations (1.7), and in section 4 we identify the operators
Lin2 in (1.12) and (1.13). In section 5, we show that in the present incompressible case, the limiting
strain is traceless (Lemma 5.1); we also construct a sequence of appropriate truncation functions
(Lemma 5.2) which are further used (Lemma 5.3) to show that the limiting stress satisfies the
required condition of section 4. One major difficulty in the proof of Lemma 5.3 and the subsequent
results is that one is allowed to work only with bounded divergence-free variations on the three-
dimensional deformations, while the limiting two-dimensional displacements may be arbitrary.
This poses new technical obstacles, which we resolve by introducing 3d extensions and truncations
of the 2d limiting deformations, specific to the problems at hand. In section 6 and 7, we then
prove the first and second Euler-Lagrange equations (1.12) and (1.13), which concludes the proof
of our main result Theorem 1.1.

Acknowledgments. M.L. was partially supported by the NSF Career grant DMS-0846996 and
by the Polish MN grant N N201 547438.

2. Incompressible outer variations and critical points

Following [2], we want to define the critical points uh of the functionals Jh in (1.2) by taking
outer variations. That is, we request that the derivative of Jh at an incompressible equilibrium
uh be zero along all curves ε 7→ uhε of incompressible deformations of Ωh having the form: uhε (x) =
Φ(ε, uh(x)), with uh0 = uh at ε = 0. This requirement imposes the following conditions on the flow
Φ : [0, ε0)× R3 → R3:

∀ε Φ(ε, ·) is incompressible, i.e ∀y ∈ R3 det∇Φ(ε, y) = 1,

∀y ∈ R3 Φ(0, y) = y.
(2.1)

Assuming sufficient smoothness of Φ, the above immediately implies:

0 =
d

dε
det∇Φ(0, y) =

〈
cof∇Φ(0, y) :

d

dε
∇Φ(0, y)

〉
=

〈
Id :

d

dε
∇Φ(0, y)

〉
= Tr

(
d

dε
∇Φ(0, y)

)
= div

(
d

dε
Φ(0, y)

)
=: div φ(y).

On the other hand, any divergence-free vector field φ generates a path of incompressible deforma-
tions. We recall this standard fact below, for the sake of completeness.

Lemma 2.1. Let φ ∈ C1
b (Rn,Rn) such that div φ = 0. Consider the ODE:

(2.2)

{
u′(ε) = φ(u(ε)),
u(0) = y.

and denote its flow by Φ(ε, y) = u(ε) solving (2.2). Then Φ satisfies (2.1).
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Proof. Let ε, δ > 0 and note that: Φ(ε+ δ, y) = Φ(δ,Φ(ε, y)) = Φ(δ, y1) where we put y1 = Φ(ε, y).
Hence, denoting the spacial gradient by ∇, we obtain:

det∇Φ(ε+ δ, y) = det∇Φ(δ, y1) det∇Φ(ε, y),

Consequently:

d

dε
(det∇Φ(ε+ δ, y)) =

d

dδ
(det∇Φ(ε+ δ, y)) =

d

dδ
(det∇Φ(δ, y1)) (det∇Φ(ε, y))

=

〈
cof ∇Φ(δ, y1) :

d

dδ
∇Φ(δ, y1)

〉
det∇Φ(ε, y).

(2.3)

Above, we used the formula for the derivative of the determinant of a matrix function A(t),
namely: (detA(t))′ = cofA(t) : A(t)′. For δ = 0, (2.3) implies:

d

dε
(det∇Φ(ε, y)) = 〈cof∇Φ(0, y1) : ∇φ(y1)〉 = 〈Id : ∇φ(y1)〉 = Tr∇φ = div φ = 0.

But det∇Φ(0, y) = det Idn = 1, which achieves the claim.

We are now ready to derive the equilibrium equations (1.7). The result is essentially similar
to Theorem 2.4 [2], which dealt with the compressible outer variations uhε = uh(x) + εφ ◦ uh of a
deformation uh with clamped boundary conditions. The growth condition (1.3) will be crucial in
passing to the limit in the nonlinear term in Jh, to which end we are going to use the following
Lemma from [2]:

Lemma 2.2. (Lemma 2.5 (i) [2]) Assume that W satisfies (1.3). Then there exists γ > 0 such
that if A ∈ R3×3

+ and |A− Id| < γ, then:

|DW (AF )F T | ≤ 3C(W (F ) + 1) ∀F ∈ R3×3
+ ,

where C is the constant in condition (1.3).

Theorem 2.3. Let φ ∈ C1
b (R3,R3) be such that div φ = 0. Given a deformation uh ∈W 1,2(Ωh,R3)

with det∇uh = 1, and such that
´

ΩhW (∇uh) dx < +∞, define uhε (x) = Φ(ε, uh(x)). Then:

d

dε |ε=0
Jh(uhε ) = 0

is equivalent to: ˆ
Ωh

〈
DW (∇uh)(∇uh)T : ∇φ(uh(x))

〉
dx =

ˆ
Ωh
fh · φ(uh) dx.

Proof. For the notational convenience, in what follows we drop the index h and write U instead
of Ωh, which stands now for a fixed open bounded domain in R3. It is easy to notice that:

(2.4) lim
ε→0

1

ε
(Φ(ε, y)− y) = φ(y) uniformly in R3.

It directly implies that:

lim
ε→0

1

ε

ˆ
U
f · (Φ(ε, u(x))− u(x)) dx =

ˆ
U
f · φ(u(x)) dx.

To treat the nonlinear term, consider:

1

ε

ˆ
U

(
W (∇uε)−W (∇u)

)
dx−

ˆ
U

〈
DW (∇u)(∇u)T : ∇φ(u)

〉
dx

=

ˆ
U

 ε

0

〈
DW

(
∇Φ(s, u)∇u

)
(∇u)T : ∇φ(Φ(s, u))

〉
−
〈
DW (∇u)(∇u)T : ∇φ(u)

〉
ds dx.

(2.5)
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Since the integrand below converges to 0 pointwise by (2.4), and it is bounded by the function
2‖∇φ‖L∞ |DW (∇u)(∇u)T | which is integrable in view of (1.3), we obtain:

lim
ε→0

ˆ
U

〈
DW (∇u)(∇u)T :

 ε

0
∇φ(Φ(s, u))−∇φ(u) ds

〉
dx = 0,

by the dominated convergence theorem. Similarly:

lim
ε→0

ˆ
U

 ε

0

〈(
DW (∇Φ(s, u)∇u)−DW (∇u)

)
(∇u)T : ∇φ(Φ(s, u))

〉
ds dx = 0,

where the pointwise convergence follows by the formula (2.4), its counterpart for ∇Φ, and the
continuity of DW on R3×3

+ . The integrands, for small ε, are dominated by the L1(U) function
4C‖∇φ‖L∞(W (∇u) + 1) in view of Lemma 2.2 and the growth condition (1.3).

Therefore, the left hand side in (2.5) converges to 0 as well. This completes the proof.

3. The equilibrium equation (1.7)

In this section, we review several facts from [8] and [19], to set the stage for a proof of Theorem
1.1 and to rewrite the equation (1.7) using the change of variables (1.9).

The first crucial step in the dimension reduction argument of [8] is finding the appropriate
approximations of the deformations gradients uh. Under the sole assumption:

(3.1)
1

h

ˆ
Ωh
W (∇uh) dx ≤ Ch4,

an application of a nonlinear verion of Korn’s inequality [7], yields existence of rotation fields
Rh ∈W 1,2(Ω,R3×3) with Rh(x) ∈ SO(3) a.e. in Ω, so that:

(3.2) ‖∇uh(x′, hx3)−Rh‖L2(Ω1) ≤ Ch2 and ‖∇Rh‖L2(Ω) ≤ Ch.

Recall that Ω1 = Ω × (−1
2 ,

1
2) is the common domain of the rescaled deformations yh(x′, x3) =

(R̄h)Tuh(x′, hx3)− ch, and the typical point in Ω1 is denoted by x = (x′, x3). Then, the detailed
analysis in [8] shows that convergences in (i) – (iv) of Theorem 1.1 hold, as a consequence of (1.8)
implying (3.1). The constant rotations R̄h ∈ SO(3) are given by:

R̄h = PSO(3)

( 
Ωh
∇uh dx

)
,

where the orthogonal projection PSO(3) onto SO(3) above is well defined; see also [10] for detailed
calculations. Further, there holds:

(3.3) ‖Rh − R̄h‖L2(Ω) ≤ Ch and lim
h→0

(R̄h)TRh = Id in W 1,2(Ω,R3×3),

and upon defining the matrix fields Ah ∈W 1,2(Ω,R3×3):

(3.4) Ah(x′) =
1

h

(
(R̄h)TRh(x′)− Id

)
,

it also follows that:

(3.5) Ah ⇀ A =

 0 −∇v

∇v 0

 weakly in W 1,2(Ω,R3×3).

The same convergence holds strongly in Lq(Ω,R3×3) for each q ≥ 1.
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Lemma 3.1. We have:

(3.6) lim
h→0

yh = (x′, 0) and lim
h→0

yh3
h

= x3 + v(x′) in W 1,2(Ω1).

Consequently, for every ωh > 0 and p ∈ [1, 5]:

(3.7)

∣∣∣∣{x ∈ Ω1;
|yh3 (x)|
h

≥ ωh
}∣∣∣∣ ≤ C

ω2
h

and

ˆ{
x∈Ω1;

|yh3 (x)|
h
≥ωh

} ∣∣∣∣yh3 (x)

h

∣∣∣∣p dx ≤ C

ω
2
p+1

h

.

Proof. By (3.2), (3.3), and applying the Poincaré-Wirtinger inequality on segments {x′}×(−1
2 ,

1
2),

we see that:∥∥∥∥yh3h − x3 − vh(x′)

∥∥∥∥
L2(Ω1)

≤ C
∥∥∥∂3y

h
3

h
− 1
∥∥∥
L2(Ω1)

= C
∥∥∥[(R̄h)T∇uh(x′, hx3)]33 − 1

∥∥∥
L2(Ω1)

≤ C‖(R̄h)T∇uh(x′, hx3)− Id‖L2(Ω1)

≤ C‖∇uh(x′, hx3)−Rh‖L2(Ω1) + C‖Rh − R̄h‖L2(Ω1) ≤ Ch.

Together with (1.10), the above inequality implies the second assertion in (3.6). The first assertion
follows then directly in view of (1.11).

To prove (3.7), note that for every p ∈ [1, 5]:

ˆ{
x∈Ω1;

|yh3 (x)|
h
≥ωh

} ∣∣∣∣yh3 (x)

h

∣∣∣∣p dx ≤
∥∥∥∥yh3h

∥∥∥∥p
Lp+1

∣∣∣∣{x ∈ Ω1;
|yh3 (x)|
h

≥ ωh
}∣∣∣∣

1
p+1

≤ C
∣∣∣∣{x ∈ Ω1;

|yh3 (x)|
h

≥ ωh
}∣∣∣∣

1
p+1

,

(3.8)

by the Hölder inequality and the Sobolev embedding W 1,2(Ω1) ↪→ L6(Ω1) combined with (3.6).
When p = 1, it implies:∣∣∣∣{x ∈ Ω;

|yh3 (x)|
h

≥ ωh
}∣∣∣∣ ≤ 1

ωh

ˆ{
x∈Ω;

|yh3 (x)|
h
≥ωh

} |yh3 (x)|
h

dx ≤ C

ωh

∣∣∣∣{x ∈ Ω;
|yh3 (x)|
h

≥ ωh
}∣∣∣∣1/2

Hence, the first assertion in (3.7) follows, as well as the second one, in view of (3.8).

Define the strain Gh ∈ L2(Ω1,R3×3) and the scaled stress Eh ∈ L1(Ω1,R3×3) as:

Gh(x′, x3) =
1

h2

(
(Rh)T∇uh(x′, hx3)− Id

)
,

Eh(x′, x3) =
1

h2
DW (Id + h2Gh(x′, x3))(Id + h2Gh(x′, x3))T .

We now gather the fundamental properties of Eh and Gh from [19], that will be used in the sequel.

Lemma 3.2. (Section 4, [19])

(i) Up to a subsequence, Gh ⇀ G weakly in L2(Ω1,R3×3), where G is the limiting strain whose
principal 2× 2 minor G′′ satisfies:

G′′(x′, x3) = G0(x′)− x3G1(x′), with:

sym G0 = sym∇w +
1

2
∇v ⊗∇v, G1 = ∇2v.

(3.9)
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(ii) Each Eh(x) is symmetric, and there holds:

(3.10) |Eh| ≤ C
(

1

h2
W (Id + h2Gh) + |Gh|

)
.

(iii) Up to a subsequence, Eh ⇀ E weakly in L1(Ω1,R3×3), and E = L3(G) ∈ L2(Ω1,R3×3).
(iv) For a given, fixed γ ∈ (0, 2), define Bh = {x ∈ Ω1; h2−γ |Gh(x)| ≤ 1}. Then:

(3.11) |Ω1 \Bh| ≤ Ch2(2−γ) and

ˆ
Ω1\Bh

|Eh| dx ≤ Ch2−γ .

Moreover, calling χh the characteristic function of Bh, we have:

(3.12) χhE
h ⇀ E weakly in L2(Ω1,R3×3).

The below more convenient form of the equilibrium condition will be repeatedly used in the
proof of Theorem 1.1.

Lemma 3.3. Condition (1.7) is equivalent to:ˆ
Ω1

〈
(R̄h)TRhEh(x′, x3)(Rh)T R̄h : ∇φ(yh(x′, x3))

〉
dx3 dx′

= h

ˆ
Ω1

〈
f(x′)e3, R̄

hφ(yh(x′, x3))
〉

dx3 dx′,

(3.13)

for each φ ∈ C1
b (R3,R3) with divφ = 0.

Proof. For a given divergence free φ ∈ C1
b (R3,R3), define ψ(y) = R̄hφ

(
(R̄h)T y − ch

)
, which satis-

fies ψ ∈ C1
b and divψ = 0, and moreover ∇ψ

(
uh(x′, hx3)

)
= R̄h∇φ

(
yh(x′, x3)

)
(R̄h)T . Use now

(1.7) with the divergence-free test function ψ:

ˆ
Ω

ˆ 1/2

−1/2

〈
DW

(
∇uh(x′, hx3)

)(
∇uh(x′, hx3)

)T
: R̄h∇φ(yh(x′, x3))(R̄h)T

〉
dx3 dx′

= h3

ˆ
Ω

ˆ 1/2

−1/2
f(x′)e3 · R̄hφ(yh(x′, x3)) dx3 dx′.

The formula (3.13) follows directly, in view of:

DW (∇uh(x′, hx3))(∇uh(x′, hx3))T = RhDW (Id + h2Gh(x))(Id + h2Gh(x))T (Rh)T

= h2RhEh(x′, x3)(Rh)T .

4. Identification of the operators in (1.12) – (1.13)

Lemma 4.1. Let G ∈ R3×3 and a symmetric matrix E ∈ R3×3 satisfy:

L3(G) = E, Tr G = 0 and E13 = E23 = 0.

Then:

(4.1) Lin2 (G′′) = E′′ − E33Id2.
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Proof. Since L and Q depend only on the symmetric parts of their arguments, we may without
loss of generality assume that G is symmetric.

Firstly, by definitions in (1.5), (1.6), it follows that for every F ′′ ∈ R2×2 there is a unique
tangential minimizer d = d(F ′′) ∈ R2, in the sense that:
(4.2)

Qin2 (F ′′) = Q3(

[
F ′′ d
d −Tr F ′′

]
) and

〈
L3(

[
F ′′ d
d −Tr F ′′

]
) :

[
0 c
c 0

]〉
= 0 ∀c ∈ R2.

The second identity above is just the Euler-Lagrange equation for the minimization in (1.5). By
convexity of this minimization problem, it also follows that d is linear:

(4.3) d(F ′′ +G′′) = d(F ′′) + d(G′′)

Observe now that:

Q2(G′′) = Q3(

[
G′′ d(G′′)
d(G′′) G33

]
) =

〈
L3(

[
G′′ d(G′′)
d(G′′) G33

]
) :

[
G′′ d(G′′)
d(G′′) G33

]〉
=
〈(
E + L3(

[
0 d(G′′)−G13,23

d(G′′)−G13,23 0

]
)
)

:

[
G′′ d(G′′)
d(G′′) G33

]〉
= 〈E′′ : G′′〉+ E33G33

+
〈
L3(

[
G′′ d(G′′)
d(G′′) G33

]
) :

[
0 d(G′′)−G13,23

d(G′′)−G13,23 0

]〉
= 〈E′′ : G′′〉+ E33G33 = 〈E : G〉 = Q3(G),

where we repeatedly used the assumptions on G and E, and (4.2). Consequently, by uniqueness
of the minimizer d, it follows that:

(4.4) d(G′′) = G13,23.

Take any F ′′ ∈ R2×2. By (4.2) and (4.3), we see that:

Q2(G′′ + F ′′) = Q3(

[
G′′ + F ′′ d(G′′) + d(F ′′)

d(G′′) + d(F ′′) G33 − Tr F ′′

]
).

Expanding the above and removing Q2(G′′) and Q2(F ′′) from both sides, we obtain:

〈L2(G′′) : F ′′〉 =
〈
L3(

[
G′′ d(G′′)
d(G′′) −Tr G′′

]
) :

[
F ′′ d(F ′′)
d(F ′′) −Tr F ′′

]〉
=
〈
L3(

[
G′′ d(G′′)
d(G′′) −Tr G′′

]
) :

[
F ′′ 0
0 −Tr F ′′

]〉
=
〈
L3(G) :

[
F ′′ d(F ′′)
d(F ′′) −Tr F ′′

]〉
=
〈
E :

[
F ′′ d(F ′′)
d(F ′′) −Tr F ′′

]〉
= 〈E′′ − E33Id2 : F ′′〉,

by (4.4) and assumptions on E and G. The expression (4.1) follows now directly.

In section 5 below we shall prove that for almost every x ∈ Ω1 there holds:

(4.5) Tr G(x) = 0 and E13(x) = E23(x) = 0.

Therefore, recalling Lemma 3.2 (iii), we observe that the limiting stress and strain satisfy the
assumptions of Lemma 4.1 pointwise almost everywhere. We now record the following simple
conclusion which will be used in deriving the Euler-Lagrange equations (1.12), (1.13).
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Lemma 4.2. Let E,G ∈ L2(Ω1,R3×3) be the limiting strain and stress as in Lemma 3.2, which
are related to (w, u) by (3.9). Then, for almost every x′ ∈ Ω, there holds:ˆ 1/2

−1/2
(E′′ − E33Id2) dx3 = Lin2

(
sym∇w +

1

2
∇v ⊗∇v

)
,

ˆ 1/2

−1/2
x3(E′′ − E33Id2) dx3 = − 1

12
Lin2

(
∇2v

)
.

(4.6)

Proof. By Lemma 5.1, Lemma 5.3, Lemma 4.1 and (3.9) we see that:ˆ 1/2

−1/2
(E′′ − E33Id2) dx3 =

ˆ 1/2

−1/2
Lin2 (G′′) dx3

= Lin2

(ˆ 1/2

−1/2
G′′(x′, x3) dx3

)
= Lin2 (G0(x′)) = Lin2 (sym G0(x′))

ˆ 1/2

−1/2
x3(E′′ − E33Id2) dx3 =

ˆ 1/2

−1/2
x3Lin2 (G′′) dx3

= Lin2

(ˆ 1/2

−1/2
x3G

′′(x′, x3) dx3

)
= −Lin2

(ˆ 1/2

−1/2
x2

3G1(x′) dx3

)
= − 1

12
Lin2 (G1(x′)).

This concludes the proof, in view of (3.9).

5. Two further properties of G and E

In this section we derive the two fundamental properties of the incompressible stress and strain,
allowing for pointwise application of Lemma 4.1, and ultimately leading to formulas in (4.6).

Lemma 5.1. The limiting strain G(x) is traceless, for almost every x ∈ Ω1.

Proof. Recall that ∇uh(x′, hx3) = Rh(x′)
(
Id + h2Gh(x′, x3)

)
. Therefore:

1 = det∇uh = det(Id + h2Gh) = 1 + h2Tr Gh + h4Tr cof Gh + h6 detGh,

and consequently:

(5.1) Tr Gh + h2Tr cof Gh + h4 detGh = 0.

Fix an exponent γ ∈ (2
3 , 2) and define Bh = {x ∈ Ω1; h2−γ |Gh(x) ≤ 1} as in Lemma 3.2 (iv).

Then:ˆ
Ω1\Bh

|h4 detGh| =
ˆ

Ω1\Bh
|Tr Gh + h2Tr cof Gh|

≤ |Ω1 \Bh|1/2
(ˆ

Ω1\Bh
|Tr Gh|2

)1/2

+ h2

ˆ
Ω1

|Tr cof Gh| ≤ C(h2−γ + h2),

where we used (3.11) and the boundedness of Gh in L2(Ω1). On the other hand, we have:ˆ
Bh

|h4 detGh| = h4

h6−3γ

ˆ
Bh

| det(h2−γGh)| ≤ Ch3γ−2.

Hence, by (5.1) and, again the boundedness of Tr cof Gh in L1(Ω1), it follows that:ˆ
Ω1

|Tr Gh| ≤
ˆ

Ω1

|h2Tr cof Gh|+
ˆ

Ω1

|h4 detGh| → 0, as h→ 0.
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Observing that Tr Gh ⇀ Tr G weakly in L2(Ω1), we conclude that Tr G = 0.

We now prove the remaining property of the strain E in (4.5). The strategy of proof is the
same as in the later proofs of the Euler-Lagrange equations; we will apply the equilibrium equation
(3.13) to appropriate test functions φh, such that after passing to the limit with h→ 0 only some
chosen terms will survive, yielding the week formulation of (4.5). One difficulty with (3.13) is
that it only allows for globaly bounded φh. For this reason, following [19], we introduce a family
of truncation functions θh which coincide with the identity on intervals (−ωh, ωh) with a suitable
rate of convergence of ωh →∞.

Lemma 5.2. Let {ωh} be a sequence of positive numbers, increasing to +∞ as h → 0. There
exists a sequence of nondecreasing functions θh ∈ C2

b (R,R) with the following properties:

θh(t) = t ∀|t| ≤ ωh and θh(t) = (sgn t)
3

2
ωh ∀|t| ≥ 2ωh

|θh(t)| ≤ t ∀t and ‖θh‖L∞ ≤
3

2
ωh

‖ d

dt
θh‖L∞ ≤ 1 and ‖ d2

dt2
θh‖L∞ ≤

C

ωh
.

(5.2)

Proof. One may take:

θh(t) =


t for |t| ≤ ωh
(sgn t)

1

2

(
|t|+ ωh +

ωh
π

sin

(
π|t| − ωh

ωh

))
for |t| ∈ [ωh, 2ωh]

(sgn t)
3

2
ωh for |t| ≥ ωh

Lemma 5.3. The limiting stress E(x) satisfies: E13(x) = E23(x) = 0 for almost every x ∈ Ω1.

Proof. 1. Let η = (η1, η2) ∈ C2
b (R3,R2) be a given test function, and define:

(5.3) η3(x′, x3) = −
ˆ x3

0
div η(x′, s) ds.

Since ∂3η3 = −div η, the following test functions φh ∈ C1
b (R3,R3) are divergence-free:

φh(x′, x3) =

 hθh
′ (x3

h

)
η
(
x′, θh

(x3

h

))
h2η3

(
x′, θh

(x3

h

))
 ,

and denoting ∇tan the gradient in the tangential directions e1, e2, we have:

∇φh(x′, x3) =


hθh

′ (x3

h

)
∇tanη

(
x′, θh

(x3

h

)) (
θh
′ (x3

h

))2
∂3η

(
x′, θh

(x3

h

))
+ θh

′′ (x3

h

)
η
(
x′, θh

(x3

h

))

h2∇tanη3

(
x′, θh

(x3

h

))
hθh

′ (x3

h

)
∂3η3

(
x′, θh

(x3

h

))


.
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The truncations θh are chosen as in Lemma 5.2 and such that:

(5.4) lim
h→0

ωh = +∞ and h2ωh ≤ C.

2. Applying the equilibrium equation (3.13) with φ = φh, we obtain:

h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)′′
−
(

(R̄h)TRhEh(Rh)T R̄h
)

33
Id2 : θh

′
(
yh3
h

)
∇tanη(yh

′
, θh

(
yh3
h

)
)
〉

+

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

, (θh
′
(
yh3
h

)
)2∂3η(yh

′
, θh

(
yh3
h

)
)
〉

+

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

, θh
′′
(
yh3
h

)
η(yh

′
, θh

(
yh3
h

)
)
〉

+ h2

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
31,32

,∇tanη3(yh
′
, θh

(
yh3
h

)
)
〉

= h2

ˆ
Ω1

〈
f(x′)(R̄h)31,32, η(yh

′
, θh

(
yh3
h

)
)
〉

+ h3

ˆ
Ω1

f(x′)(R̄h)33η3(yh
′
, θh

(
yh3
h

)
).

(5.5)

Now, we will discuss the convergence as h→ 0 of each term in (5.5). The first term converges to

0, because
(

(R̄h)TRhEh(Rh)T R̄h
)′′
−
(

(R̄h)TRhEh(Rh)T R̄h
)

33
Id2 is bounded in L1(Ω1) in view

of Lemma 3.2 (iii), while θh
′
(
yh3
h

)
∇tanη(yh

′
, θh

(
yh3
h

)
) is pointwise bounded by (5.2).

3. The second term in (5.5) when integrated over Ω1 \ Bh, goes to 0 in view of (3.11) and of

the pointwise boundedness of (θh
′
(
yh3
h

)
)2∂3η(yh

′
, θh

(
yh3
h

)
) by (5.2). On the other hand, the limit

of this integral over Bh is the same as the limit of:

(5.6)

ˆ
Ω1

〈
χhE

h
13,23, (θ

h′
(
yh3
h

)
)2∂3η(yh

′
, θh

(
yh3
h

)
)
〉

dx

because of (3.3). We now conclude that the integrals in (5.6) converge to:ˆ
Ω1

〈
E13,23, ∂3η(x′, x3 + v(x′))

〉
dx.

This follows by recalling (3.12) and observing that:

(5.7) (θh
′
(
yh3
h

)
)2∂3η(yh

′
, θh

(
yh3
h

)
)→ ∂3η(x′, x3 + v(x′)) in L2(Ω1)

Indeed:ˆ
Ω1

∣∣∣∣(θh′(yh3h
)

)2∂3η(yh
′
, θh

(
yh3
h

)
)− ∂3η(x′, x3 + v(x′))

∣∣∣∣2 dx

≤ C
ˆ

Ω1

∣∣∣∣θh′(yh3h
)∣∣∣∣4

(
|yh′ − x′|2 +

∣∣∣∣θh(yh3h
)
− (x3 + v(x′))

∣∣∣∣2
)

dx

+ C

ˆ
Ω1

∣∣∣∣θh′(yh3h
)
− 1

∣∣∣∣2 dx

≤ C
ˆ

Ω1

|yh′ − x′|2 +

∣∣∣∣yh3h − (x3 + v(x′))

∣∣∣∣2 dx+ C

ˆ{
x∈Ω1;

|yh3 |
h
≥ωh

} 1 +

∣∣∣∣yh3h
∣∣∣∣2 dx
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converges to 0 as h→ 0, by (3.6), (3.7) and (5.4), proving hence (5.7).

4. The third term in (5.5) is bounded by: C
ωh

´
Ω1 |Eh| by (5.2). It therefore converges to 0 in

view of the boundedness of Eh in L1(Ω1) and (5.4).
The fourth term in (5.5) is bounded by:

Ch2

ˆ
Ω1

|Eh|
∣∣∣∣θh(yh3h

)∣∣∣∣ dx ≤ Ch2ωh

ˆ
Ω1\Bh

|Eh|+ Ch2

ˆ
Ω1

χh|Eh|
|yh3 |
h

≤ Ch2ωh o(1) + Ch2‖χhEh‖L2(Ω1)

∥∥∥∥yh3h
∥∥∥∥
L2(Ω1)

,

and it converges to 0 by (3.11), (3.12), (5.4) and the boundedness of
yh3
h in L2(Ω1).

Finally, both terms in the right hand side of (5.5) are bounded by:

Ch2

ˆ
Ω1

|f(x′)|
(∣∣∣∣θh′(yh3h

)∣∣∣∣+ h

∣∣∣∣θh(yh3h
)∣∣∣∣) dx ≤ Ch2

ˆ
Ω1

|f(x′)|(1 + hωh) dx ≤ Ch‖f‖L2(Ω),

which clearly converges to 0. Above, we used (5.2) and (5.4).

5. In conclusion, passing to the limit with h→ 0 in (5.5), results in:

(5.8)

ˆ
Ω1

〈
E13,23, ∂3η(x′, x3 + v(x′))

〉
dx = 0 ∀η ∈ C2

b (R3,R2).

We now reproduce an argument from [19], in order to deduce that E13,23 = 0. Take an arbitrary
φ ∈ C2

c (Ω,R2). Let C∞c (Ω,R) 3 vk → v in L2(Ω), and define:

φk(x
′, x3) = φ(x′, x3 − vk(x′)), η(x′, x3) =

ˆ x3

0
φk(x

′, s) ds

Clearly φk ∈ C2
c (R3,R2), η ∈ C2

b (R3,R2), and thus by (5.8) we obtain:

0 =

ˆ
Ω1

〈
E13,23, φk(x

′, x3 + v(x′))
〉

dx =

ˆ
Ω1

〈
E13,23, φ(x′, x3 + v(x′)− vk(x′))

〉
dx

Passing to the limit with k →∞, it follows that:ˆ
Ω1

E13,23φ(x′, x3) dx = 0 ∀φ ∈ C2
c (Ω,R2)

which concludes the proof.

6. Derivation of the first Euler-Lagrange equation (1.12)

1. Let η = (η1, η2) ∈ C2
b (R2,R2) be a given test function, and let η3(x′) = −div η(x′). Given

θh as in Lemma 5.2, with:

(6.1) lim
h→0

ωh = lim
h→0

hω2
h = +∞ and hωh ≤ C,

consider the following divergence-free test functions φh ∈ C1
b (R3,R3):

φh(x′, x3) =

 θh
′ (x3

h

)
η(x′)

hθh
(x3

h

)
η3(x′)

 ,
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Denoting ∇tan the gradient in the tangential directions e1, e2, we have:

∇φh(x′, x3) =


θh
′ (x3

h

)
∇tanη(x′)

1

h
θh
′′ (x3

h

)
η(x′)

hθh
(x3

h

)
∇tanη3(x′) θh

′ (x3

h

)
η3(x′)

 .

2. Applying the equilibrium equation (3.13) with φ = φh, we obtain:

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)′′
−
(

(R̄h)TRhEh(Rh)T R̄h
)

33
Id2 : θh

′
(
yh3
h

)
∇tanη(yh

′
)
〉

+ h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
31,32

, θh
(
yh3
h

)
∇tanη3(yh

′
)
〉

+
1

h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

, θh
′′
(
yh3
h

)
η(yh

′
)
〉

= h

ˆ
Ω1

〈
f(x′)(R̄h)31,32, θ

h′
(
yh3
h

)
η(yh

′
)

〉
dx+ h2

ˆ
Ω1

f(x′)(R̄h)33θ
h

(
yh3
h

)
η3(yh

′
) dx.

(6.2)

Now, we will check convergence as h → 0 of each of the four terms in the identity (6.2).
Regarding the first term, it converges to 0 when integrated over Ω1 \ Bh, by (3.11) and by the

pointwise boundedness of θh
′
(
yh3
h

)
∇tanη(yh

′
) in view of (5.2). On the other hand, the limit of

this integral over Bh is the same as the limit of:

(6.3)

ˆ
Ω1

〈
χh
(
Eh
′′ − Eh33Id2

)
: θh
′
(
yh3
h

)
∇tanη(yh

′
)
〉

dx,

because of the convergence in (3.3). Now, the limit of integrals in (6.3) equals:

ˆ
Ω1

〈
E′′ − E33Id2 : ∇η(x′)

〉
dx,

in view of (3.12) and:

ˆ
Ω1

∣∣∣∣θh′(yh3h
)
∇tanη(yh

′
)−∇η(x′)

∣∣∣∣2 dx

≤ C
ˆ

Ω1

∣∣∣∇tanη(yh
′
)−∇η(x′)

∣∣∣2 + C

ˆ
Ω1

∣∣∣∣θh′(yh3h
)
− 1

∣∣∣∣2
≤ C

ˆ
Ω1

∣∣∣yh′ − x′∣∣∣2 dx+ C

∣∣∣∣{x ∈ Ω1;
|yh3 (x)|
h

≥ ωh
}∣∣∣∣

≤ C
ˆ

Ω1

∣∣∣yh′ − x′∣∣∣2 dx+
C

ω2
h

,

where we apply (3.7), and then (3.7) and (6.1) to conclude the convergence of both terms in the
right hand side of the above displayed expression to 0.
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3. The second term in (6.2) is bounded by:

Ch

ˆ
Ω1\Bh

θh
(
|yh3 |
h

)
|Eh| dx+ Ch

ˆ
Ω1

|χhEh|
|yh3 |
h

dx

≤ Chωh
ˆ

Ω1\Bh
|Eh| dx+ C‖yh3‖L2(Ω1)‖χhEh‖L2(Ω1)

and it clearly converges to 0 by (3.11), (3.12), (3.6) and (6.1).
The third term in (6.2) is bounded by:

C

hωh

ˆ{
x∈Ω1;

|yh3 (x)|
h
≥ωh

} |Eh| dx ≤ C

hωh

ˆ{
x∈Ω1;

|yh3 (x)|
h
≥ωh

} 1

h2
W (Id + h2Gh) + |Gh| dx

≤ C

h3ωh

ˆ
Ω1

W
(
∇uh(x′, hx3)

)
dx+

C

hωh
‖Gh‖L2(Ω1)

∣∣∣∣{x ∈ Ω1;
|yh3 (x)|
h

≥ ωh
}∣∣∣∣1/2

≤ C
(
h

ωh
+

1

hω2
h

)
,

by (3.10), (3.7), the boundedness of Gh in L2(Ω1) and (1.8). Then, the right hand side above
converges to 0 by (6.1).

Finally, the right hand side of (6.2) converges to 0 as well, as it is bounded by:

Ch

ˆ
Ω1

|f(x′)|(1 + hωh) dx ≤ Ch‖f‖L2(Ω).

In conclusion, passing to the limit with h→ 0 in (6.2) we obtain:

(6.4)

ˆ
Ω1

〈
E′′ − E33Id2 : ∇η(x′)

〉
dx = 0 ∀η ∈ C2

b (R2,R2).

and thus the Euler-Lagrange equation (1.12) follows directly, in view of (4.6) and the density of
test functions η as above in W 1,2(Ω,R2).

7. Derivation of the second Euler-Lagrange equation (1.13)

Lemma 7.1. For every η3 ∈ C3
b (R2,R), it follows that:ˆ

Ω1

〈
(E′′ − E33Id2) : ∇v ⊗∇η3

〉
dx + lim

h→0

1

h

ˆ
Ω1

〈
Eh31,32,∇η3(yh

′
)
〉

dx

= R̄33

ˆ
Ω
f(x′)η3(x′) dx′.

(7.1)

Proof. 1. Given η3 ∈ C3
b (R2,R) consider the divergence-free test functions φh ∈ C!

b(R3,R3):

φh(x′, x3) =

 0

1

h
η3(x′)

 , so that ∇φh(x′, x3) =

 0 0

1

h
∇tanη3(x′) 0

 .
Applying the equilibrium equation (3.13) with φ = φh, we obtain:

(7.2)
1

h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
31,32

,∇tanη3(yh
′
)
〉

dx = R̄h33

ˆ
Ω1

f(x′)η3(yh
′
) dx.
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Recall that the tensor field Ah in (3.4) is defined as: Ah(x′) = 1
h

(
(R̄h)TRh(x′)− Id

)
. Hence:

1

h
(R̄h)TRhEh(Rh)T R̄h = AhEh(Rh)T R̄h + Eh(Ah)T +

1

h
Eh,(7.3)

and therefore the left hand side of (7.2) can be written as:ˆ
Ω1

〈
(AhEh(Rh)T R̄h)31,32,∇η3(yh

′
)
〉

dx

+

ˆ
Ω1

〈
(Eh(Ah)T )31,32,∇η3(yh

′
)
〉

dx+
1

h

ˆ
Ω1

〈
Eh31,32,∇η3(yh

′
)
〉

dx.

(7.4)

2. Let the sets Bh be defined as in Lemma 3.2 (iv), for some exponent γ ∈ (0, 1). The first two
terms in (7.4), when considered on Ω1 \Bh, converge to 0 because they are bounded by:

C

ˆ
Ω1\Bh

|Ah||Eh| dx ≤ C

h

ˆ
Ω1\Bh

|Eh| dx ≤ C

h
h2−γ ,

in view of (3.11) and |Ah| ≤ C
h . On the other hand, the same two terms while on Bh, converge to:

ˆ
Ω1

〈
(AE)31,32,∇η3(x′)

〉
+
〈
(EAT )31,32,∇η3(x′)

〉
dx,

where we used the convergence (3.12) and the following strong convergences in L3(Ω1): of Ah to A

by (3.5), of (Rh)T R̄h to Id by (3.3), and of ∇η3(yh
′
) to ∇η3(x′) in view of the Sobolev embedding

and the strong convergence in W 1,2(Ω1,R2) in (3.6).
Concluding, the first two terms in (7.4) converge to:ˆ

Ω1

〈
E′′∇v,∇η3(x′)

〉
−
〈
E33∇v,∇η3(x′)

〉
dx

in view of the structure of the limiting tensor A in (3.5). Since the right hand side of (7.2)
converges to R̄33

´
Ω f(x′)η3(x′) by (3.6), passing to the limit in all terms of (7.2) yields the desired

equality (7.1) and thus proves the lemma.

Lemma 7.2. For every η ∈ C2
b (R2,R2), it follows that:ˆ

Ω1

〈
(E′′ − E33Id2) : (x3 + v(x′))∇tanη(x′)

〉
dx

+

ˆ
Ω1

〈
(E′′ − E33Id2) : ∇v(x′)⊗ η(x′)

〉
dx + lim

h→0

1

h

ˆ
Ω1

〈
Eh13,23,∇η3(yh

′
)
〉

dx = 0.

(7.5)

Proof. 1. Let η ∈ C2
b (R2,R2) be a given test function, and define η3(x′) = −div η(x′). Given θh

as in Lemma 5.2, with:

(7.6) lim
h→0

ωh = lim
h→0

hωh = +∞ and lim
h→0

h1+ 1−γ
2 ωh = 0 for some fixed γ ∈ (0, 1),

consider the divergence-free test functions φh ∈ C1
b (R3,R3):

φh(x′, x3) =

 θh
′ (x3

h

)
θh
(x3

h

)
η(x′)

h

2
(θh
(x3

h

)
)2η3(x′)

 .
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Denoting ∇tan the gradient in the tangential directions e1, e2, we have:

∇φh(x′, x3) =


θh
′ (x3

h

)
θh
(x3

h

)
∇tanη(x′)

1

h

(
θh
′′ (x3

h

)
θh
(x3

h

)
+ (θh

(x3

h

)
)2
)
η(x′)

h

2
(θh
(x3

h

)
)2∇tanη3(x′) θh

′ (x3

h

)
θh
(x3

h

)
η3(x′)

 .

2. Applying now the equilibrium equation (3.13) with φ = φh, we obtain:

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)′′
−
(

(R̄h)TRhEh(Rh)T R̄h
)

33
Id2 : θh

′
(
yh3
h

)
θh
(
yh3
h

)
∇tanη(yh

′
)
〉

+
1

h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

,
(
θh
′′ (x3

h

)
θh
(x3

h

)
+ (θh

(x3

h

)
)2
)
η(yh

′
)
〉

+
h

2

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
31,32

, (θh
(
yh3
h

)
)2∇tanη(yh

′
)
〉

= h

ˆ
Ω1

〈
f(x′)(R̄h)31,32, θ

h′
(
yh3
h

)
θh
(
yh3
h

)
η(yh

′
)
〉

dx

+
h2

2

ˆ
Ω1

f(x′)(R̄h)33(θh
(
yh3
h

)
)2η3(yh

′
) dx.

(7.7)

In what follows, we will check convergence as h → 0 of each of the five terms in the identity
(7.7). We first easily notice that the two terms in the right hand side converge to 0, as they are
bounded by:

C

ˆ
Ω1

|f(x′)|
(
h

∣∣∣∣θh(yh3h
)∣∣∣∣+ h2

∣∣∣∣θh(yh3h
)∣∣∣∣2 ) dx ≤ C

ˆ
Ω1

|f(x′)|
(
|yh3 |+ |yh3 |2

)
dx

≤ C‖f‖L2(Ω1)

(
‖yh3‖L2(Ω1) + ‖yh3‖2L4(Ω1)

)
.

Since
yh3
h has a strong limit in W 1,2(Ω1) by (3.6), it results that ‖yh3‖L2 and ‖yh3‖L4 converge to 0.

3. The third term in (7.7) is bounded by the following expression, in view of (5.2), (3.12), (3.6)
and (3.11):

Ch

ˆ
Ω1

χh|Eh|(θh
(
yh3
h

)
)2 dx+ Ch

ˆ
Ω1

(1− χh)|Eh|(θh
(
yh3
h

)
)2 dx

≤ Ch
ˆ

Ω1

χh|Eh|
∣∣∣∣yh3h
∣∣∣∣2 dx+ Chω2

h

ˆ
Ω1\Bh

|Eh| dx

≤ Ch‖χhEh‖L2

∥∥∥∥yh3h
∥∥∥∥2

L4

+ Chω2
hh

2−γ ≤ Ch+ C
(
h1+ 1−γ

2 ωh

)2

which converges to 0 by (7.6).

4. We will now investigate the first term in (7.7). Integrated on Ω1 \Bh, it is bounded by:

Cωh

ˆ
Ω1

(1− χh)|Eh| dx ≤ Cωhh2−γ ≤ Ch1+ 1−γ
2 ωh,
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by (3.11) and hence it converges to 0 through (7.6). The same term integrated on Bh equals now
the following sum:

ˆ
Ω1

(
θh
′
(
yh3
h

)
− 1

)
θh
(
yh3
h

)
·

·
〈(

(R̄h)TRhχhE
h(Rh)T R̄h

)′′
−
(

(R̄h)TRhχhE
h(Rh)T R̄h

)
33

Id2 : ∇tanη(yh
′
)
〉

dx

+

ˆ
Ω1

θh
(
yh3
h

)
·

·
〈(

(R̄h)TRhχhE
h(Rh)T R̄h

)′′
−
(

(R̄h)TRhχhE
h(Rh)T R̄h

)
33

Id2 : ∇tanη(yh
′
)
〉

dx.

(7.8)

The first term in (7.8) goes to 0, as it is bounded by:

C

ˆ{
|yh3 |
h
≥ωh

} ∣∣∣∣yh3h
∣∣∣∣ |χhEh| dx ≤ C

∥∥∥∥yh3h
∥∥∥∥
L4(Ω1)

∣∣∣∣{x ∈ Ω1;
|yh3 |
h
≥ ωh

}∣∣∣∣1/4 ‖χhEh‖L2(Ω1) ≤
C

ω
1/2
h

,

in view of (5.2), (3.7), (3.12) and recalling (7.6). The second term of (7.8) converges to:

(7.9)

ˆ
Ω1

〈
E′′ − E33Id2 : (x3 + v(x′))∇tanη(x′)

〉
dx

because of (3.12) and through the following strong convergences: convergence of ∇tanη(yh
′
) to

∇tanη(x′) in L5(Ω1) by (3.6), of (R̄h)TRh to Id in L20(Ω) by (3.3), and of θh
(
yh3
h

)
to (x3 + v(x′))

in L5(Ω1). The last convergence can be seen from:

ˆ
Ω1

∣∣∣∣θh(yh3h
)
− (x3 + v(x′))

∣∣∣∣5 dx ≤ C
ˆ

Ω1

∣∣∣∣θh(yh3h
)
− yh3

h

∣∣∣∣5 dx+ C

ˆ
Ω1

∣∣∣∣yh3h − (x3 + v(x′))

∣∣∣∣5 dx

≤ C
ˆ{
|yh3 |
h
≥ωh

} ∣∣∣∣yh3h
∣∣∣∣5 dx+ o(1) ≤ C

ω
1/3
h

+ o(1) ≤ o(1)

by (3.6), (3.7) and (7.6). Concluding, we obtain that the first term in (7.7) converges to the
expression in (7.9).

5. Regarding the second term in (7.7), using (3.10), (5.2), (3.1) and (3.7) we note that:

∣∣∣ ˆ
Ω1

(
θh
′′
(
yh3
h

)
θh
(
yh3
h

)
+ θh

′
(
yh3
h

)2

− 1

)〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

, η(yh
′
)
〉

dx
∣∣∣

≤ C

h

ˆ{
x∈Ω1;

|yh3 (x)|
h
≥ωh

}( 1

ωh
ωh + 1

)
|Eh| dx

≤ C

h

ˆ{
|yh3 |
h
≥ωh

} 1

h2
W (∇uh(x′, hx3)) + |Gh| dx

≤ C

h

(
h2 + ‖Gh‖L2(Ω1

∣∣∣∣{x ∈ Ω1;
|yh(x)|
h

≥ ωh
}∣∣∣∣1/2

)
≤ C

h

(
h2 +

1

ωh

)
,
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which converges to 0 by (7.6). The remaining part of the second term in (7.7) is:

1

h

ˆ
Ω1

〈(
(R̄h)TRhEh(Rh)T R̄h

)
13,23

, η(yh
′
)
〉

dx

=

ˆ
Ω1

〈(
AhEh(Rh)T R̄h

)
13,23

, η(yh
′
)
〉

dx+

ˆ
Ω1

〈(
Eh(Ah)T

)
13,23

, η(yh
′
)
〉

dx

+
1

h

ˆ
Ω1

〈
(Eh)13,23, η(yh

′
)
〉

dx,

(7.10)

where we used the decomposition (7.3). Now, exactly as in the proof of Lemma 7.1 and recalling
the block structure of the limiting tensor A in (3.5), we see that (7.10) converges to:ˆ

Ω1

〈
(AE)13,23 , η(x′)

〉
dx+

ˆ
Ω1

〈 (
EAT

)
13,23

, η(x′)
〉

dx+
1

h

ˆ
Ω1

〈
(Eh)13,23, η(yh

′
)
〉

dx

=

ˆ
Ω1

〈 (
E′′ − E33Id2

)
∇v, η(x′)

〉
dx+

1

h

ˆ
Ω1

〈
(Eh)13,23, η(yh

′
)
〉

dx.

In conclusion, passing to the limit in (7.7) clearly yields (7.5) and achieves the lemma.

Proof of the second Euler-Lagrange equation (1.13).
Let now ξ ∈ C3

b (R2,R). Applying Lemma 7.1 with η3 = ξ, and Lemma 7.2 with η = ∇ξ, it follows:

(7.11) −
ˆ

Ω1

〈
E′′ − E33Id2 : (x3 + v(x′)∇2ξ

〉
dx = R̄33

ˆ
Ω
f(x′)ξ(x′) dx′.

By the first Euler-Lagrange equation in (6.4) applied with η = v∇ξ ∈W 2,2(Ω,R2), we see that:ˆ
Ω1

〈
E′′ − E33Id2 : ∇v ⊗∇ξ + v(x′)∇2ξ

〉
dx = 0.

Thus, (7.11) becomes:ˆ
Ω1

〈
E′′ − E33Id2 : ∇v ⊗∇ξ

〉
dx−

ˆ
Ω1

〈
E′′ − E33Id2 : x3∇2ξ

〉
dx = R̄33

ˆ
Ω
f(x′)ξ(x′).

The equality in (1.13) follows now from the above in view of (4.6), and by the density of test
functions ξ ∈ C3

b in W 2,2(Ω,R).
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