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Abstract. We study the non-Euclidean (incompatible) elastic energy functionals in the description

of prestressed thin films, at their singular limits (Γ-limits) as h → 0 in the film’s thickness h. Firstly,

we extend the prior results [39, 12, 40] to arbitrary incompatibility metrics that depend on both the

midplate and the transversal variables (the “non-oscillatory” case). Secondly, we analyze a more

general class of incompatibilities, where the transversal dependence of the lower order terms is not

necessarily linear (the “oscillatory” case), extending the results of [3, 47] to arbitrary metrics and

higher order scalings. We exhibit connections between the two cases via projections of appropriate

curvature forms on the polynomial tensor spaces. We also show the effective energy quantisation in

terms of scalings as a power of h and discuss the scaling regimes h2 (Kirchhoff), h4 (von Kármán)

in the general case, as well as all possible (even powers) regimes for conformal metrics, thus paving

the way to the subsequent complete analysis of the non-oscillatory setting in [34]. Thirdly, we prove

the coercivity inequalities for the singular limits at h2- and h4- scaling orders, while disproving the

full coercivity of the classical von Kármán energy functional at scaling h4.

1. Introduction

The purpose of this paper is to further develop the analytical tools for understanding the mecha-

nisms through which the local properties of a material lead to changes in its mechanical responses.

Motivated by the idea of imposing and controlling the prestrain (or “misfit”) field in order to

cause the plate to achieve a desired shape, our work is concerned with the analysis of thin elastic

films exhibiting residual stress at free equilibria. Examples of this type of structures and their

actuations include: plastically strained sheets, swelling or shrinking gels, growing tissues such as

leaves, flowers or marine invertebrates, nanotubes, atomically thin graphene layers, etc. In the same

vein, advancements in the construction of novel materials in thin film format require an analytical

insight how the parameters affect the product and how to mimic the architectures found in nature.

In this paper, we will be concerned with the forward problem associated to the mentioned struc-

tures, based on the minimization of the elastic energy with incorporated inelastic effects.

1.1. The set-up of the problem. Let ω ⊂ R2 be an open, bounded, connected set with Lipschitz

boundary. We consider a family of thin hyperelastic sheets occupying the reference domains:

Ωh = ω ×
(
− h

2
,
h

2

)
⊂ R3, 0 < h� 1.

A typical point in Ωh is denoted by x = (x1, x2, x3) = (x′, x3). For h = 1 we use the notation Ω = Ω1

and view Ω as the referential rescaling of each Ωh via: Ωh 3 (x′, x3) 7→ (x′, x3/h) ∈ Ω.
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In this paper we study the limit behaviour, as h→ 0, of the energy functionals:

(1.1) Eh(uh) =
1

h

ˆ
Ωh

W
(
∇uh(x)Gh(x)−1/2

)
dx

defined on vector fields uh ∈W 1,2(Ωh,R3), that are interpreted as deformations of Ωh. We view the

limit in the vanishing thickness h as the singular limit: indeed at h = 0 the three-dimensional sheets

Ωh are reduced to the two-dimensional midplate ω, and it is the goal of this paper to derive the energy

of its (non-equidimensional) deformations y : ω → R3 relevant for the asymptotics of the minimizing

sequences of the (equidimensional) deformations in (1.1). The sheets Ωh are characterized by the

smooth incompatibility (Riemann metric) tensors Gh ∈ C∞(Ω̄h,R3×3
sym,pos), satisfying the following

structure assumption, referred to as “oscillatory”:

(O)



Oscillatory case :

Gh(x) = Gh(x′,
x3

h
) for all x = (x′, x3) ∈ Ωh,

Gh(x′, t) = Ḡ(x′) + hG1(x′, t) +
h2

2
G2(x′, t) + o(h2) ∈ C∞(Ω̄,R3×3

sym,pos),

where Ḡ ∈ C∞(ω̄,R3×3
sym,pos), G1,G2 ∈ C∞(Ω̄,R3×3

sym) and
´ 1/2
−1/2 G1(x′, t) dt = 0 for all x′ ∈ ω̄.

The requirement of Ḡ being independent of the transversal variable t ∈ (−1/2, 1/2) is essential

for the energy scaling order: inf Eh ≤ Ch2. The zero mean requirement on G1 can be relaxed to

requesting that
´ 1/2
−1/2 G1(x′, t)2×2 dt be a linear strain with respect to the leading order midplate

metric (Ḡ1)2×2 (in case (Ḡ)2×2 = Id2 the sufficient and necessary condition for this to happen is

curl Tcurl
´ 1/2
−1/2 G1(x′, t)2×2 dt = 0; this case has been studied in [3] where Ḡ = Id3), and we also

conjecture that it can be removed altogether, which will be the content of future work. In the present

work, we assume the said condition in light of the special case (NO) below.

We refer to the family of films Ωh prestrained by metrics in (O):

(1.2) Gh(x) = Ḡ(x′) + hG1(x′,
x3

h
) +

h2

2
G2(x′,

x3

h
) + o(h2) for all x = (x′, x3) ∈ Ωh,

as ”oscillatory”, and note that this set-up includes a subcase of a single metric Gh = G, upon taking:

G1(x′, t) = tḠ1(x′), G2(x′, t) = t2Ḡ2(x′).

We refer to this special case as “non-oscillatory’’; formula (1.2) becomes then Taylor’s expansion in:

(NO)


Non-oscillatory case :

Gh = G|Ω̄h for some G ∈ C∞(Ω̄,R3×3
sym,pos),

Gh(x) = Ḡ(x′) + x3∂3G(x′, 0) +
x2

3

2
∂33G(x′, 0) + o(x2

3) for all x = (x′, x3) ∈ Ωh.

Mechanically, the assumption (NO) describes thin sheets that have been cut out of a single specimen

block Ω, prestrained according to a fixed (though arbitrary) tensor G. As we shall see, the general
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case (O) can be reduced to (NO) via the following effective metric:

(EF)



Effective non-oscillatory case :

Ḡh(x) = Ḡ(x) = Ḡ(x′) + x3Ḡ1(x′) +
x2

3

2
Ḡ2(x′) for all x = (x′, x3) ∈ Ωh,

where: Ḡ1(x′)2×2 = 12
´ 1/2
−1/2 tG1(x′, t)2×2 dt, Ḡ1(x′)e3 = −60

´ 1/2
−1/2(2t3− 1

2 t)G1(x′, t)e3 dt,

and: Ḡ2(x′)2×2 = 30
´ 1/2
−1/2(6t2 − 1

2)G2(x′, t)2×2 dt.

In (1.1), the homogeneous elastic energy densityW : R3×3 → [0,∞] is a Borel measurable function,

assumed to satisfy the following properties:

(i) W (RF ) = W (F ) for all R ∈ SO(3) and F ∈ R3×3,

(ii) W (F ) = 0 for all F ∈ SO(3),

(iii) W (F ) ≥ C dist2
(
F, SO(3)

)
for all F ∈ R3×3, with some uniform constant C > 0,

(iv) there exists a neighbourhood U of SO(3) such that W is finite and C2 regular on U .

We will be concerned with the regimes of curvatures of Gh in (O) which yield the incompatibility

rate, quantified by inf Eh, of order higher than h2 in the plate’s thickness h. With respect to the

prior works in this context, the present paper proposes the following three new contributions.

1.2. New results of this work: Singular energies in the non-oscillatory case.
1.2.1. Kirchhoff scaling regime. We begin by deriving (in section 2), the Γ-limit of the rescaled

energies 1
h2
Eh. In the setting of (NO), we obtain:

I2(y) =
1

2

∥∥Tensor2

∥∥2

Q2
=

1

2

∥∥x3

(
(∇y)T∇~b

)
sym
− 1

2
x3∂3G(x′, 0)2×2

∥∥2

Q2

=
1

24

∥∥((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∥∥2

Q2
.

We now explain the notation above. Firstly, ‖ · ‖Q2 is a weighted L2 norm in (2.8) on the space E of

R2×2
sym -valued tensor fields on Ω. The weights in (2.6) are determined by the elastic energy W together

with the leading order metric coefficient Ḡ. The functional I2 is defined on the set of isometric

immersions YḠ2×2
= {y ∈ W 2,2(ω,R3); (∇y)T∇y = Ḡ2×2}; each such immersion generates the

corresponding Cosserat vector~b, uniquely given by requesting:
[
∂1y, ∂2y, ~b

]
∈ SO(3)Ḡ1/2 on ω. The

family of energies obtained in this manner is parametrised by all matrix fields S ∈ C∞(ω̄,R2×2
sym) and

T ∈ C∞(ω̄,R3×3
sym,pos), namely: IT,S2 (y) = 1

24‖((∇y)T∇~b(y))sym −S‖2Q2
defined on the set YT2×2 , where

one interprets T as the leading order prestrain Ḡ and S as its first order correction 1
2∂3G(x′, 0)2×2.

The energy I2 measures the bending quantity Tensor2 which is linear in x3, resulting in its

reduction to the single nonlinear bending term, that equals the difference of the curvature form(
(∇y)T∇~b

)
sym

from the preferred curvature 1
2∂3G(x′, 0)2×2. The same energy has been derived in

[39, 12] under the assumption that G is independent of x3 and in [31] for a general manifold (Mn, g)

with any codimension submanifold (Nk, g|N ) replacing the midplate ω × {0}. Since our derivation

of I2 is a particular case of the result in case (O), we still state it here for completeness.

In section 3 we identify the necessary and sufficient conditions for min I2 = 0 (when ω is simply

connected), in terms of the vanishing of the Riemann curvatures R1212, R1213, R1223 of G at x3 = 0. In

this case, it follows that inf Eh ≤ Ch4. For the discussed case (NO), the recent work [42] generalized

the same statements for arbitrary dimension and codimension.



4 MARTA LEWICKA AND DANKA LUČIĆ

1.2.2. Von Kármán scaling regime. In section 6 we derive the Γ-limit of 1
h4
Eh, which is given by:

I4(V,S) =
1

2

∥∥Tensor4

∥∥2

Q2
,

defined on the spaces of: finite strains Sy0 = {S = limn→∞,L2

(
(∇y0)T∇wn

)
sym

; wn ∈W 1,2(ω,R3)}
and first order infinitesimal isometries Vy0 = {V ∈ W 2,2(ω,R3);

(
(∇y0)T∇V

)
sym

= 0} on the

deformed midplate y0(ω) ⊂ R3. Here, y0 is the unique smooth isometric immersion of Ḡ2×2 for

which I2(y0) = 0; recall that it generates the corresponding Cosserat’s vector ~b0.

The expression in Tensor4 is quite complicated but it has the structure of a quadratic polynomial

in x3. A key tool for identifying this expression, also in the general case (O), involves the subspaces

{En ⊂ E}n≥1 in (2.9), consisting of the tensorial polynomials in x3 of order n. The bases of {En} are

then naturally given in terms of the Legendre polynomials {pn}n≥0 on (−1
2 ,

1
2). Since Tensor4 ∈ E2,

we write the decomposition:

Tensor4 = p0(x3)Stretching4 + p1(x3)Bending4 + p2(x3)Curvature4,

which, as shown in section 7, results in:

I4(V,S) =
1

2

(∥∥Stretching4

∥∥2

Q2
+
∥∥Bending4

∥∥2

Q2
+
∥∥Curvature4

∥∥2

Q2

)
=

1

2

∥∥S +
1

2
(∇V )T∇V +

1

24
(∇~b0)T∇~b0 −

1

48
∂33G(x′, 0)2×2

∥∥2

Q2

+
1

24

∥∥[〈∇i∇jV,~b0〉]i,j=1,2

∥∥2

Q2
+

1

1440

∥∥[Ri3j3(x′, 0)
]
i,j=1,2

∥∥2

Q2
.

Above, ∇i denotes the covariant differentiation with respect to the metric Ḡ and Ri3j3 are the

potentially non-zero curvatures of G on ω at x3 = 0.

The family of energies obtained in this manner is parametrised by all quadruples: vector fields

y0,~b0 ∈ C∞(ω̄,R3) satisfying det
[
∂1y0, ∂2y0, ~b0

]
> 0, matrix fields T ∈ C∞(ω̄,R2×2

sym ), and numbers

r ∈ R in the range (the left parentheses in the last interval below may be open or closed):

r ∈ 2

5

{
‖T −

(
(∇y0)T∇~d0

)
sym
‖2Q2

; ~d0 ∈ C∞(ω̄,R2×2
sym )

}
=
[2

5
dist2

Q2
(T,Sy0),+∞

)
.(1.3)

The functionals are then: Iy0,~b0,T,r4 (V,S) = 1
2‖S + 1

2(∇V )T∇V − T‖2Q2
+ 1

24‖
[
〈∇i∇jV,~b0〉

]
ij
‖2Q2

+ r,

defined on the linear space Vy0 ×Sy0 . Particular cases where the range of r may be identified are:

(i) y0 = id2. Then Sy0 = {S ∈ L2(ω,R2×2
sym ); curlTcurlS = 0} and the range of r is defined by

the appropriate norm of: curlTcurlT .

(ii) Gauss curvature κ((∇y0)T∇y0) > 0 in ω̄. Then in [37] it is shown that Sy0 = L2(ω,R2×2
sym ).

The range of possible r (for any T ) is then: [0,+∞).

When y0 = id2 (which occurs automatically when Ḡ = Id3), then ~b0 = e3 and the first two terms

in I4 reduce to the stretching and the linear bending contents of the classical von Kármán energy.

The third term is purely metric-related and measures the non-immersability of G relative to the

present quartic scaling. These findings generalize the results of [12] valid for x3-independent G in

(NO). We also point out that, following the same general principle in the h2- scaling regime, one

may readily decompose:

Tensor2 = p0(x3)Stretching2 + p1(x3)Bending2;

since Tensor2 is already a multiple of x3, then Stretching2 = 0 in the ultimate form of I2.
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It is not hard to deduce (see section 8) that the necessary and sufficient conditions for having

min I4 = 0 are precisely that Rijkl ≡ 0 on ω × {0}, for all i, j, k, l = 1 . . . 3. In section 9 we

then analyze the conformal non-oscillatory metric G = e2φ(x3)Id3 and show that different orders of

vanishing of φ at x3 = 0 correspond to different even orders of scaling of Eh as h→ 0:

φ(k)(0) = 0 for k = 1 . . . n− 1 and φ(n)(0) 6= 0 ⇔ ch2n ≤ inf Eh ≤ Ch2n

with the lower bound: inf Eh ≥ cnh
n
∥∥[∂(n−2)

3 Ri3j3(x′, 0)
]
i,j=1,2

∥∥2

Q2
. These findings are consistent

with and pave the way for the follow-up paper [34], which completes the scaling analysis of Eh in

the non-oscillatory case, including the derivation of Γ-limits of h−2nEh for all n ≥ 1, and proving

the energy quantisation in the sense that the even powers 2n of h are indeed the only possible ones

(all of them are also attained).

1.3. New results of this work: Singular energies in the oscillatory case. We show that the

analysis in the general case (O) may follow a similar procedure, where we first project the limiting

quantity TensorO on an appropriate polynomial space and then decompose the projection along the

respective Legendre basis. For the Γ-limit of 1
h2
Eh in section 2, we show that:

TensorO2 = x3

(
(∇y)T∇~b

)
sym
− 1

2
(G1)2×2 = p0(x3)StretchingO2 + p1(x3)BendingO2 + Excess2,

with Excess2 = TensorO2 − P1(TensorO2 ),

where P1 denotes the orthogonal projection on E1. Consequently:

IO2 (y) =
1

2

(∥∥StretchingO2 ∥∥2

Q2
+
∥∥BendingO2 ∥∥2

Q2
+
∥∥Excess2

∥∥2

Q2

)
=

1

24

∥∥((∇y)T∇~b
)

sym
− 1

2
(Ḡ1)2×2

∥∥2

Q2
+

1

8
dist2

Q2

(
(G1)2×2,E1

)
,

where again StretchingO2 = 0 in view of the assumed
´ 1/2
−1/2 G1 dx3 = 0. For the same reason:

Excess2 = −1

2

(
(G1)2×2 − P1

(
(G1)2×2

))
= −1

2

(
(G1)2×2 − 12

ˆ 1/2

−1/2
x3(G1)2×2 dx3

)
and also: P1

(
(G1)2×2

)
= x3(Ḡ1)2×2 with (Ḡ1)2×2 defined in (EF). The limiting oscillatory energy IO2

consists thus of the bending term that coincides with I2 for the effective metric Ḡ, plus the purely

metric-related excess term. A special case of IO2 when Ḡ = Id3 and without analyzing the excess

term, has been derived in [3], following the case with Gh = Id3 + hG1(x3h ) considered in [47]. An

excess term has also been present in the work [28] on rods with misfit; we do not attempt to compare

our results with studies of dimension reduction for rods; the literature there is abundant.

It is easy to observe that: min IO2 = 0 if and only if (G1)2×2 = x3(Ḡ1)2×2 on ω × {0}. We show

in section 5 that this automatically implies: inf Eh ≤ Ch4. The Γ-limit of 1
h4
Eh is further derived in

sections 6 and 7, by considering the decomposition:

TensorO4 = p0(x3)StretchingO4 + p1(x3)BendingO4 + p2(x3)CurvatureO4 + Excess4,

with Excess4 = TensorO4 − P2(TensorO4 ).
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It follows that:

IO4 (V,S) =
1

2

(∥∥StretchingO4 ∥∥2

Q2
+
∥∥BendingO4 ∥∥2

Q2
+
∥∥CurvatureO4 ∥∥2

Q2
+
∥∥Excess4

∥∥2

Q2

)
=

1

2

∥∥S +
1

2
(∇V )T∇V +B0

∥∥2

Q2
+

1

24

∥∥[〈∇i∇jV,~b0〉]i,j=1,2
+B1

∥∥2

Q2

+
1

1440

∥∥[Ri3j3(x′, 0)
]
i,j=1,2

∥∥2

Q2

+
1

2
dist2

Q2

(1

4
(G2)2×2 −

ˆ x3

0

[
∇i
(
(G1e3)− 1

2
(G1)33e3

)]
i,j=1,2,sym

dt,E2

)
,

where R1313, R1323, R2323 are the respective Riemann curvatures of the effective metric Ḡ in (EF)

at x3 = 0. The corrections B0 and B1 coincide with the same expressions written for Ḡ under two

extra constraints (see Theorem 7.5), that can be seen as the h4-order counterparts of the h2-order

condition
´ 1/2
−1/2 G1 dx3 = 0 assumed throughout. In case these conditions are valid, the functional

IO4 is the sum of the effective stretching, bending and curvature in I4 for Ḡ, plus the additional

purely metric-related excess term.

1.4. New results of this work: coercivity of I2 and I4. We additionally analyze the derived

limiting functionals by identifying their kernels, when nonempty. In section 4 we show that the

kernel of I2 consists of the rigid motions of a single smooth deformation y0 that solves:

(∇y0)T∇y0 = Ḡ2×2,
(
(∇y0)T∇~b0

)
sym

=
1

2
∂3G(x′, 0)2×2.

Further, I2(y) bounds from above the squared distance of an arbitrary W 2,2 isometric immersion y

of the midplate metric Ḡ2×2, from the indicated kernel of I2.

In section 8 we consider the case of I4. We first identify (see Theorem 8.2) the zero-energy

displacement-strain couples (V,S). In particular, we show that the minimizing displacements are

exactly the linearised rigid motions of the referential y0. We then prove that the bending term in

I4, which is solely a function of V , bounds from above the squared distance of an arbitrary W 2,2

displacement obeying
(
(∇y0)T∇V

)
sym

= 0, from the indicated minimizing set in V . On the other

hand, the full coercivity result involving minimization in both V and S is false. In Remark 8.4 we

exhibit an example in the setting of the classical von Kármán functional, where I4(Vn,Sn) → 0 as

n→∞, but the distance of (Vn, Sn) from the kernel of I4 remains uniformly bounded away from 0.

We note that this lack of coercivity is not prevented by the fact that the kernel is finite dimensional.

1.5. Other related works. Recently, there has been a sustained interest in studying shape forma-

tion driven by internal prestrain, through the experimental, modelling via formal methods, numerics,

and analytical arguments [27, 23, 16, 30]. General results have been derived in the abstract setting of

Riemannian manifolds: in [31, 30] Γ-convergence statements were proved for any dimension ambient

manifold and codimension midplate, in the scaling regimes O(h2) and O(1), respectively. In a work

parallel to ours [42], the authors analyze scaling orders o(h2), O(h4) and o(h4), extending condition

(3.6), Lemma 5.1 in (NO) case, and condition (8.2) to arbitrary manifolds. Although they do not

identify the Γ-limits of the rescaled energies Eh, they are able to provide the revealing lower bounds

for inf Eh in terms of the appropriate curvatures.



DIMENSION REDUCTION WITH OSCILLATORY PRESTRAIN 7

Higher energy scalings inf Eh ∼ hβ than the ones analyzed in the present paper may result from

the interaction of the metric with boundary conditions or external forces, leading to the “wrinkling-

like” effects. Indeed, our setting pertains to the “no wrinkling” regime where β ≥ 2 and the prestrain

metric admits a W 2,2 isometric immersion. While the systematic description of the singular limits

at scalings β < 2 is not yet available, the following studies are examples of the variety of emerging

patterns. In [24, 9, 10], energies leading to the buckling- or compression- driven blistering in a

thin film breaking away from its substrate and under clamped boundary conditions, are discussed

(β = 1). Paper [6] displays dependence of the energy minimization on boundary conditions and

classes of admissible deformations, while [7] discusses coarsening of folds in hanging drapes, where

the energy identifies the number of generations of coarsening. In [49], wrinkling patterns are obtained,

reproducing the experimental observations when a thin shell is placed on a liquid bath (β = 1), while

[29] analyses wrinkling in the center of a stretched and twisted ribbon (β = 4/3). In [11, 50], energy

levels of the origami patterns in paper crumpling are studied (β = 5/3). See also [43, 44, 45] for

an analysis of the conical singularities (Eh ∼ h2 log(1/h)). We remark that the mentioned papers

do not address the dimension reduction, but rather analyze the chosen actual configuration of the

prestrained sheet. Closely related is also the literature on shape selection in non-Euclidean plates,

exhibiting hierarchical buckling patterns in zero-strain plates (β = 2), where the complex morphology

is due to the non-smooth energy minimization [19, 20, 21].

Various geometrically nonlinear thin plate theories have been used to analyze the self-similar

structures with metric asymptotically flat at infinity [5], a disk with edge-localized growth [16],

the shape of a long leaf [41], or torn plastic sheets [48]. In [13, 14] a variant of the Föppl-von

Kármán equilibrium equations has been formally derived from finite incompressible elasticity, via the

multiplicative decomposition of deformation gradient [46] similar to ours. See also models related to

wrinkling of paper in areas with high ink or paint coverage, grass blades, sympatelous (meaning “with

fused petals”) flowers and studies of movement of micro-organisms that share certain characteristics

of animals and plants, called the euglenids [14, 8, 4]. The forward and inverse problems in the

self-folding of thin sheets of patterned hydrogel bilayers are discussed in [2].

On the frontiers of experimental modeling of shape formation, we mention the halftone gel lithog-

raphy method for polymeric materials that can swell by imbibing fluids [26, 25, 51, 15]. By blocking

the ability of portions of plate to swell or causing them to swell inhomogeneously, it is possible to have

the plate assume a variety of deformed shapes. Even more sophisticated techniques of biomimetic

4d printing allow for engineering of the 3d shape-morphing systems that mimic nastic plant motions

where organs such as tendrils, leaves and flowers respond to the environmental stimuli [22]. Optimal

control in such systems has been studied in [23], see also [1].

In [35, 36, 38], derivations similar to the results of the present paper were carried out under a

different assumption on the asymptotic behavior of the prestrain, which also implied energy scaling

hβ in non-even regimes of β > 2. In [35] it was shown that the resulting Euler-Lagrange equations

of the residual energy are identical to those describing the effects of growth in elastic plates [41]. In

[38], a model with a Monge-Ampère constraint was derived and analysed from various aspects.

We finally mention the paper [34], completed after the submission of the present article, which

resolves the scaling analysis of Eh together with the derivation of Γ-limits of h−2nEh, for all n ≥ 1.

There, we identify equivalent conditions for the validity of the scalings h2n in terms of vanishing

of the Riemann curvatures, for an arbitrary non-oscillatory metric G, up to appropriate orders and

in terms of the matched isometry expansions. We also establish the asymptotic behaviour of the
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minimizing immersions of G as h→ 0 and prove the energy quantisation, in the sense that the even

powers 2n of h are indeed the only possible ones (all of them are also attained).

1.6. Notation. Given a matrix F ∈ Rn×n, we denote its transpose by F T and its symmetric part

by Fsym = 1
2(F +F T). The space of symmetric n×n matrices is denoted by Rn×nsym , whereas Rn×nsym,pos

stands for the space of symmetric, positive definite n× n matrices. By SO(n) = {R ∈ Rn×n; RT =

R−1 and detR = 1} we mean the group of special rotations; its tangent space at Idn consists of

skew-symmetric matrices: TIdnSO(n) = so(n) = {F ∈ Rn×n; Fsym = 0}. We use the matrix norm

|F | = (trace(F TF ))1/2, which is induced by the inner product 〈F1 : F2〉 = trace(F T
1 F2). The 2 × 2

principal minor of F ∈ R3×3 is denoted by F2×2. Conversely, for a given F2×2 ∈ R2×2, the 3 × 3

matrix with principal minor equal F2×2 and all other entries equal to 0, is denoted by F ∗2×2. Unless

specified otherwise, all limits are taken as the thickness parameter h vanishes: h → 0. By C we

denote any universal positive constant, independent of h. We use the Einstein summation convention

over repeated lower and upper indices running from 1 to 3.

1.7. Acknowledgments. M.L. was supported by the NSF grant DMS-1613153. D.L. acknowledges

the support of V. Agostiniani and discussions related to h2-scaling regime. We are grateful to Y.

Grabovsky for discussions on Remark 8.4 and to R.V. Kohn and C. Maor for pointing us to some

relevant literature.

2. Compactness and Γ-limit under Ch2 energy bound

Define the matrix fields Ā ∈ C∞(ω̄,R3×3
sym ,pos) and Ah, A1, A2 ∈ C∞(Ω̄,R3×3

sym ) so that, uniformly

for all (x′, x3) ∈ Ωh there holds:

Ah(x′, x3) = Gh(x′, x3)1/2 = Ā(x′) + hA1(x′,
x3

h
) +

h2

2
A2(x′,

x3

h
) + o(h2).

Equivalently, Ā, A1, A2 solve the following system of equations:

(2.1) Ā2 = Ḡ, 2(ĀA1)sym = G1, 2A2
1 + 2(ĀA2)sym = G2 in Ω̄.

Under the assumption (O), condition (iii) on W easily implies:

1

h

ˆ
Ωh

dist2
(
∇uh(x)Ā(x′)−1, SO(3)

)
dx ≤ C

h

ˆ
Ωh

dist2
(
∇uh(x)Ah(x)−1, SO(3)

)
+ h2 dx

≤ C
(
Eh(uh) + h2

)
.

Consequently, the results of [12] automatically give the following compactness properties of any

sequence of deformations with the quadratic energy scaling:

Theorem 2.1. Assume (O). Let {uh ∈W 1,2(Ωh,R3)}h→0 be a sequence of deformations satisfying:

(2.2) Eh(uh) ≤ Ch2.

Then the following properties hold for the rescalings yh ∈W 1,2(Ω,R3) given by:

yh(x′, x3) = uh(x′, hx3)−
 

Ωh

uh dx.

(i) There exist y ∈W 2,2(ω,R3) and ~b ∈W 1,2 ∩ L∞(ω,R3) such that, up to a subsequence:

yh → y strongly in W 1,2(Ω,R3) and
1

h
∂3y

h → ~b strongly in L2(Ω,R3), as h→ 0.
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(ii) The limit deformation y realizes the reduced midplate metric on ω:

(2.3) (∇y)T∇y = Ḡ2×2.

In particular ∂1y, ∂2y ∈ L∞(ω,R3) and the unit normal ~ν = ∂1y×∂2y
|∂1y×∂2y| to the surface y(ω)

satisfies: ~ν ∈W 1,2 ∩ L∞(ω,R3). The limit displacement ~b is the Cosserat field defined via:

(2.4) ~b = (∇y)(Ḡ2×2)−1

[
Ḡ13

Ḡ23

]
+

√
det Ḡ√

det Ḡ2×2

~ν.

Recall that the results in [12] also give:

(2.5) lim inf
h→0

1

h2

1

h

ˆ
Ωh

W
(
∇uhḠ−1/2

)
≥ 1

24

ˆ
ω
Q2

(
x′,∇y(x′)T∇~b(x′)

)
dx′,

with the curvature integrand (∇y)T∇~b quantified by the quadratic forms:

Q2(x′, F2×2) = min
{
Q3

(
Ā(x′)−1F̃ Ā(x′)−1

)
; F̃ ∈ R3×3 with F̃2×2 = F2×2

}
,

Q3(F ) = D2W (Id3)(F, F ).
(2.6)

The form Q3 is defined for all F ∈ R3×3, while Q2(x′, ·) are defined on F2×2 ∈ R2×2. Both forms

Q3 and all Q2 are nonnegative definite and depend only on the symmetric parts of their arguments,

in view of the assumptions on the elastic energy density W . Clearly, the minimization problem in

(2.6) has a unique solution among symmetric matrices F̃ which for each x′ ∈ ω is described by the

linear function F2×2 7→ c(x′, F2×2) ∈ R3 in:

(2.7) Q2(x′, F2×2) = min
{
Q3

(
Ā(x′)−1(F ∗2×2 + c⊗ e3)Ā(x′)−1

)
; c ∈ R3

}
.

The energy in the right hand side of (2.5) is a Kirchhoff-like fully nonlinear bending, which in

case of Āe3 = e3 reduces to the classical bending content relative to the second fundamental form

(∇y)T∇~b = (∇y)T∇~ν on the deformed surface y(ω).

In the present setting, we start with an observation about projections on polynomial subspaces

of L2. Consider the following Hilbert space, with its norm:

(2.8) E .
=
(
L2(Ω,R2×2

sym ), ‖ · ‖Q2

)
, ‖F‖Q2 =

(ˆ
Ω
Q2(x′, F (x)) dx

)1/2
,

associated to the scalar product (with obvious notation):

〈F1, F2〉Q2 =

ˆ
Ω
L2,x′

(
F1(x), F2(x)

)
dx.

We define P1 and P2, respectively, as the orthogonal projections onto the following subspaces of E:

E1 =
{
x3F1(x′) + F0(x′); F1,F0 ∈ L2(ω,R2×2

sym )
}
,

E2 =
{
x2

3F2(x′) + x3F1(x′) + F0(x′); F2,F1,F0 ∈ L2(ω,R2×2
sym )

}
,

(2.9)

obtained by projecting each F (x′, ·) on the appropriate polynomial subspaces of L2(−1/2, 1/2) whose

orthonormal bases consist of the Legendre polynomials {pi}∞i=0. The first three polynomials are:

p0(t) = 1, p1(t) =
√

12t, p2(t) =
√

5
(
6t2 − 1

2

)
.
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Lemma 2.2. For every F ∈ E, we have:

P1(F ) = 12
(ˆ 1/2

−1/2
x3F dx3

)
x3 +

(ˆ 1/2

−1/2
F dx3

)
,

P2(F ) =
(ˆ 1/2

−1/2
(180x2

3 − 15)F dx3

)
x2

3 + 12
(ˆ 1/2

−1/2
x3F dx3

)
x3 +

(ˆ 1/2

−1/2
(−15x2

3 +
9

4
)F dx3

)
Moreover, the distances from spaces E1 and E2 are given by:

dist2
Q2

(F,E1) =

ˆ
ω

( ˆ 1/2

−1/2
Q2

(
x′, F

)
dx3 − 12Q2

(
x′,

ˆ 1/2

−1/2
x3F dx3

)
−Q2

(
x′,

ˆ 1/2

−1/2
F dx3

))
dx′,

dist2
Q2

(F,E2) =

ˆ
ω

( ˆ 1/2

−1/2
Q2

(
x′, F

)
dx3 − 180Q2

(
x′,

ˆ 1/2

−1/2

(
x2

3 −
1

12

)
F dx3

)
− 12Q2

(
x′,

ˆ 1/2

−1/2
x3F dx3

)
−Q2

(
x′,

ˆ 1/2

−1/2
F dx3

))
dx′.

Proof. The Lemma results by a straightforward calculation:

dist2
Q2

(F,E1) = ‖F‖2Q2
− ‖P1(F )‖2Q2

= ‖F‖2Q2
−
(∥∥ˆ 1/2

−1/2
p1F dx3

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p0F dx3

∥∥2

Q2

)
,

dist2
Q2

(F,E2) = ‖F‖2Q2
− ‖P2(F )‖2Q2

= ‖F‖2Q2
−
(∥∥ˆ 1/2

−1/2
p2F dx3

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p1F dx3

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p0F dx3

∥∥2

Q2

)
,

where we have used that: P1(F ) = p1

´ 1/2
−1/2 p1F dx3 + p0

´ 1/2
−1/2 p0F dx3 and similarly: P2(F ) =

p2

´ 1/2
−1/2 p2F dx3 + p1

´ 1/2
−1/2 p1F dx3 + p0

´ 1/2
−1/2 p0F dx3. �

Theorem 2.3. In the setting of Theorem 2.1, lim infh→0
1
h2
Eh(uh) is bounded from below by:

IO2 (y) =
1

2

ˆ
Ω
Q2

(
x′, x3∇y(x′)T∇~b(x′)− 1

2
G1(x)2×2

)
dx

=
1

24

ˆ
ω
Q2

(
x′,
(
∇y(x′)T∇~b(x′)

)
sym
− 1

2
Ḡ1(x′)2×2

)
dx′ +

1

8
dist2

Q2

(
(G1)2×2,E1

)
,

where Ḡ1 is as in (EF). In the non-oscillatory case (NO) this formula becomes:

I2(y) =
1

24

ˆ
ω
Q2

(
x′,
(
∇y(x′)T∇~b(x′)

)
sym
− 1

2
∂3G(x′, 0)2×2

)
dx′.

The first term in IO2 coincides with I2 for the effective metric Ḡ in (EF).

Proof. The argument follows the proof of [12, Theorem 2.1] and thus we only indicate its new

ingredients. Applying the compactness analysis for the x3-independent metric Ḡ, one obtains the

sequence {Rh ∈ L2(ω, SO(3))}h→0 of approximating rotation-valued fields, satisfying:

(2.10)
1

h

ˆ
Ωh

|∇uh(x)Ā(x′)−1 −Rh(x′)|2 dx ≤ Ch2.
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Define now the family {Sh ∈ L2(Ω,R3×3)}h→0 by:

Sh(x′, x3) =
1

h

(
Rh(x′)T∇uh(x′, hx3)Ah(x′, hx3)−1 − Id3

)
.

According to [12], the same quantities, written for the metric Ḡ rather than Gh:

S̄h(x′, x3) =
1

h

(
Rh(x′)T∇uh(x′, hx3)Ā(x′)−1 − Id3

)
,

converge weakly in L2(Ω,R3×3) to S̄, such that:

(2.11)
(
Ā(x′)S̄(x′, x3)Ā(x′)

)
2×2

= s̄(x′) + x3∇y(x′)T∇~b(x′),

with some appropriate s̄ ∈ L2(ω,R2×2). Observe that:

Sh(x′, x3) = S̄h(x′, x3) +
1

h
Rh(x′)T∇hu(x′, hx3)

(
Ah(x′, hx3)−1 − Ā(x′)−1

)
and that the term Rh(x′)T∇uh(x′, hx3) converges strongly in L2(Ω,R3×3) to Ā(x′). On the other

hand, the remaining factor converges uniformly on Ω as h→ 0, because:

(2.12)
1

h

(
Ah(x′, hx3)−1 − Ā(x′)−1

)
= −Ā(x′)−1A1(x′, x3)Ā(x′)−1 +O(h)

Concluding, Sh converge weakly in L2(Ω,R3×3) to S, satisfying by (2.11):

(2.13)
(
Ā(x′)S(x′, x3)Ā(x′)

)
2×2

= s̄(x′) + x3∇y(x′)T∇~b(x′)−
(
Ā(x′)A1(x′, x3)

)
2×2

.

Consequently, using the definition of Sh and frame invariance of W and Taylor expanding W at

Id3 on the set {|Sh|2 ≤ 1/h}, we obtain:

lim inf
h→0

Eh(uh) = lim inf
h→0

1

h2

ˆ
Ω
W
(
Id3 + hSh(x)

)
dx

≥ lim inf
h→0

1

2

ˆ
{|Sh|2≤1/h}

Q3(Sh(x)) + o(|Sh|2) dx

≥ 1

2

ˆ
Ω
Q3

(
S(x)

)
dx ≥ 1

2

ˆ
Ω
Q2

(
x′,
(
Ā(x′)S(x)Ā(x′)

)
2×2

)
dx.

Further, recalling (2.13) and (2.1) we get:

lim inf
h→0

Eh(uh) ≥ 1

2

∥∥s̄sym + x3

(
(∇y)T∇~b

)
sym
− 1

2
(G1)2×2

∥∥2

Q2

=
1

2

∥∥P1

(
s̄sym + x3

(
(∇y)T∇~b

)
sym
− 1

2
(G1)2×2

)∥∥2

Q2
+

1

8

∥∥(G1)2×2 − P1((G1)2×2)
∥∥2

Q2

=
1

2

∥∥s̄sym

∥∥2

Q2
+

1

2

∥∥x3

((
(∇y)T∇~b

)
sym
− 6

ˆ 1/2

−1/2
t(G1)2×2 dt

)∥∥2

Q2
+

1

8
dist2

Q2

(
(G1)2×2,E1

)
≥ 1

24

∥∥((∇y)T∇~b
)

sym
− 6

ˆ 1/2

−1/2
t(G1)2×2 dt

∥∥2

Q2
+

1

8
dist2

Q2

(
(G1)2×2,E1

)
= IO2 (y),

where we have used the fact that Q2(x′, ·) is a function of its symmetrized argument and Lemma

2.2. The formula for I2 in case (NO) is immediate. �

Our next result is the upper bound, parallel to the lower bound in Theorem 2.3:
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Theorem 2.4. Assume (O). For every isometric immersion y ∈W 2,2(ω,R3) of the reduced midplate

metric Ḡ2×2 as in (2.3), there exists a sequence {uh ∈ W 1,2(Ωh,R3)}h→0 such that the sequence

{yh(x′, x3) = uh(x′, hx3)}h→0 converges in W 1,2(Ω,R3) to y and:

(2.14) lim
h→0

1

h2
Eh(uh) = IO2 (y)

Automatically, 1
h∂3y

h converges in L2(Ω,R3) to ~b ∈W 1,2 ∩ L∞(ω,R3) as in (2.4).

Proof. Given an admissible y, we define ~b by (2.4) and also define the matrix field:

(2.15) Q =
[
∂1y, ∂2y, ~b

]
∈W 1,2 ∩ L∞(ω,R3×3).

It follows that Q(x′)Ā(x′)−1 ∈ SO(3) on ω. The recovery sequence uh satisfying (2.14) is then

constructed via a diagonal argument, applied to the explicit deformation fields below. Again, we

only indicate the new ingredients with respect to the proof in [12, Theorem 3.1].

Recalling the notion of the linear vector association c(x′, F2×2) that is minimizing in the right

hand side of the formula (2.7), we define the vector field ~d ∈ L2(Ω,R3) by:

~d(x′, x3) = Q(x′)T,−1

(
x2

3

2

(
c
(
x′,∇y(x′)T∇~b(x′)

)
− 1

2

[
∇|~b|2(x′)

0

])
− 1

2
c
(
x′,

ˆ x3

0
G1(x′, t)2×2 dt

)
+

ˆ x3

0
G1(x′, t) dt e3 −

1

2

ˆ x3

0
G1(x′, t)33 dt e3

)
.

(2.16)

In view of (2.7), the above definition is equivalent to the vector field ∂3
~d ∈ L2(Ω,R3) being, for each

(x′, x3) ∈ Ω, the unique solution to:

Q2

(
x′, x3∇y(x′)T∇~b(x′)− 1

2
G1(x′, x3)2×2

)
= Q3

(
Ā(x′)−1

(
Q(x′)T

[
x3∂1

~b(x′), x3∂2
~b(x′), ∂3

~d(x′, x3)
]
− 1

2
G1(x′, x3)

)
Ā(x′)−1

)
.

One then approximates y,~b by sequences {yh ∈ W 2,∞(ω,R3)}h→0, {bh ∈ W 1,∞(ω,R3)}h→0 respec-

tively, and request them to satisfy conditions exactly as in the proof of [12, Theorem 3.1]. The

warping field ~d is approximated by dh(x′, x3) =
´ x3

0 d̄h(x′, t) dt, where:

d̄h → d̄ = ∂3
~d strongly in L2(Ω,R3) and h‖d̄h‖W 1,∞(Ω,R3) → 0 as h→ 0.

Finally, we define:

(2.17) uh(x′, x3) = yh(x′) + x3b
h(x′) + h2dh

(
x′,

x3

h

)
,

so that, with the right approximation error, there holds:

∇uh(x′, x3) ≈ Q(x′) + h

[
x3

h
∂1
~b(x′),

x3

h
∂2
~b(x′), ∂3

~d
(
x′,

x3

h

)]
.

Using Taylor’s expansion of W , the definition (2.16) and the controlled blow-up rates of the approx-

imating sequences, the construction is done. �

We conclude this section by noting the following easy direct consequence of Theorems 2.3 and 2.4:
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Corollary 2.5. If the set of W 2,2(ω,R3) isometric immersions of Ḡ2×2 is nonempty, then the func-

tional IO2 attains its infimum and:

lim
h→0

1

h2
inf Eh = min I0

2 .

The infima in the left hand side are taken over W 1,2(Ωh,R3) deformations uh, whereas the minima

in the right hand side are taken over W 2,2(ω,R3) isometric immersions y of Ḡ2×2.

3. Identification of the Ch2 scaling regime

In this section, we identify the equivalent conditions for inf Eh ∼ h2 in terms of curvatures of the

metric tensor Ḡ in case (NO). We begin by expressing the integrand tensor in the residual energy

I2 in terms of the shape operator on the deformed midplate. Recall that we always use the Einstein

summation convention over repeated indices running from 1 to 3.

Lemma 3.1. In the the non-oscillatory setting (NO), let y ∈W 2,2(ω,R3) be an isometric immersion

of the metric Ḡ2×2, so that (2.3) holds on ω. Define the Cosserat vector ~b according to (2.4). Then:

(3.1)
(
(∇y)T∇~b

)
sym
− 1

2
∂3G(x′, 0)2×2 =

1√
Ḡ33

Πy +
1

Ḡ33

[
Γ3

11 Γ3
12

Γ3
12 Γ3

22

]
(x′, 0),

for all x′ ∈ ω. Above, Ḡ33 = 〈Ḡ−1e3, e3〉, whereas Πy = (∇y)T∇~ν ∈ W 1,2(ω,R2×2
sym ) is the second

fundamental form of the surface y(ω) ⊂ R3, and {Γikl}i,k,l=1...3 are the Christoffel symbols of G:

Γikl =
1

2
Gim

(
∂lGmk + ∂kGml − ∂mGkl

)
.

Proof. The proof is an extension of the arguments in [12, Theorem 5.3], which we modify for the

case of x3-dependent metric G. Firstly, the fact that QTQ = Ḡ with Q defined in (2.15), yields:

(3.2)
(
(∇y)T∇~b

)
sym

=
([
∂iḠj3

]
i,j=1,2

)
sym
−
[
〈∂ijy,~b〉

]
i,j=1,2

.

Also, ∂iḠ = 2
(
(∂iQ)TQ

)
sym

for i = 1, 2, results in:

(3.3) 〈∂ijy, ∂ky〉 =
1

2

(
∂iGkj + ∂jGik − ∂kGij

)
and:

(∇y)T∂ijy = Γmij (x
′, 0)

[
Ḡm1

Ḡm2

]
for i, j = 1, 2.

Consequently, we obtain the formula:

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1(∇y)T∂ijy =

[
Ḡ13, Ḡ23,

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1

[
Ḡ13

Ḡ23

]] Γ1
ij

Γ2
ij

Γ3
ij

 (x′, 0)

= Ḡm3Γmij (x
′, 0)− 1

Ḡ33
Γ3
ij(x

′, 0).

Computing the normal vector ~ν from (2.4) and noting that det Ḡ2×2/det Ḡ = Ḡ33, we get:

Πij = −〈∂ijy, ~ν〉 = −
√
Ḡ33
(
〈∂ijy,~b〉 −

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1(∇y)T∂ijy

)
=
√
Ḡ33
(
(∇y)T∇~b

)
sym ,ij

− 1√
Ḡ33

Γ3
ij(x

′, 0)−
√
Ḡ33

2
∂3Gij(x

′, 0), for i, j = 1, 2,
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which completes the proof of (3.1). �

The key result of this section is the following:

Theorem 3.2. The energy scaling beyond the Kirchhoff regime:

lim
h→0

1

h2
inf Eh = 0

is equivalent to the following conditions:

(i) in the oscillatory case (O)

(3.4)


(G1)2×2 ∈ E1 or equivalently there holds:

G1(x′, x3)2×2 = x3Ḡ1(x′)2×2 for all (x′, x3) ∈ Ω̄.

Moreover, condition (3.5) below must be satisfied with G replaced by the effective metric

Ḡ in (EF). This condition involves only Ḡ and (Ḡ1)2×2 terms of Ḡ.

(ii) in the non-oscillatory case (NO)

(3.5)


There exists y0 ∈W 2,2(ω,R3) satisfying (2.3) and such that:

Πy0(x′) = − 1√
Ḡ33

[
Γ3

11 Γ3
12

Γ3
12 Γ3

22

]
(x′, 0) for all x′ ∈ ω,

where Πy0 is the second fundamental form of the surface y0(ω) and {Γijk} are the Christoffel

symbols of the metric G.

The isometric immersion y0 in (3.5) is automatically smooth (up to the boundary) and it is unique

up to rigid motions. Further, on a simply connected midplate ω, condition (3.5) is equivalent to:

(3.6)

[
The following Riemann curvatures of the metric G vanish on ω × {0}:

R1212(x′, 0) = R1213(x′, 0) = R1223(x′, 0) = 0 for all x′ ∈ ω.

Above, the Riemann curvatures of a given metric G are:

Riklm =
1

2

(
∂klGim + ∂imGkl − ∂kmGil − ∂ilGkm

)
+Gnp

(
ΓnklΓ

p
im − ΓnkmΓpil

)
.

Proof. By Corollary 2.5, it suffices to determine the equivalent conditions for min IO2 = 0 and

min I2 = 0. In case (O), the linearity of x3 7→ G1(x′, x3)2×2 is immediate, while condition (3.5)

follows in both cases (O) and (NO) by Lemma 3.1. Note that the Christoffel symbols {Γijk} depend

only on Ḡ and ∂3G(x′, 0)2×2 in the Taylor expansion of G. This completes the proof of (i) and (ii).

Regularity of y0 is an easy consequence, via the bootstrap argument, of the continuity equation:

(3.7) ∂ijy0 =

2∑
m=1

γmij ∂my0 − (Πy0)ij~ν0 for i, j = 1, 2,

where {γmij }i,j,m=1...2 denote the Christoffel symbols of Ḡ2×2 on ω. Uniqueness of y0 is a consequence

of (3.5), due to uniqueness of isometric immersion with prescribed second fundamental form.

To show (3.6), we argue as in the proof of [12, Theorem 5.5]. The compatibility of Ḡ2×2 and Πy0

is equivalent to the satisfaction of the related Gauss-Codazzi-Mainardi equations. By an explicit
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calculation, we see that the two Codazzi-Mainardi equations become:(
∂2Γ3

11 − ∂1Γ3
12

)
− 1

2

(
∂2G

33

G33
Γ3

11 −
∂1G

33

G33
Γ3

12

)
+

1

G33
Gm3

(
Γ3

2mΓ3
11 − Γ3

1mΓ3
12

)
=

(
2∑

m=1

Γ3
1mΓm12 −

2∑
m=1

Γ3
2mΓm11

)
+
G32

G33
(Γ3

11Γ3
22 − (Γ3

12)2),

(
∂2Γ3

12 − ∂1Γ3
22

)
− 1

2

(
∂2G

33

G33
Γ3

12 −
∂1G

33

G33
Γ3

22

)
+

1

G33
Gm3

(
Γ3

2mΓ3
12 − Γ3

1mΓ3
22

)
=

(
2∑

m=1

Γ3
1mΓm22 −

2∑
m=1

Γ3
2mΓm12

)
− G31

G33
(Γ3

11Γ3
22 − (Γ3

12)2),

and are equivalent to R3
121 = R3

221 = 0 on ω × {0}. The Gauss equation is, in turn, equivalent to

R1212 = 0 exactly as in [12]. The simultaneous vanishing of R3
121, R

3
221, R1212 is equivalent with the

vanishing of R1212, R1213 and R1223, which proves the claim in (3.6). �

4. Coercivity of the limiting energy I2

In this section we quantify the statement in Theorem 3.2 and prove that when either of I2 or IO2
can be minimized to zero, the effective energy I2(y) measures then the distance of a given isometric

immersion y from the kernel: ker I2 =
{
Qy0 + d; Q ∈ SO(3), d ∈ R3

}
.

Assume that the set of W 2,2(ω,R3) isometric immersions y of Ḡ2×2 is nonempty, which in view of

Theorems 2.3 and 2.4 is equivalent to: inf Eh ≤ Ch2. For each such y, the continuity equation (3.7)

combined with Lemma 3.1 gives the following formula, valid for all i, j = 1, 2:

(4.1) ∂ijy =
∑
m=1,2

γmij ∂my −
√
Ḡ33
((

(∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

)
ij
~ν +

Γ3
ij√
Ḡ33

~ν on ω.

Another consequence of (3.7) is:

|∇2y|2 = |Πy|2 +
∑
i,j=1,2

〈
Ḡ2×2 : [γ1

ij , γ
2
ij ]
⊗2
〉

on ω.

By Lemma 3.1 and since |∇y|2 = trace Ḡ2×2, this yields the bound:

(4.2)
∥∥y −  

ω
y
∥∥2

W 2,2(ω,R3)
≤ C

(
I2(y) + 1

)
,

where C is a constant independent of y. Clearly, when condition (3.6) does not hold, so that

min I2 > 0, the right hand side C
(
I2(y) + 1

)
above may be replaced by CI2(y). On the other hand,

in presence of (3.6), the bound (4.2) can be refined to the following coercivity result:

Theorem 4.1. Assume the curvature condition (3.6) on a metric G as in (NO), and let y0 be the

unique (up to rigid motions in R3) isometric immersion of Ḡ2×2 satisfying (3.5). Then, for all

y ∈W 2,2(ω,R3) such that (∇y)T∇y = Ḡ2×2, there holds:

(4.3) dist2
W 2,2(ω,R3)

(
y,
{
Ry0 + c; R ∈ SO(3), c ∈ R3

})
≤ CI2(y),

with a constant C > 0 that depends on G,ω and W but is independent of y.
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Proof. Without loss of generality, we set
ffl
ω y =

ffl
ω y0 = 0. For any R ∈ SO(3), identity (4.1) implies:ˆ

ω

∣∣∇2y −∇2(Ry0)
∣∣2 dx′ ≤ C

(ˆ
ω

∣∣∇y −∇(Ry0)
∣∣2 dx′

+

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣2 dx′ +

ˆ
ω
|~ν −R~ν0|2 dx′

)
≤ C

(ˆ
ω

∣∣∇y −∇(Ry0)
∣∣2 dx′ +

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣2 dx′
)
,

where we used I2(Ry0) = 0 and the fact that
´
ω |~ν −R~ν0|2 dx′ ≤ C

´
ω

∣∣∇y−∇(Ry0)
∣∣2 dx′ following,

in particular, from |∂1y × ∂2y| = |∂1(Ry0) × ∂2(Ry0)| =
√

det Ḡ2×2. Also, the non-degeneracy of

quadratic forms Q2(x′, ·) in (2.6), implies the uniform bound:ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣2 dx′ ≤ CI2(y).

Taking R ∈ SO(3) as in Lemma 4.2 below, (4.3) directly follows in view of (4.4). �

The next weak coercivity estimate has been the essential part of Theorem 4.1:

Lemma 4.2. Let y and y0 be as in Theorem 4.1. Then there exists R ∈ SO(3) such that:

(4.4)

ˆ
ω
|∇y −R∇y0|2 dx′ ≤ C

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣2 dx′,

with a constant C > 0 that depends on G,ω but it is independent of y.

Proof. Consider the natural extensions u and u0 of y and y0, namely:

u(x′, x3) = y(x′) + x3
~b(x′), u0(x′, x3) = y0(x′) + x3

~b0(x′) for all (x′, x3) ∈ Ωh.

Clearly, u ∈W 1,2(Ωh,R3) and u0 ∈ C1(Ω̄h,R3) satisfies det∇u0 > 0 for h sufficiently small. Write:

ω =

N⋃
k=1

ωk, Ωh =

N⋃
k=1

Ωh
k

as the union of N ≥ 1 open, bounded, connected domains with Lipschitz boundary, such that on

each {Ωh
k = ωk× (−h

2 ,
h
2 )}Nk=1, the deformation u0|Ωh

k
is a C1 diffeomorphism onto its image Uhk ⊂ R3.

1. We first prove (4.4) under the assumption N = 1. Call v = u ◦ u−1
0 ∈W 1,2(Uh,R3) and apply

the geometric rigidity estimate [17] for the existence of R ∈ SO(3) satisfying:

(4.5)

ˆ
Uh

|∇v −R|2 dz ≤ C
ˆ
Uh

dist2
(
∇v, SO(3)

)
dz,

with a constant C depending on a particular choice of h (and ultimately k, when N > 1), but

independent of v. Since ∇v(u0(x)) = ∇u(x)
(
∇u0(x)

)−1
for all x ∈ Ωh, we get:ˆ

Uh

|∇v −R|2 dz =

ˆ
Ωh

(det∇u0)
∣∣(∇u−R∇u0)(∇u0)−1

∣∣2 dx ≥ C
ˆ

Ωh

|∇u−R∇u0|2 dx

= C

ˆ
Ωh

∣∣∣[∂1y, ∂2y, ~b
]
−R

[
∂1y0, ∂2y0, ~b0

]∣∣∣2 + x2
3|∇~b−R∇~b0|2 dx

≥ Ch
ˆ
ω
|∇y −R∇y0|2 dx′.

(4.6)
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Likewise, the change of variables in the right hand side of (4.5) gives:

(4.7)

ˆ
Uh

dist2
(
∇v, SO(3)

)
dz ≤ C

ˆ
Ωh

dist2
(
(∇u)(∇u0)−1, SO(3)

)
dx.

Since (∇u)T∇u(x′, 0) = (∇u0)T∇u0(x′, 0) = Ḡ(x′), by polar decomposition it follows that: ∇u(x′, 0) =

Q(x′) = R̄Ḡ1/2 and ∇u0(x′, 0) = Q0(x′) = R̄0Ḡ1/2 for some R̄, R̄0 ∈ SO(3). The notation Q, Q0 is

consistent with that introduced in (2.15). Observe further:

∇u(x′, x3) = Q+ x3

[
∂1
~b, ∂2

~b, 0
]

= R̄Ḡ1/2
(
Id3 + x3Ḡ−1QT

[
∂1
~b, ∂2

~b, 0
])

= R̄Ḡ1/2
(
Id3 + x3Ḡ−1

((
(∇y)T∇~b

)∗
+ e3 ⊗

[
∇~b, 0

]T~b)),
and similarly:

∇u0(x′, x3) = R̄0Ḡ1/2
(
Id3 + x3Ḡ−1

((
(∇y0)T∇~b0

)∗
+ e3 ⊗

[
∇~b0, 0

]T~b0)).
Consequently, the integrand in the right hand side of (4.7) becomes:

(∇u)(∇u0)−1

= R̄Ḡ1/2

(
Id3 + x3Ḡ−1S

(
Id3 + x3Ḡ−1

(
(∇y0)T∇~b0)∗ + e3 ⊗

[
∇~b0, 0

]T~b0)−1
)
Ḡ−1/2R̄T

0,
(4.8)

where:

S =
(

(∇y)T∇~b− (∇y0)T∇~b0
)∗

+ e3 ⊗
[
∇~b, 0

]T~b− e3 ⊗
[
∇~b0, 0

]T~b0 =
(

(∇y)T∇~b− (∇y0)T∇~b0
)∗

sym
.

The last equality follows from the easy facts that, for i, j = 1, 2, we have:

〈∂i~b,~b〉 = 〈∂i~b0,~b0〉 =
1

2
∂iḠ33

〈∂iy, ∂j~b〉 − 〈∂jy, ∂i~b〉 = 〈∂iy0, ∂j~b0〉 − 〈∂jy0, ∂i~b0〉 = ∂jḠi3 − ∂iḠj3.

Thus, (4.7) and (4.8) imply:
ˆ
Uh

dist2
(
∇v, SO(3)

)
dz ≤ C

ˆ
Ωh

∣∣(∇u)(∇u0)−1 − R̄R̄T
0

∣∣2 dx ≤ C
ˆ

Ωh

∣∣x3S(x′, x3)
∣∣2 dx

≤ C
ˆ
ω

∣∣∣((∇y)T∇~b
)

sym
−
(
(∇y0)T∇~b0

)
sym

∣∣∣2 dx′

= C

ˆ
ω

∣∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣∣2 dx′

(4.9)

with a constant C that depends on G,ω and h, but not on y. We conclude (4.4) in view of (4.5),

(4.6) and (4.9).

2. To prove (4.4) in case N > 1, let k, s : 1 . . . N be such that ωk ∩ ωs 6= Ø. Define:

F =
( ˆ

Ωh
k∩Ωh

s

det∇u0 dx
)−1

ˆ
Ωh

k∩Ωh
s

(det∇u0)(∇u)(∇u0)−1 dx ∈ R3×3.
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Denote by Rk, Rs ∈ SO(3) the corresponding rotations in (4.4) on ωk, ωs. For i ∈ {k, s} we have:

|F −Ri|2 =
∣∣∣(ˆ

Ωh
k∩Ωh

s

det∇u0 dx
)−1

ˆ
Ωh

k∩Ωh
s

(det∇u0)
(
∇u−Ri∇u0

)
(∇u0)−1 dx

∣∣∣2
≤ C

ˆ
Ωh

k∩Ωh
s

|∇u−Ri∇u0|2 dx ≤ C
ˆ

Ωh
i

|∇u−Ri∇u0|2 dx

≤
ˆ
ωi

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣∣2 dx′,

where for the sake of the last bound we applied the intermediate estimate in (4.6) to the left hand

side of (4.5), as discussed in the previous step. Consequently:

|Rk −Rs|2 ≤ C
ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣∣2 dx′,

and thus: ˆ
ωk

|∇y −Rs∇y0|2 dx′ ≤ 2
( ˆ

ωk

|∇y −Rk∇y0|2 dx′ +

ˆ
ωk

|Rk −Rs|2|∇y0|2 dx′
)

≤ C
ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∣∣∣2 dx′.

This shows that one can take one and the same R = R1 on each {ωk}Nk=1, at the expense of possibly

increasing the constant C by a controlled factor depending only on N . The proof of (4.4) is done. �

Remark 4.3. A similar reasoning as in the proof of Lemma 4.2, yields a quantitative version of

the uniqueness of isometric immersion with a prescribed second fundamental form compatible to

the metric by the Gauss-Codazzi-Mainardi equations. More precisely, given a smooth metric g in

ω ⊂ R2, for every two isometric immersions y1, y2 ∈W 2,2(ω,R3) of g, there holds:

min
R∈SO(3)

ˆ
ω
|∇y1 −R∇y2|2 dx′ ≤ C

ˆ
ω
|Πy1 −Πy2 |2 dx′,

with a constant C > 0, depending on g and ω but independent of y1 and y2. �

5. Higher order energy scalings

In this and the next sections we assume that:

(5.1) lim
h→0

1

h2
inf Eh = 0.

Recall that by Theorem 3.2 this condition is equivalent to the existence of a (automatically smooth

and unique up to rigid motions) vector field y0 : ω̄ → R3 satisfying:

(5.2) (∇y0)T∇y0 = Ḡ2×2 and
(
(∇y0)T∇~b0

)
sym

=
1

2
(Ḡ1)2×2 on ω,

where in the oscillatory case (O) the symmetric x′-dependent matrix G1 is given in (EF) and there

must be (G1)2×2 = x3(Ḡ1)2×2, whereas in the non-oscillatory (NO) case Ḡ1(x′) is simply ∂3G(x′, 0).

The (smooth) Cosserat field ~b0 : ω̄ → R3 in (2.4) is uniquely given by requesting that:

Q0
.
=
[
∂1y0, ∂2y0, ~b0

]
satisfies: QT

0Q0 = Ḡ, detQ0 > 0 on ω,
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with notation similar to (2.15). We now introduce the new vector field ~d0 : Ω̄→ R3 through:

(5.3) QT
0

[
x3∂1

~b0(x′), x3∂2
~b0(x′), ∂3

~d0(x′, x3)
]
− 1

2
G1(x′, x3) ∈ so(3),

justified by (5.2) and in agreement with the construction (2.16) of second order terms in the recovery

sequence for the Kirchhoff limiting energies. Explicitly, we have:

~d0(x′, x3) = Q0(x′)T,−1

( ˆ x3

0
G1(x′, t) dt e3 −

1

2

ˆ x3

0
G1(x′, t)33 dt e3 −

x2
3

2

[
(∇~b0)T~b0(x′)

0

])
.

In what follows, the smooth matrix field in (5.3) will be referred to as P0 : Ω̄→ R3×3, namely:

(5.4) P0(x′, x3) =
[
x3∂1

~b0(x′), x3∂2
~b0(x′), ∂3

~d0(x′, x3)
]
.

In the non-oscillatory case (NO), the above formulas become:

~d0 =
x2

3

2
d̃0(x′), P0(x′, x3) = x3

[
∂1
~b0, ∂2

~b0, d̃0

]
(x′),

where: d̃0(x′) = Q0(x′)T,−1

(
∂3G(x′, 0)e3 −

1

2
∂3G(x′, 0)33e3 −

[
(∇~b0)T~b0(x′)

0

])
.

(5.5)

We also note that the assumption
´ 1/2
−1/2 G1(x′, t) dt = 0 implies:

(5.6)

ˆ 1/2

−1/2
P0(x′, x3) dx3 = 0 for all x′ ∈ ω̄.

With the aid of ~d0 we now construct the sequence of deformations with low energy:

Lemma 5.1. Assume (O). Then (5.1) implies:

inf Eh ≤ Ch4.

Proof. Define the sequence of smooth maps {uh : Ω̄h → R3}h→0 by:

(5.7) uh(x′, x3) = y0(x′) + x3
~b0(x′) + h2~d0

(
x′,

x3

h

)
In order to compute ∇uh(Ah)−1, recall the expansion of (Ah)−1, so that:

(5.8) ∇uh(x)Ah(x)−1 = Q0(x′)Ā(x′)−1
(
Id3 + hSh(x) +O(h2)

)
,

where for every x = (x′, x3) ∈ Ωh:

Sh(x) = Ā(x′)−1
(
Q0(x′)TP0

(
x′,

x3

h

)
− Ā(x′)A1

(
x′,

x3

h

))
Ā(x′)−1.

By frame invariance of the energy density W and since Q0(x′)Ā(x′)−1 ∈ SO(3), we obtain:

W
(
∇uh(x)Ah(x)−1

)
= W

(
Id3 + hSh(x) +O(h2)

)
= W

(
Id3 + hSh(x)sym +O(h2)

)
= W

(
Id3 +O(h2)

)
= O(h4),

where we also used the fact that Sh(x)sym = 0 following directly from the definition (5.3). This

implies that Eh(uh) = O(h4) as well, proving the claim. �
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Lemma 5.2. Assume (O) and (5.1). For an open, Lipschitz subset V ⊂ ω, denote:

Vh = V ×
(
− h

2
,
h

2

)
, Eh(uh,Vh) =

1

h

ˆ
Vh

W
(
∇uh(Ah)−1

)
dx.

If y0 is injective on V, then for every uh ∈W 1,2(Vh,R3) there exists R̄h ∈ SO(3) such that:

(5.9)
1

h

ˆ
Vh

∣∣∣∇uh(x)− R̄h
(
Q0(x′) + hP0

(
x′,

x3

h

))∣∣∣2 dx ≤ C
(
Eh(uh,Vh) + h3|Vh|

)
,

with the smooth correction matrix field P0 in (5.4). The constant C in (5.9) is uniform for all

subdomains Vh ⊂ Ωh which are bi-Lipschitz equivalent with controlled Lipschitz constants.

Proof. The proof, similar to [40, Lemma 2.2], is a combination of the change of variable argument

in Lemma 4.2 and the low energy deformation construction in Lemma 5.1. Observe first that:

Q0(x′) + hP0

(
x′,

x3

h

)
= ∇Y h(x′, x3) +O(h2),

where by Y h : Ω̄h → R3 we denote the smooth vector fields in (5.7). It is clear that for sufficiently

small h > 0, each Y h
|Vh is a smooth diffeomorphism onto its image Uh ⊂ R3, satisfying uniformly:

det∇Y h > c > 0. We now consider vh = uh ◦ (Y h)−1 ∈W 1,2(Uh,R3). By the rigidity estimate [17]:

(5.10)

ˆ
Uh

|∇vh − R̄h|2 dz ≤ C
ˆ
Uh

dist2
(
∇vh, SO(3)

)
dz,

for some rotation R̄h ∈ SO(3). Noting that: (∇vh) ◦Y h = (∇uh)(∇Y h)−1 in the set Vh, the change

of variable formula yields for the left hand side in (5.10):ˆ
Uh

|∇vh − R̄h|2 dz =

ˆ
Vh

(det∇Y h)
∣∣(∇uh)(∇Y h)−1 − R̄h

∣∣2 dx

≥ c
ˆ
Vh

∣∣∣∇uh − R̄h(Q0(x′) + hP0

(
x′,

x3

h

)
+O(h2)

)∣∣∣2 dx

≥ c
ˆ
Vh

∣∣∣∇uh − R̄h(Q0(x′) + hP0

(
x′,

x3

h

))∣∣∣2 dx− c
ˆ
Vh

O(h4) dx.

Similarly, the right hand side in (5.10) can be estimated by:ˆ
Uh

dist2
(
∇vh, SO(3)

)
dz =

ˆ
Vh

(det∇Y h) dist2
(
(∇uh)(∇Y h)−1, SO(3)

)
dx

≤ C
ˆ
Vh

dist2
(
(∇uh)(Ah)−1 ·Ah(∇Y h)−1, SO(3)

)
dx

≤ C
ˆ
Vh

dist2
(

(∇uh)(Ah)−1, SO(3)(∇Y h)(Ah)−1
)

dx.

Recall that from (5.8) we have: (∇Y h)(Ah)−1 ∈ SO(3)
(
Id3 + hSh +O(h2)

)
⊂ SO(3)

(
Id3 +O(h2)

)
,

since Sh ∈ so(3). Consequently, the above bound becomes:ˆ
Uh

dist2
(
∇vh, SO(3)

)
dz ≤ C

ˆ
Vh

dist2
(

(∇uh)(Ah)−1, SO(3)(Id3 +O(h2))
)

dx

≤ C
ˆ
Vh

dist2
(

(∇uh)(Ah)−1, SO(3)
)

+O(h4) dx.

The estimate (5.9) follows now in view of (5.10) and by the lower bound on energy density W . �
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The well-known approximation technique [17] combined with the arguments in [40, Corollary 2.3],

yield the following approximation result that can be seen as a higher order counterpart of (2.10):

Corollary 5.3. Assume (O) and (5.1). Then, for any sequence {uh ∈W 1,2(Ωh,R3)}h→0 satisfying:

Eh(uh) ≤ Ch4, there exists a sequence of rotation-valued maps Rh ∈W 1,2(ω, SO(3)), such that with

P0 defined in (5.4) we have:

1

h

ˆ
Ωh

∣∣∣∇uh(x)−Rh(x′)
(
Q0(x′) + hP0

(
x′,

x3

h

))∣∣∣2 dx ≤ Ch4,

ˆ
ω
|∇Rh(x′)|2 dx′ ≤ Ch2.

(5.11)

6. Compactness and Γ-limit under Ch4 energy bound

In this section, we derive the Γ-convergence result for the energy functionals Eh in the von Kármán

scaling regime. The general form of the limiting energy IO4 will be further discussed and split into

the stretching, bending, curvature and excess components in section 7. We begin by stating the

compactness result, that is the higher order version of Theorem 2.1.

Theorem 6.1. Assume (O) and (5.1). Fix y0 solving (5.2) and normalize it to have:
´
ω y0 dx′ = 0.

Then, for any sequence of deformations {uh ∈W 1,2(Ωh,R3)}h→0 satisfying:

(6.1) Eh(uh) ≤ Ch4,

there exists a sequence {R̄h ∈ SO(3)}h→0 such that the following convergences (up to a subsequence)

below, hold for yh ∈W 1,2(Ω,R3):

yh(x′, x3) = (R̄h)T
(
uh(x′, hx3)−

 
Ωh

uh dx
)
.

(i) yh → y0 strongly in W 1,2(Ω,R3) and
1

h
∂3y

h → ~b0 strongly in L2(Ω,R3), as h→ 0.

(ii) There exists V ∈W 2,2(ω,R3) and S ∈ L2(ω,R2×2
sym ) such that, as h→ 0:

V h(x′) =
1

h

ˆ 1/2

−1/2
yh(x′, x3)−

(
y0(x′) + hx3

~b0(x′)
)

dx3 → V strongly in W 1,2(ω,R3)

1

h

(
(∇y0)T∇V h

)
sym

⇀ S weakly in L2(ω,R2×2).

(iii) The limiting displacement V satisfies:
(
(∇y0)T∇V

)
sym

= 0 in ω.

We omit the proof because it follows as in [40, Theorem 3.1] in view of condition (5.6). We only

recall the definitions used in the sequel. The rotations R̄h are given by:

R̄h = PSO(3)

 
Ωh

∇uh(x)Q0(x′)−1 dx

and (5.11) implies that they satisfy, for some limiting rotation R̄:

(6.2)

ˆ
ω
|Rh(x′)− R̄h|2 dx′ ≤ Ch2 and R̄h → R̄ ∈ SO(3).

Consequently:

(6.3) Sh =
1

h

(
(R̄h)TRh(x′)− Id3

)
⇀ S weakly in W 1,2(ω,R3×3)
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The field S ∈ W 1,2(ω, so(3)) is such that (∇y0)T∇V =
(
QT

0SQ0

)
2×2
∈ so(2), which allows for

defining a new vector field ~p ∈W 1,2(ω,R3) through:

(6.4) [∇V, ~p] = SQ0 or equivalently: ~p(x′) = −Q0(x′)T,−1

[
∇V (x′)T~b0(x′)

0

]
for all x′ ∈ ω.

Finally, by (5.11) we note the uniform boundedness of the fields {Zh ∈ L2(Ω,R3×3)}h→0 below,

together with their convergence (up to as subsequence) as h→ 0:

(6.5) Zh(x) =
1

h2

(
∇uh(x′, hx3)−Rh(x′)

(
Q0(x′) + hP0(x′, x3)

))
⇀ Z weakly in L2(Ω,R3×3).

Rearranging terms and using the previously established convergences, it can be shown that:

(6.6) S(x′) =

(
QT

0(x′)R̄T

ˆ 1/2

−1/2
Z(x′, x3) dx3

)
2×2,sym

− 1

2
∇V (x′)T∇V (x′) for all x′ ∈ ω.

Theorem 6.2. In the setting of Theorem 6.1, lim infh→0
1
h4
Eh(uh) is bounded below by:

IO4 (V,S) =
1

2

ˆ
Ω
Q2

(
x′, I(x′) + x3III(x′) + II(x)

)
dx =

1

2
‖I + x3III + II‖2Q2

,

where:

I(x′) = S(x′) +
1

2
∇V (x′)T∇V (x′)−∇y0(x′)T∇

ˆ 1/2

−1/2

~d0(x) dx3,

III(x′) = ∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b0,

II(x) =
x2

3

2
∇~b0(x′)T∇~b0(x′) +∇y0(x′)T∇tan

~d0(x)− 1

4
G2(x)2×2.

(6.7)

Proof. 1. Towards estimating the energy Eh(uh), we replace the argument ∇uh(x)Ah(x)−1 of the

frame invariant density W by:(
Q0Ā

−1
)
(x′)TRh(x′)T∇uh(x)Ah(x)−1

=
(
Q0Ā

−1
)
(x′)TQ0(x′)Ah(x)−1 + hĀ(x′)−1Q0(x′)TP0

(
x′,

x3

h

)
Ah(x)−1

+ h2Ih3
(
x′,

x3

h

)
for all x ∈ Ωh,

(6.8)

where Ih3 is given in (6.11). Calculating the higher order expansion of (2.12):

Ah(x)−1 = Ā(x′)−1 + Ā(x′)−1
(
− hA1

(
x′,

x3

h

)
+ h2A1

(
x′,

x3

h

)
Ā(x′)−1A1

(
x′,

x3

h

)
− h2

2
A2

(
x′,

x3

h

))
Ā(x′)−1 + o(h2),

(6.9)

the expressions in (6.8) can be written as:(
Q0Ā

−1
)
(x′)TRh(x′)T∇uh(x′, hx3)Ah(x′, hx3)−1

= Id3 + hI1(x′, x3) + h2
(
I2(x′, x3) + Ih3 (x′, x3)

)
+ o(h2) for all x ∈ Ω,

(6.10)
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where I1 : Ω→ so(3) and I2 : Ω→ R3×3 are smooth matrix fields, given by:

I1(x) = Ā(x′)−1
(
Q0(x′)TP0(x)− Ā(x′)A1(x)

)
Ā(x′)−1

I2(x) = Ā(x′)−1
(
Ā(x′)A1(x)Ā(x′)−1A1(x)− 1

2
Ā(x′)A2(x)−Q0(x′)TP0(x)Ā(x′)−1A1(x)

)
Ā(x′)−1.

The fact that I1(x) ∈ so(3) follows from (5.3). Also, we have:

Ih3 (x) = Ā(x′)−1Q0(x′)TRh(x′)TZh(x)Ah(x′, hx3)−1

⇀ I3(x) = Ā(x′)−1Q0(x′)TR̄TZ(x)Ā(x)−1 weakly in L2(Ω,R3×3),
(6.11)

where we used (6.8) and (6.2) to pass to the limit with (Rh)T. As in the proof of Theorem 2.3,

we now identify the “good” sets {|Ih3 |2 ≤ 1/h} ⊂ Ω and employ (6.10) to write there the following

Taylor’s expansion of W (∇uh(Ah)−1):

W
(
∇uh(x′, hx3)Ah(x′, hx3)−1

)
= W

(
Id3 + hI1(x) + h2(I2(x) + Ih3 (x)) + o(h2)

)
= W

(
e−hI1(x)

(
Id3 + hI1(x) + h2(I2(x) + Ih3 (x))

)
+ o(h2)

)
= W

(
Id3 + h2

(
I2 −

1

2
I2

1 + Ih3
)

+ o(h2)
)

=
h4

2
Q3

((
I2 −

1

2
I2

1 + Ih3
)

sym

)
+ o(h4).

(6.12)

Above, we repeatedly used the frame invariance of W and the exponential formula:

e−hI1 = Id3 − hI1 +
h2

2
I2

1 +O(h3).

Since the weak convergence in (6.11) implies convergence of measures
∣∣|Ih3 |2 ≥ 1/h

∣∣ → 0 as h → 0,

with the help of (6.12) we finally arrive at:

lim inf
h→0

1

h4

1

h

ˆ
Ωh

W
(
∇uh(x)Ah(x)−1

)
dx ≥ lim inf

h→0

1

2

ˆ
|Ih3 |2≤1/h

Q3

(
I2 −

1

2
I2

1 + Ih3
)

dx

≥ 1

2

ˆ
Ω
Q3

(
I2 −

1

2
I2

1 + I3

)
dx =

1

2

ˆ
Ω
Q2

(
x′,
(
Ā(I2 −

1

2
I2

1 + I3)Ā
)

2×2

)
dx.

(6.13)

2. We now compute the effective integrand in (6.13). Firstly, by (2.1) a direct calculation yields:

(6.14)
(
I2(x)− 1

2
I1(x)2

)
sym

=
(
I2

)
sym

+
1

2
IT

1 I1 =
1

2
Ā(x′)−1

(
P0(x)TP0(x)− 1

2
G2(x)

)
Ā(x′)−1

Secondly, to address the symmetric part of the limit I3 in (6.11), consider functions fs,h : Ω→ R3:

fs,h(x) =

 s

0

(
h(R̄h)TZh(x′, x3 + t) + Sh(x′)

(
Q0(x′) + hP0(x′, x3 + t)

))
e3 dt.

By (6.3) it easily follows that:

(6.15) fs,h → S~b0 = ~p strongly in L2(Ω,R3), as h→ 0.
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On the other hand, we write an equivalent form of fs,h and compute the tangential derivatives:

fs,h(x) =
1

h2s

(
yh(x′, x3 + s)− yh(x′, x3)

)
− 1

h
~b0(x′)− 1

s

(
~d0(x′, x3 + s)− ~d0(x′, x3)

)
,

∂if
s,h(x) =

1

s
(R̄h)T

(
Zh(x′, x3 + s)− Zh(x′, x3)

)
ei + Sh(x′)∂i~b0(x′)

− 1

s

(
∂i~d0(x′, x3 + s)− ∂i~d0(x′, x3)

)
for i = 1, 2. In view of (6.2) and (6.3) and equating the tangential derivatives ∂1, ∂2, result in:

R̄T
(
Z(x′, x3)− Z(x′, 0)

)
ei = x3

(
∂i~p(x

′)− S(x′)∂i~b0(x′)
)

+ ∂i~d0(x′, x3)− ∂i~d0(x′, 0).

Further, by (6.11), (6.4) and since S ∈ so(3), it follows that:(
Ā(x′)I3(x)Ā(x′)

)
2×2,sym

=
(
Q0(x′)TR̄TZ(x)

)
2×2,sym

=
(
Q0(x′)TR̄TZ(x′, 0)

)
2×2,sym

+ x3

(
∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b0

)
sym

+
(
Q0(x′)T∇~d0(x)

)
2×2,sym

(6.16)

On the other hand, taking the x3-average and recalling (6.6), we get:(
Q0(x′)TR̄TZ(x′, 0)

)
2×2,sym

= S(x′) +
1

2
∇V (x′)T∇V (x′)−

(
∇y0(x′)T∇

ˆ 1/2

−1/2

~d0(x) dx3

)
sym

(6.17)

3. We now finish the proof of Theorem 6.2. Combining (6.14), (6.16) and (6.17), we see that:(
Ā(x′)(I2 −

1

2
I2

1 + I3)Ā(x′)
)

2×2,sym
=
(
I(x′) + x3III(x′) + II(x)

)
sym

on Ω,

where I, II, III are as in (6.7). In virtue of (6.13), we obtain:

lim inf
h→0

1

h4

1

h

ˆ
Ωh

W
(
∇uh(x)Ah(x)−1

)
dx ≥ 1

2

ˆ
Ω
Q2

(
x′, I(x′) + x3III(x′) + II(x)

)
dx.

This yields the claimed lower bound by IO4 (V,S). �

For the upper bound statement, define the linear spaces:

V =
{
V ∈W 2,2(ω,R3);

(
∇y0(x′)T∇V (x′)

)
sym

= 0 for all x′ ∈ ω
}
,

S = clL2(ω,R2×2)

{(
(∇y0)T∇w

)
sym

; w ∈W 1,2(ω,R3)
}
.

(6.18)

We see that the limiting quantities V and S in Theorem 6.2 satisfy: V ∈ V , S ∈ S . The space V

consists of the first order infinitesimal isometries on the smooth minimizing immersion surface y0(ω),

i.e. those Sobolev-regular displacements V that preserve the metric on y0(ω) up to first order. The

tensor fields S ∈ S are the finite strains on y0(ω), eventually forcing the stretching term in the von

Kármán energy IO4 to be of second order.

Theorem 6.3. Assume that y0 solves (5.2). Then, for every (V,S) ∈ V ×S there exists a sequence

{uh ∈ W 1,2(Ωh,R3)}h→0 such that the rescaled sequence {yh(x′, x3) = uh(x′, hx3)}h→0 satisfies (i)

and (ii) of Theorem 6.1, together with:

(6.19) lim
h→0

1

h4
Eh(uh) = IO4 (V,S).
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Proof. 1. Given admissible V and S, we first define the ε-recovery sequence {uh ∈W 1,∞(Ωh,R3)}h→0.

The ultimate argument for (6.19) will be obtained via a diagonal argument. We set:

uh(x′, x3) = y0(x′) + hvh(x′) + h2wh(x′) + x3
~b0(x′) + h2~d0

(
x′,

x3

h

)
+ h3~k0

(
x′,

x3

h

)
+ hx3~p

h(x′) + h2x3~q
h(x′) + h3~r h

(
x′,

x3

h

)
for all (x′, x3) ∈ Ωh.

The smooth vector fields ~b0 and ~d0 are as in (5.2), (5.3). We now introduce other terms in the above

expansion. The sequence {wh ∈ C∞(ω,R3)}h→0 is such that:(
(∇y0)T∇

(
wh +

ˆ 1/2

−1/2

~d0(·, t) dt
))

sym
→ S strongly in L2(ω,R2×2) as h→ 0,

lim
h→0

√
h‖wh‖W 2,∞(ω,R3) = 0.

(6.20)

Existence of such a sequence is guaranteed by the fact that S ∈ S , where we “slow down” the

approximations {wh} to guarantee the blow-up rate of order less that h−1/2. Further, for a fixed

small ε > 0, the truncated sequence {vh ∈ W 2,∞(ω,R3)}h→0 is chosen according to the standard

construction in [17] (see also references therein), in a way that:

vh → V strongly in W 2,2(ω,R3) as h→ 0,

h‖vh‖W 2,∞(ω,R3) ≤ ε and lim
h→0

1

h2

∣∣{x′ ∈ ω; vh(x′) 6= V (x′)}
∣∣ = 0.

(6.21)

The vector field ~k0 ∈ C∞(Ω̄,R3) and sequences {~ph, ~q h ∈ W 1,∞(ω,R3)}h→0, {r̃h ∈ L∞(Ω,R3)}h→0

are defined by:

(6.22)

QT
0~p

h =

[
−(∇vh)T~b0

0

]
,

QT
0~q

h = c
(
x′,
(
(∇y0)T∇wh

)
sym

+
1

2
(∇vh)T∇vh

)
−
[
(∇vh)T~ph

1
2 |~p

h|2

]
−

[
(∇wh)T~b0

0

]
,

QT
0∂3

~k0 = c
(
x′,
(
(∇y0)T∇tan

~d0

)
sym

+
x2

3

2
(∇~b0)T∇~b0 −

1

4
(G2)2×2

)
−

[
x3(∇~b0)T∂3

~d0
1
2 |∂3

~d0|2

]
+

[
(∇tan

~d0)T~b0
0

]
+

1

2
G2e3 −

1

4
(G2)33e3,

QT
0r̃
h =x3c

(
x′,
(
(∇y0)T∇~ph + (∇vh)T∇~b0

)
sym

)
−

[
(∇vh)T∂3

~d0

〈~ph, ∂3
~d0〉

]
.

Finally, we choose {~r h ∈W 1,∞(Ω,R3)}h→0 to satisfy:

(6.23) lim
h→0
‖∂3~r

h − r̃h‖L2(Ω,R3) = 0 and lim
h→0

√
h‖~r h‖W 1,∞(Ω,R3) = 0.

2. Observe that for all (x′, x3) ∈ Ω there holds::

∇uh(x′, hx3) =Q0 + h
([
∇vh, ~ph

]
+ P0

)
+ h2

([
∇wh, ~q h

]
+
[
x3∇~ph, ∂3~r

h
]

+
(
∇tan

~d0, ∂3
~k0

])
+O(h3)

(
|∇~k0|+ |∇~q h|+ |∇~r h|

)
.
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Consequently, by (6.9) it follows that:

(
(∇uh)(Ah)−1

)
(x′, hx3) = Q0Ā

−1
(
Id3 + hĀ−1Jh1 Ā

−1 + h2Ā−1Jh2 Ā
−1 + J3

h

)
,

where:

Jh1 = QT
0

([
∇vh, ~ph

]
+ P0

)
− ĀA1,

Jh2 = QT
0

([
∇wh, ~q h

]
+
[
x3∇~ph, ∂3~r

h
]

+
[
∇~d0, ∂3

~k0

])
− Jh1 Ā−1A1 −

1

2
ĀA2,

and where Jh1 , Jh2 , Jh3 satisfy the uniform bounds (independent of ε):

|Jh1 | ≤ C
(
1 + |∇vh|

)
,

|Jh2 | ≤ C
(
1 + |∇wh|+ |∇vh|2 + |∇2vh|+ |∇~r h|

)
,

|Jh3 | ≤ Ch3
(
1 + |∇wh|+ |∇2wh|+ |∇vh|2 + |∇2vh|+ |∇vh| · |∇2vh|+ |∇~r h|

)
+ o(h2).

In particular, the distance dist
(
(∇uh)(Ah)−1, SO(3)

)
≤ |(∇uh)(Ah)−1 − Q0Ā

−1| is as small as one

wishes, uniformly in x ∈ Ω, for h sufficiently small. Thus, the argument (∇uh)(Ah)−1 of the frame

invariant density W in Eh(uh) may be replaced by its polar decomposition factor:((
∇uh(Ah)−1

)T(∇uh(Ah)−1
))1/2

=
(
Id3 + 2h2Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +Rh

)1/2

= Id3 + h2Ā−1
(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +Rh,

where Rh stands for any quantity obeying the following bound:

Rh = O(h)|(Jh1 )sym |+O(h3)
(
1 + |∇vh|

)(
1 + |∇wh|+ |∇vh|2 + |∇2vh|+ |∇~r h|

)
+O(h3)|∇2wh|+ o(h2).

In conclusion, Taylor’s expansion of W at Id3 gives:

(6.24)

1

h4

ˆ
Ω
W
(

(∇uh)(Ah)−1(x′, hx3)
)

dx

=
1

h4

ˆ
Ω
W
(((
∇uh(Ah)−1

)T(∇uh(Ah)−1
))1/2

(x′, hx3)
)

dx

≤ 1

2

ˆ
Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +

1

h2
Rh
)

dx

+O(h2)

ˆ
Ω
|Jh2 |3 + |Jh1 |6 dx+

O(1)

h4

ˆ
Ω
|Rh|3 dx.

The residual terms above are estimated as in [40], using (6.20), (6.21), (6.23). We have:

h2

ˆ
Ω
|Jh2 |3 + |Jh1 |6 dx ≤ h2

ˆ
Ω

1 + |∇wh|3 + |∇vh|6 + |∇2vh|3 + |∇~r h|3 dx ≤ o(1),
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as h2
´

Ω |∇v
h|6 dx ≤ Ch2‖∇vh‖6W 1,2 = o(1) and h2

´
Ω |∇

2vh|3 dx ≤ εh
´

Ω |∇
2vh|2 dx = o(1). Further:

1

h4

ˆ
Ω
|Rh|2 dx ≤ 1

h2

ˆ
Ω

∣∣((∇y0)T∇vh
)

sym

∣∣2 dx

+O(h2)

ˆ
Ω

(
1 + |∇vh|2

)(
1 + |∇wh|2 + |∇vh|4 + |∇2vh|2 + |∇~r h|2

)
dx

+O(h2)

ˆ
Ω
|∇2wh|2 dx+ o(1)

= o(1) +O(h2)

ˆ
Ω
|∇vh| · |∇2vh|2 ≤ Cε,

because the last condition in (6.21) implies:

1

h2

ˆ
Ω

∣∣((∇y0)T∇vh
)

sym

∣∣2 dx ≤ C

h2
‖∇2vh‖L∞

ˆ
{vh 6=V }

dist2(x′, {vh = V }) dx′

≤ Cε2

h4

ˆ
{vh 6=V }

dist2(x′, {vh = V }) dx′ ≤ Cε2 1

h2

∣∣{vh 6= V }
∣∣ = o(1).

(6.25)

From the two estimates above it also follows that 1
h4

´
Ω |R

h|3 dx = o(1). Consequently, (6.24) yields:

(6.26) lim sup
h→0

1

h4
Eh(uh) ≤ Cε+ lim sup

h→0

1

2

ˆ
Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )T

)
Ā−2Jh1

)
Ā−1

)
dx.

3. Observe now that:

(Jh2 )sym +
1

2
(Jh1 )TĀ−2Jh1 =−

((
(∇y0)T∇vh

)∗
sym

Ā−1A1

)
sym

+
(
QT

0

[
∇wh, ~q h

]
+QT

0

[
x3∇~ph, ∂3~r

h
]

+QT
0

[
∇~d0, ∂3

~k0

])
sym

+
1

2

[
∇vh, ~ph

]T[∇vh, ~ph]+
([
∇vh, ~ph

]T
P0

)
sym

+
1

2
P T

0 P0 −
1

4
G2.

Replacing ∂3~r
h by r̃h and using (6.22), it follows that:( ˆ

Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1

)
dx

)1/2

≤
( ˆ

Ω
Q2

(
x′,
(
(∇y0)T∇wh

)
sym

+
1

2
(∇vh)T∇vh + x3

(
(∇y0)T∇~ph + (∇vh)T∇~b0

)
sym

+
x2

3

2
(∇~b0)T∇~b0 −

1

4
(G2)2×2

)
dx

)1/2

+ ‖
(
(∇y0)T∇vh

)
sym
‖L2(Ω) + ‖∂3~r

h − r̃h‖L2(Ω).

The second term above converges to 0 by (6.25) and the third term also converges to 0, by (6.23).

On the other hand, the first term can be split into the integral on the set {vh = V }, whose limit as

h→ 0 is estimated by IO4 (V,S), and the remaining integral that is bounded by:

C

ˆ
{vh 6=V }×(− 1

2
, 1
2

)
1 + |∇wh|2 + |∇vh|4 + |∇2vh|2 + |∇~r h|3 dx

≤ Cε2 1

h2
|{vh 6= V }|+ C

ˆ
{vh 6=V }

|∇vh|4 dx′ ≤ o(1) + C|{vh 6= V }|1/2‖∇vh‖4L8 = o(1).
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In conclusion, (6.26) becomes (with a uniform constant C that does not depend on ε):

lim sup
h→0

1

h4
Eh(uh) ≤ Cε+ IO4 (V,S).

A diagonal argument applied to the indicated ε-recovery sequence {uh}h→0 completes the proof. �

Corollary 6.4. The functional IO4 attains its infimum and there holds:

lim
h→0

1

h4
inf Eh = min IO4 .

The infima in the left hand side are taken over W 1,2(Ω,R3) deformations uh, whereas the minimum

in the right hand side is taken over admissible displacement-strain couples (V,S) ∈ V ×S in (6.18).

7. Further discussion of IO4 and reduction to the non-oscillatory case (NO)

In this section, we identify the appropriate components of the integrand in the energy IO4 as:

stretching, bending, curvature and the order-4 excess, the latter quantity being the projection of the

entire integrand on the orthogonal complement of E2 in E. This superposition is in the same spirit,

as the integrand of IO2 in Theorem 2.3 decoupling into bending and the order-2 excess, defined as

the projection on the orthogonal complement of E1. There, the assumed condition
´ 1/2
−1/2 G1 dx3 = 0

served as the compatibility criterion, assuring that the 2-excess being null results in IO4 coinciding

with the non-oscillatory limiting energy I4, written for the effective metric Ḡ in (EF). Below, we

likewise derive the parallel version I4 of IO4 , corresponding to the non-oscillatory case, and show

that the vanishing of the 4-excess reduces IO4 to I4 (for the effective metric (EF)), under two new

further compatibility conditions (7.9) on (G2)2×2.

The following formulas will be useful in the sequel:

Lemma 7.1. In the non-oscillatory setting (NO), let y0, ~b0 be as in (5.2) and d̃0 as in (5.5). Then:

(7.1)
[
∂ijy0, ∂i~b0, d̃0

]
(x′) =

[
∂1y0, ∂2~y0, ~b0

]
(x′) ·

 Γ1
ij Γ1

i3 Γ1
33

Γ2
ij Γ2

i3 Γ2
33

Γ3
ij Γ3

i3 Γ3
33

 (x′, 0) for i, j = 1, 2,

for all x′ ∈ ω. Consequently, for any smooth vector field ~q : ω → R3 there holds:[
∇y0(x′)T∇

(
Q0(x′)T,−1~q(x′)

)]
i,j=1,2

= ∇~q(x′)2×2 −
[〈
~q(x′), [Γ1

ij , Γ2
ij , Γ3

ij ](x
′, 0)

〉]
i,j=1,2

.

Above, {Γkij} are the Christoffel symbols of the metric G and the expression in the right and side

represents the tangential part of the covariant derivative of the (0, 1) tensor field ~q with respect to G.

Proof. In view of
(
(∇y0)T∇~b0

)
sym

= 1
2∂3G(x′, 0)2×2 in (5.2) and recalling (3.2), we get:

〈∂ijy0,~b0〉 =
1

2

(
∂iGj3 + ∂jGi3 − ∂3Gij

)
(x′, 0) for all i, j = 1, 2,

which easily results in:

〈∂i~b0, ∂jy0〉 =
1

2

(
∂iGj3 − ∂jGi3 + ∂3Gij

)
(x′, 0) and 〈∂i~b0,~b0〉 =

1

2
∂iG33(x′, 0).
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Thus (3.3) and the above allow for computing the coordinates in the basis ∂1y0, ∂2y0,~b0 as claimed

in (7.1); see also [40, Theorem 6.2] for more details. The second formula results from:〈
∂iy0, ∂j

(
QT,−1

0 ~q
)〉

=
〈
∂iy0, ∂j

(
QT,−1

0

)
~q
〉

+
〈
∂iy0, Q

T,−1

0 ∂j~q
〉

= −
〈
∂iy0, Q

T,−1

0 ∂j
(
QT

0

)
QT,−1

0 ~q
〉

+
〈
Q−1

0 ∂iy0, ∂j~q
〉

= −
〈
Q−1

0 ∂j
(
Q0

)
ei, ~q

〉
+
〈
ei, ∂j~q

〉
,

which together with (7.1) yields the Lemma. �

Lemma 7.2. In the non-oscillatory setting (NO), let y0, ~b0 be as in (5.2) and d̃0 as in (5.5). Then

the metric-related term II in (6.7) has the form II =
x23
2

¯II(x′) and for all x′ ∈ ω we have:

(7.2) ¯IIsym = (∇~b0)T∇~b0 +
(
(∇y0)T∇d̃0

)
sym
− 1

2
∂33G(x′, 0)2×2 =

[
R1313 R1323

R1323 R2323

]
(x′, 0).

Above, Rijkl are the Riemann curvatures of the metric G, evaluated at the midplate points x′ ∈ ω.

Proof. We argue as in the proof of [40, Theorem 6.2]. Using (5.3) we arrive at:(
(∇y0)T∇d̃0

)
sym

=−
[
〈∂ijy0, ~d0〉

]
i,j=1,2

+
1

2
∂33G(x′, 0)2×2

+
[
Ri2j3 −Gnp

(
Γni3Γpj3 − ΓnijΓ

p
33

)]
i,j=1,2

(x′, 0).
(7.3)

Directly from (7.1) we hence obtain:

(7.4) 〈∂ij~y0, d̃0〉 = GnpΓ
n
ijΓ

p
33, 〈∂i~b0, ∂j~b0〉 = GnpΓ

n
i3Γpj3,

which together with (7.3) yields (7.2). �

With the use of Lemma 7.2, it is quite straightforward to derive the ultimate form of the energy

IO4 in the non-oscillatory setting. In particular, the proof of the following result is a special case of

the proof of Theorem 7.5 below.

Theorem 7.3. Assume (NO) and (5.1). The expression (7.6) becomes:

I4(V,S) =
1

2

ˆ
ω
Q2

(
x′,S(x′) +

1

2
∇V (x′)T∇V (x′) +

1

24
∇~b0(x′)T∇~b0(x′)− 1

48
∂33G(x′, 0)2×2

)
dx′

+
1

24

ˆ
ω
Q2

(
x′,∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b0(x′)

)
dx′

+
1

1440

ˆ
ω
Q2

(
x′,

[
R1313 R1323

R1323 R2323

]
(x′, 0)

)
dx′,

where Rijkl stand for the Riemann curvatures of the metric G.

Remark 7.4. In the particular, “flat” case of G = Id3 the functional I4 reduces to the classical von

Kármán energy below. Indeed, the unique solution to (5.2) is: y0 = id, ~b0 = e3 and further:

V =
{
V (x) = (αx⊥ + ~β, v(x)); α ∈ R, ~β ∈ R2, v ∈W 2,2(ω)

}
,

S =
{

sym∇w; w ∈W 1,2(ω,R2)
}
.

Given V ∈ V , we have ~p = (−∇v, 0) and thus:

I4(V,S) =
1

2

ˆ
ω
Q2

(
x′, sym∇w +

1

2
(α2Id2 +∇v ⊗∇v)

)
dx′ +

1

24

ˆ
ω
Q2

(
x′,∇2v

)
dx′.
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Absorbing the stretching α2Id2 into sym∇w, the above energy can be expressed in a familiar form:

(7.5) I4(v, w) =
1

2

ˆ
ω
Q2

(
x′, sym∇w +

1

2
∇v ⊗∇v

)
dx′ +

1

24

ˆ
ω
Q2

(
x′,∇2v

)
dx′,

as a function of the out-of-plane scalar displacement v and the in-plane vector displacement w. �

As done for the Kirchhoff energy IO2 in Theorem 2.3, we now identify conditions allowing IO4 to

coincide with I4 of the effective metric Ḡ, modulo the introduced below order-4 excess term.

Theorem 7.5. In the setting of Theorem 6.2, we have:

IO4 (V,S) =
1

2

ˆ
ω
Q2

(
x′,S +

1

2
(∇V )T∇V +B0

)
dx′

+
1

24

ˆ
ω
Q2

(
x′, (∇V )T∇~b0 + (∇y0)T∇~p+ 12B1

)
dx′

+
1

1440

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + (∇y0)T∇d̃0 −

1

2
(Ḡ2)2×2

)
dx′

+
1

2
dist2

Q2

(
IIsym ,E2

)
,

(7.6)

where Ḡ1 and Ḡ2 are given in (EF), inducing d̃0 via (5.5) for ∂3G = Ḡ1, and where we introduce the

following purely metric-related quantities:

dist2
Q2

(
IIsym ,E2

)
= dist2

(ˆ x3

0
∇(G1e3)2×2,sym dt

−
[〈ˆ x3

0
G1e3 dt, [Γ1

ij , Γ2
ij , Γ3

ij ](x
′, 0)

〉]
i,j=1,2

+
1

2

ˆ x3

0
(G1)33 dt

[
Γ3
ij(x

′, 0)
]
i,j=1,2

− 1

4
(G2)2×2, E2

)
,

(7.7)

B0 =
1

24
(∇~b0)T∇~b0 −

1

4

ˆ 1/2

−1/2
(G2)2×2 dx3 =

1

24

[
ḠnpΓni3Γpj3

]
i,j=1,2

− 1

4

ˆ 1/2

−1/2
(G2)2×2 dx3,

B1 = (∇y0)T∇
( ˆ 1/2

−1/2
x3
~d0 dx3

)
− 1

4

ˆ 1/2

−1/2
x3(G2)2×2 dx3

= −∇
( ˆ 1/2

−1/2

x2
3

2
G1e3 dx3

)
2×2

+
[〈ˆ 1/2

−1/2

x2
3

2
G1e3 dx3, [Γ

1
ij , Γ2

ij , Γ3
ij ](x

′, 0)
〉]

i,j=1,2

− 1

2

ˆ 1/2

−1/2

x2
3

2
(G1)33 dx3

[
Γ3
ij(x

′, 0)
]
i,j=1,2

− 1

4

ˆ 1/2

−1/2
x3(G2)2×2 dx3,

(7.8)

By {Γkij} we denote the Christoffel symbols of the metric Ḡ in (EF). The third term in (7.6) equals

the scaled norm of the Riemann curvatures of the effective metric Ḡ:

1

1440

ˆ
ω
Q2

(
x′,

[
R1313 R1323

R1323 R2323

]
(x′, 0)

)
dx′.
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The first three terms in IO4 coincide with I4 in Theorem 7.3 for the effective metric Ḡ in (EF),

provided that the following compatibility conditions hold:
ˆ 1/2

−1/2

(
15x2

3 −
9

4

)
G2(x′, x3)2×2 dx3 = 0,

1

4

ˆ 1/2

−1/2
x3G2(x′, x3)2×2 dx3 +∇

( ˆ 1/2

−1/2

x2
3

2
G1e3 dx3

)
2×2,sym

−
[〈 ˆ 1/2

−1/2

x2
3

2
G1e3 dx3, [Γ

1
ij , Γ2

ij , Γ3
ij ](x

′, 0)
〉]

i,j=1,2

+
1

2

ˆ 1/2

−1/2

x2
3

2
(G1)33 dx3

[
Γ3
ij(x

′, 0)
]
i,j=1,2

= 0.

(7.9)

Proof. We write:

IO4 (V,S) =
1

2
‖I + x3III + II‖2Q2

=
1

2
‖I + x3III + P2(II)‖2Q2

+
1

2
dist2

Q2

(
IIsym ,E2

)
,

and further decompose the first term above along the Legendre projections:

‖I + x3III + P2(II)‖2Q2
=
∥∥ˆ 1/2

−1/2
(I + x3III + II)p0(x3) dx3

∥∥2

Q2

+
∥∥ˆ 1/2

−1/2
(I + x3III + II)p1(x3) dx3

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
(I + x3III + II)p2(x3) dx3

∥∥2

Q2

=
∥∥I +

ˆ 1/2

−1/2
II dx3

∥∥2

Q2︸ ︷︷ ︸
Stretching

+
1

12

∥∥III + 12

ˆ 1/2

−1/2
x3II dx3

∥∥2

Q2︸ ︷︷ ︸
Bending

+
∥∥ˆ 1/2

−1/2
p2(x3)II dx3

∥∥2

Q2︸ ︷︷ ︸
Curvature

.

To identify the four indicated terms in IO4 , observe that
´ 1/2
−1/2 x3

´ x3
0 G1 dx3 = −

´ 1/2
−1/2

x23
2 G1 dx3 and:

dist2
Q2

(
IIsym ,E2

)
= dist2

Q2

((
(∇y0)T∇

(
QT,−1

0

ˆ x3

0
G1e3 dt− 1

2
QT,−1

0

ˆ x3

0
(G1)33 dt e3

))
sym
− 1

4
(G2)2×2,E2

)
.

Thus the formulas in (7.7) and (7.8) follow directly from Lemma 7.1 and (7.4). There also holds:

Stretching =

ˆ
ω
Q2

(
x′, S +

1

2
(∇V )T∇V +

1

24
(∇~b0)T∇~b0 −

1

4

ˆ 1/2

−1/2
(G2)2×2 dx3

)
dx′,

Bending =
1

12

ˆ
ω
Q2

(
x′, (∇V )T∇~b0 + (∇y0)T∇~p

+ 12(∇y0)T∇
( ˆ 1/2

−1/2
x3
~d0 dx3

)
− 3

ˆ 1/2

−1/2
x3(G2)2×2 dx3

)
, dx′

Curvature =
1

720

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + 60(∇y0)T∇

( ˆ 1/2

−1/2
(6x2

3 −
1

2
)~d0 dx3

)
− 15

ˆ 1/2

−1/2
(6x2

3 −
1

2
)(G2)2×2 dx3

)
dx′.
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It is easy to check that with the choice of the effective metric components Ḡ1e3 and (Ḡ2)2×2 and

denoting d̃0 the corresponding vector in (5.5), we have:

Curvature =
1

720

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + (∇y0)T∇d̃0 −

1

2
(Ḡ2)2×2

)
dx′.

This proves (7.6). Equivalence of the constraints (7.9) with:ˆ 1/2

−1/2
(G2)2×2 dx3 =

1

12
(Ḡ2)2×2 and (B1)sym = 0 in ω,

follows by a direct inspection. We now invoke Lemma 7.2 to complete the proof. �

Remark 7.6. Observe that the vanishing of the 4-excess and curvature terms in IO4 :

IIsym ∈ E2 and Curvature = 0,

are the necessary conditions for min IO4 = 0 and they are equivalent to IIsym ∈ E1. Consider now

a particular case scenario of Ḡ = Id3 and G1 = 0, where the spaces V and S are given in Remark

7.4, together with ~d0 = 0. Then, the above necessary condition reduces to: (G2)2×2 ∈ E1, namely:

(G2)2×2(x′, x3) = x3F1(x′) + F0(x′) for all x = (x′, x3) ∈ Ω̄.

It is straightforward that, on a simply connected midplate ω, both terms:

Stretching =

ˆ
ω
Q2

(
x′, sym∇w +

1

2
∇v ⊗∇v − 1

4
F0

)
dx′, Bending =

ˆ
ω
Q2

(
x′,∇2v +

1

4
F1

)
dx′,

can be equated to 0 by choosing appropriate displacements v and w, if and only if there holds:

(7.10) curlF1 = 0, curlTcurlF0 +
1

4
detF1 = 0 in ω.

Note that these are precisely the linearised Gauss-Codazzi-Mainardi equations corresponding to the

metric Id2 + 2h2F0 and shape operator 1
2hF1 on ω. We see that these conditions are automatically

satisfied in presence of (7.9), when (G2)2×2 ∈ E1 actually results in (G2)2×2 = 0. An integrability

criterion similar to (7.10) can be derived also in the general case, under IIsym ∈ E1 and again it

automatically holds with (7.9). This last statement will be pursued in the next section. �

8. Identification of the Ch4 scaling regime and coercivity of the limiting energy I4

Theorem 8.1. The energy scaling beyond the von Kármán regime:

lim
h→0

1

h4
inf Eh = 0

is equivalent to the following condition, on a simply connected ω:

(i) in the oscillatory case (O), in presence of the compatibility conditions (7.9)

(8.1)

[
IIsym ∈ E2 and (8.2) holds with G replaced by the effective metric Ḡ in (EF). This

condition involves Ḡ, Ḡ1 and (Ḡ2)2×2 terms of Ḡ.

(ii) in the non-oscillatory case (NO)

(8.2)

[
All the Riemann curvatures of the metric G vanish on ω × {0}:

Rijkl(x
′, 0) = 0 for all x′ ∈ ω and all i, j, k, l = 1 . . . 3.
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Proof. By Corollary 6.4, it suffices to determine the equivalent conditions for min I4 = 0. Clearly,

min I4 = 0 implies (8.2). Vice versa, if (8.2) holds, then:

1

24
(∇~b0)T∇~b0 −

1

48
∂33G(x′, 0) = − 1

24

(
(∇y0)T∇d̃0

)
sym

,

by Lemma 7.2. Taking V = ~p = 0 and S = 1
24

(
(∇y0)T∇d̃0

)
sym
∈ S , we get I4(V,S) = 0. �

We further have the following counterpart of the essential uniqueness of the minimizing isometric

immersion y0 statement in Theorem 3.2:

Theorem 8.2. In the non-oscillatory setting (NO), assume (8.2). Then I4(V,S) = 0 if and only if:

(8.3) V = Sy0 + c and S =
1

2

(
(∇y0)T∇

(
S2y0 +

1

12
d̃0

))
sym

on ω,

for some skew-symmetric matrix S ∈ so(3) and a vector c ∈ R3.

Proof. We first observe that the bending term III in (6.7) is already symmetric, because:[
〈∂iy0, ∂j~p〉+ 〈∂iV, ∂j~b0〉

]
i,j=1,2

=
[
∂j
(
〈∂iy0, ~p〉+ 〈∂iV,~b0〉

)]
i,j=1,2

−
[
〈∂ijy0, ~p〉+ 〈∂ijV,~b0〉

]
i,j=1,2

= −
[
〈∂ijy0, ~p〉+ 〈∂ijV,~b0〉

]
i,j=1,2

∈ R2×2
sym ,

where we used the definition of ~p in (6.4). Recalling (7.2), we see that I4(V,S) = 0 if and only if:

S +
1

2
(∇V )T∇V − 1

24

(
(∇y0)T∇d̃0

)
sym

= 0,

(∇y0)T∇~p+ (∇V )T∇~b0 = 0.
(8.4)

Consider the matrix field S =
[
∇V, ~p

]
Q−1

0 ∈W 1,2(ω, so(3)) as in (6.4). Note that:

∂iS =
[
∇∂iV, ∂i~p

]
Q−1

0 −
[
∇V, ~p

]
Q−1

0 (∂iQ0)Q−1
0 = Q−1,T

0 S̄iQ−1
0 for i = 1, 2

where S̄i = QT
0

[
∇∂iV, ∂i~p

]
+
[
∇V, ~p

]T
(∂iQ0) ∈ L2(ω, so(3)).

(8.5)

Then we have:

〈S̄ie1, e2〉 = ∂i
(
〈∂2y0, ∂iV 〉+ 〈∂2V, ∂iy0〉

)
−
(
〈∂12y0, ∂iV 〉+ 〈∂12V, ∂iy0〉

)
= 0,

because the first term in the right hand side above equals 0 in view of V ∈ V , whereas the second

term equals ∂2〈∂1y0, ∂1V 〉 for i = 1 and ∂1〈∂2y0, ∂2V 〉 for i = 2, both expression being null again in

view of V ∈ V . We now claim that {S̄i}i=1,2 = 0 is actually equivalent to the second condition in

(8.4). It suffices to examine the only possibly nonzero components:

(8.6) 〈S̄ie3, ej〉 = 〈∂jy0, ∂i~p〉+ 〈∂jV, ∂i~b0〉 =
(
(∇y0)T∇~p+ (∇V )T∇~b0

)
ij

for all i, j = 1, 2,

proving the claim.

Consequently, the second condition in (8.4) is equivalent to S being constant, to the effect that

∇V = ∇(Sy0), or equivalently that V − Sy0 is a constant vector. In this case:

S =
1

2
(∇y0)T∇

(
S2y0) +

1

24

(
(∇y0)T∇d̃0

)
sym

=
1

2

(
(∇y0)T∇

(
S2y0 +

1

12
d̃0

))
sym

is equivalent to the first condition in (8.4), as (∇V )T∇V = −(∇y0)TS2∇y0. The proof is done. �
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From Theorem 8.2 we deduce its quantitative version, that is a counterpart of Theorem 4.1 in the

present von Kármán regime:

Theorem 8.3. In the non-oscillatory setting (NO), assume (8.2). Then for all V ∈ V there holds:

(8.7) dist2
W 2,2(ω,R3)

(
V,
{
Sy0 + c; S ∈ so(3), c ∈ R3

})
≤ C

ˆ
ω
Q2

(
x′, (∇y0)T∇~p+ (∇V )T∇~b0

)
dx′

with a constant C > 0 that depends on G,ω and W but it is independent of V .

Proof. We argue by contradiction. Since Vlin
.
= {Sy0 + c; S ∈ so(3), c ∈ R3} is a linear subspace

of V and likewise the expression III in (6.7) is linear in V , with its kernel equal to Vlin in virtue of

Theorem 8.2, it suffices to take a sequence {Vn ∈ V }n→∞ such that:

‖Vn‖W 2,2(ω,R3) = 1, Vn ⊥W 2,2(ω,R3) Vlin for all n,

and: (∇y0)T∇~pn + (∇Vn)T∇~b0 → 0 strongly in L2(ω,R2×2), as n→∞.
(8.8)

Passing to a subsequence if necessary and using the definition of ~p in (6.4), it follows that:

(8.9) Vn ⇀ V weakly in W 2,2(ω,R3), ~pn ⇀ ~p weakly in W 1,2(ω,R3).

Clearly, QT
0

[
∇V, ~p

]
∈ L2(ω, so(3)) so that V ∈ V , but also (∇y0)T∇~p + (∇V )T∇~b0 = 0. Thus,

Theorem 8.2 and the perpendicularity assumption in (8.8) imply: V = ~p = 0. We will now prove:

(8.10) Vn → 0 strongly in W 2,2(ω,R3),

which will contradict the first (normalisation) condition in (8.7).

As in (8.5), the assumption Vn ∈ V implies that for each x′ ∈ ω and i = 1, 2, the following matrix

(denoted previously by S̄i) is skew-symmetric:

Q̄T
0

[
∇∂iVn, ∂~pn

]
+
[
∇Vn, ~pn

]T
(∂iQ0) ∈ so(3).

Equating tangential entries and observing (8.8), yields for every i, j, k = 1, 2:

〈∂jy0, ∂ikVn〉+ 〈∂ky0, ∂ijVn〉 = −
(
〈∂jVn, ∂iky0〉+ 〈∂kVn, ∂ijy0〉

)
→ 0 strongly in L2(ω).

Permuting i, j, k we eventually get:

〈∂jy0, ∂ikVn〉 → 0 strongly in L2(ω) for all i, j, k = 1, 2.

On the other hand, equating off-tangential entries, we get by (8.8) and (8.9) that for each i = 1, 2:

〈~b0, ∂ijVn〉 = −
(
(∇y0)T∇~pn + (∇Vn)T∇~b0

)
ij
− 〈~pn, ∂ijy0〉 → 0 strongly in L2(ω).

Consequently, {QT
0∂ijVn → 0}i,j=1,2 in L2(ω,R3), which implies convergence (8.10) as claimed. This

ends the proof of (8.7). �

Remark 8.4. Although the kernel of the (nonlinear) energy I4, displayed in Theorem 8.2, is finite

dimensional, the full coercivity estimate of the form below is false:

min
S∈so(3),c∈R3

(
‖V − (Sy0 + c)‖2W 2,2(ω,R3) + ‖S− 1

2

(
(∇y0)T∇

(
S2y0 −

1

12
d̃0

))
sym
‖2L2(ω,R2×2)

)
≤ CI4(V,S) for all (V,S) ∈ V ×S .

(8.11)

For a counterexample, consider the particular case of classical von Kármán functional (7.5), specified

in Remark 7.4. Clearly, I4(v, w) = 0 if an only if v(x) = 〈a, x〉+ α and w(x) = βx⊥ − 1
2〈a, x〉a+ γ,
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for some a ∈ R2 and α, β, γ ∈ R. Note that (8.7) reflects then the Poincaré inequality:
´
ω |∇v −ffl

ω∇v|
2 dx′ ≤ C

´
ω |∇

2v|2 dx′, whereas (8.11) takes the form:

(8.12) min
a∈R2

( ˆ
ω
|∇v − a|2 dx′ +

ˆ
ω
|sym∇w +

1

2
a⊗ a|2 dx′

)
≤ CI4(v, w).

Let ω = B1(0). Given v ∈ W 2,2(ω) such that det∇2v = 0, let w satisfy: sym∇w = −1
2∇v ⊗ ∇v,

which results in vanishing of the first term in (7.5). Neglecting the first term in the left hand side

of (8.12), leads in this context to the following weaker form, which we below disprove:

(8.13) min
a∈R2

ˆ
ω
|∇v ⊗∇v − a⊗ a|2 dx′ ≤ C

ˆ
ω
|∇2v|2 dx′.

Define vn(x) = n(x1+x2)+ 1
2(x1+x2)2 for all x = (x1, x2) ∈ ω. Then ∇vn = (n+x1+x2)(1, 1) and

det∇2vn = 0. Minimization in (8.13) becomes: mina∈R2

´
ω |(n+ x1 + x2)2(1, 1)⊗ (1, 1)− a⊗ a|2 dx′

and an easy explicit calculation yields the necessary form of the minimizer: a = δ(1, 1). Thus, the

same minimization can be equivalently written and estimated in:

4 ·min
δ∈R

ˆ
ω

∣∣(n+ x1 + x2)2 − δ2
∣∣2 dx′ ∼ 4n2 →∞ as n→∞.

On the other hand, |∇2vn|2 = 4 at each x′ ∈ ω. Therefore, the estimate (8.13) cannot hold. �

9. Beyond the von Kármán regime: an example

Given a function φ ∈ C∞((−1
2 ,

1
2),R), consider the conformal metric:

G(x′, x3) = e2φ(x3)Id3 for all x = (x′, x3) ∈ Ωh.

The midplate metric Ḡ2×2 = e2φ(0)Id2 has a smooth isometric immersion y0 = eφ(0)id2 : ω → R2 and

thus by Theorem 2.4 there must be:

inf Eh ≤ Ch2.

By a computation, we get that the only possibly non-zero Christoffel symbols of G are: Γ3
11 = Γ3

22 =

−φ′(x3) and Γ1
13 = Γ2

23 = Γ3
33 = φ′(x3), while the only possibly nonzero Riemann curvatures are:

(9.1) R1212 = −φ′(x3)2e2φ(x3), R1313 = R2323 = −φ′′(x3)e2φ(x3).

Consequently, the results of this paper provide the following hierarchy of possible energy scalings:

(a) {ch2 ≤ inf Eh ≤ Ch2}h→0 with c, C > 0. This scenario is equivalent to φ′(0) 6= 0.

The functionals 1
h2
Eh as in Theorems 2.1, 2.3 and 2.4 exhibit the indicated compactness

properties and Γ-converge to the following energy I2 defined on the set of deformations:

{y ∈W 2,2(ω,R3); (∇y)T∇y = Id2}:

I2(y) =
1

24

ˆ
ω
Q2

(
Πy − φ′(0)Id2

)
dx′.

Here Q2(F2×2) = min
{
D2W (Id3)(F̃, F̃ ); F̃ ∈ R3×3 with F̃2×2 = F2×2

}
.

(b) {ch4 ≤ inf Eh ≤ Ch4}h→0 with c, C > 0. This scenario is equivalent to φ′(0) = 0 and φ′′(0) 6=
0. The unique (up to rigid motions) minimizing isometric immersion is then id2 : ω → R2

and the functionals 1
h4
Eh have the compactness and Γ-convergence properties as in Theorems
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6.1, 6.2 and 6.3. The following limiting functional I4 is defined on the set of displacements

{(v, w) ∈W 2,2(ω,R)×W 1,2(ω,R2)} as in Remark 7.4:

I4(v, w) =
1

2

ˆ
ω
Q2

(
sym∇w +

1

2
∇v ⊗∇v − 1

24
φ′′(0)Id2

)
dx′

+
1

24

ˆ
ω
Q2

(
∇2v

)
dx′ +

1

1440
φ′′(0)2|ω|Q2

(
Id2

)
.

(c) {inf Eh ≤ Ch6}h→0 with C > 0. This scenario is equivalent to φ′(0) = 0 and φ′′(0) = 0 and

in fact we have the following more precise result below.

Theorem 9.1. Let G(x′, x3) = e2φ(x3)Id3, where φ(k)(0) = 0 for k = 1 . . . n − 1 up to some n > 2.

Then: inf Eh ≤ Ch2n and:

(9.2) lim
h→0

1

h2n
inf Eh ≥ cn φ(n)(0)2|ω|Q2(Id2),

where cn > 0. In particular, if φ(n)(0) 6= 0 then we have: ch2n ≤ inf Eh ≤ Ch2n with c, C > 0.

Proof. 1. For the upper bound, we compute:

Eh
(
eφ(0)id3

)
=

1

h

ˆ
Ωh

W
(
eφ(0)−φ(x3)Id3

)
dx =

1

2h

ˆ
Ωh

Q3

(
φ(n)(0)

xn3
n!
Id3

)
+O(h2n+2) dx

= h2n

(
φ(n)(0)2

(n!)2

1

(2n+ 1)22n+1
|ω|Q3(Id3) + o(1)

)
≤ Ch2n,

where we used the fact that eφ(0)−φ(x3) = 1− φ(n)(0)
xn3
n! +O(|x3|n+1).

2. To prove the lower bound (9.2), let {uh ∈W 1,2(Ωh,R3)}h→0 satisfy Eh(uh) ≤ Ch2n. Then:

Eh(uh) ≥ c

h

ˆ
Ωh

dist2
(
∇uh, eφ(x3)SO(3)

)
dx

≥ c

h

ˆ
Ωh

dist2
(
∇uh, eφ(0)SO(3)

)
dx− c̄

h

ˆ
Ωh

∣∣φ(n)(0)
xn3
n!

+O(hn+1)
∣∣2 dx,

which results in: 1
h

´
Ωh dist2

(
e−φ(0)∇uh, SO(3)

)
dx ≤ Ch2n. Similarly as in Lemma 5.2 and Corollary

5.3, it follows that there exist approximating rotation fields {Rh ∈W 1,2(ω, SO(3))}h→0 such that:

(9.3)
1

h

ˆ
Ωh

|∇uh − eφ(0)Rh|2 dx ≤ Ch2n,

ˆ
ω
|∇Rh|2 dx ≤ Ch2n−2.

As in sections 2 and 6, we define the following displacement and deformation fields:

yh(x′, x3) = (R̄h)T
(
uh(x′, hx3)−

 
Ωh

uh
)
∈W 1,2(Ω,R3), where R̄h = PSO(3)

 
Ωh

e−φ(0)∇uh(x) dx,

V h(x′) =
1

hn−1

ˆ 1/2

−1/2
yh(x′, x3)− eφ(0)

(
id2 + hx3e3

)
dx3 ∈W 1,2(ω,R3).

In view of (9.3), we obtain then the following convergences (up to a not relabelled subsequence):

yh → eφ(0)id2 in W 1,2(ω,R3),
1

h
∂3y

h → eφ(0)e3 in L2(ω,R3),

V h → V ∈W 2,2(ω,R3) in W 1,2(ω,R3),
1

h
(∇V h)2×2,sym ⇀ sym∇w weakly in L2(ω,R2×2).
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This allows to conclude the claimed lower bound:

lim inf
h→0

1

h2n
Eh(uh) ≥ 1

2

∥∥e−φ(0)sym∇w − x3e
−φ(0)∇2V 3 − φ(n)(0)

xn3
n!
Id2

∥∥2

Q2

≥ 1

2

∥∥∥φ(n)(0)
xn3
n!
Id2 − P1

(
φ(n)(0)

xn3
n!
Id2

)∥∥∥2

Q2

=
1

2

φ(n)(0)2

(n!)2
·
ˆ 1/2

−1/2

(
xn3 − P1(xn3 )

)2
dx3 · |ω|Q2(Id2)

= cn · φ(n)(0)2|ω|Q2(Id2),

as in (9.2), with the following constant cn:

cn =
1

22n+1(n!)2

{
(n−1)2

(2n+1)(n+2)2
for n odd

n2

(2n+1)(n+1)2
for n even.

Observe that c2 = 1
1440 , consistently with the previous direct application of Theorem 6.2. �
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