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Abstract. We provide an introduction to the old-standing problem of isometric im-

mersions. We combine a historical account of its multifaceted advances, which have

fascinated geometers and analysts alike, with some of the applications in the mathe-

matical physics and mathematical materials science, old and new.

1. The isometric immersion problem

The concept of a Riemannian manifold (Md, g), an abstract d-dimensional manifold with
a metric structure, was first formulated by Bernhard Riemann in 1868 to generalize the
classical objects such as curves and surfaces in R3. A manifold is a topological space
that locally resembles Euclidean space near each point: in M (we write Md only to
emphasize the dimension) each point p ∈ M has a neighborhood that is homeomorphic
to an open subset of Rd. Induced by that homeomorphism, there is a tangent space
TpM , namely a d-dimensional vector space that is further equipped with a positive-
definite inner product gp. The family g = {gp}p∈M is called a Riemannian metric on M .
For details, we recommend consulting the textbook [2] and references listed therein.

All Euclidean spaces are manifolds and, endowed with the standard Euclidean inner
product, are Riemannian manifolds. The simplest nontrivial d = 2 - dimensional example
is the unit sphere S2 consisting of all unit vectors in R3. At each p ∈ S2, the tangent
space TpS2 is the hyperplane in R3 perpendicular to the unit vector p. The standard
inner product in R3 restricted to TpS2 induces then a Riemannian metric on S2, called

the round metric. Naturally, there arises the question of whether any abstract (Md, g)
can be identified, in a similar manner, as a submanifold of some Euclidean space Rn
with its induced metric. This is the isometric embedding question, which has assumed a
position of fundamental conceptual importance in Differential Geometry.

The metric requirement can be expressed in terms of partial differential equations (PDEs).
Consider a special case: let B1 be the unit ball in Rd, regarded as a d-dimensional
manifold. The given inner product gp can be identified with a d × d symmetric, pos-

itive definite matrix at each point p ∈ B1, so that g is a function from B1 to Rd×dsym,>.
Isometrically immersing (B1, g) in some Euclidean space Rn means that there exists
u = (u1, . . . , un) : B1 → Rn such that the induced metric agrees with g at each point:

(1) (∇u)T∇u = g in B1.
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Above, we used the matrix notation for the transpose and product. We call the map
u in (1) an isometric embedding or immersion according to whether it is injective or
not. In the general setting, and when globally defined, both sides of (1) become second
order covariant tensors. We now briefly review several important aspects of isometric
embeddings and immersions of Riemannian manifolds in the Euclidean space.

2. General isometric embeddings and immersions of Riemannian manifolds

2.1. The analytic solutions. Let us examine (1) closely. First, we notice that it has n
unknowns {ui}ni=1 and there are sd

.
= d(d+ 1)/2 equations, corresponding to the entries

in d× d symmetric matrices. The integer sd is called the Janet dimension. As a rule in
solving PDEs, the number of unknowns should be bigger than or equal to the number
of equations, otherwise, solutions are not expected to exist in general. Hence we require
that n ≥ sd. In 1873, Ludwig Schlaefli conjectured that every d-dimensional smooth
Riemannian manifold admits a smooth local isometric embedding in Rsd . It was more
than 50 years later that an affirmative answer was given in the analytic case by Maurice
Janet (for d = 2) and Élie Cartan (for d ≥ 3).

2.2. The smooth case and the Nash-Moser iteration. Second, (1) is classified as a
first-order nonlinear system of PDEs, the order of derivatives being 1 and the derivatives
of u appearing quadratically (nonlinearly) in the system. In general, nonlinear PDEs are
solved by Newton’s method, an iteration process generating an actual solution from an
approximate one. Here, the difficulty arises from the loss of derivatives at each iteration.

To explain this clearly, recall how Newton’s method is used to find a root of a single-
variable function. Let f be a scalar-valued twice continuously differentiable function on
R. Pick an initial guess t0 ∈ R for a root of f , meaning that f(t0) is small. To find
t1 = t0 + s1 such that f(t1) is smaller, we use Taylor’s theorem to have:

f(t1) = f(t0) + f ′(t0)s1 +
1

2
f ′′(t0 + ξs1)s2

1 for some ξ ∈ (0, 1).

It is natural to choose s1 such that f(t0) + f ′(t0)s1 = 0 and hence:

s1 = − f(t0)

f ′(t0)
, f(t1) =

1

2
f ′′(t0 + ξs1)s2

1.

We see that s1 = t1 − t0 is linear in f(t0) and so f(t1) is quadratic in f(t0). We can
iterate this process and obtain a sequence {tl}l→∞ inductively by:

tl
.
= tl−1 + sl, sl

.
= − f(tl−1)

f ′(tl−1)
, f(tl) =

1

2
f ′′(tl−1 + ξlsl)s

2
l .(2)

We next need to prove that {tl}l→∞ converges to some t∞ and that {f(tl)}l→∞ converges
to 0. As a consequence, f(t∞) = 0 resulting in a root of f at t∞. An important condition
in the convergence proof is given by:

|f ′(tl)| ≥ c for all l ≥ 0,
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for some positive constant c, independent of l. With (2.2) and an appropriate condition
on f ′′, we get that indeed {sl}l→∞ converges to zero fast and so f(tl)→ 0.

We now apply the same idea to (1), equivalent to finding roots of:

G[u] = (∇u)T∇u− g.
We first take a u0 : B1 → Rn such that G[u0] is small, write u1 = u0 + v1 and compute:

G[u1] = G[u0] + 2 sym
(
(∇u0)T∇v1

)
+ (∇v1)T∇v1,

where we arranged the expression in the right-hand side according to the powers of (the
derivatives of) v1. As in the scalar case, we would like to choose v1 such that:

G[u0] + (∇u0)T∇v1 + (∇v1)T∇u0 = 0 in B1.(3)

This is a first-order linear system of PDEs that can be solved by imposing appropriate
boundary values. However, there is a serious issue in the iteration process.

In studying PDEs or systems thereof, we need to introduce appropriate spaces of func-
tions and equip them with appropriate norms to form Banach spaces. The process
outlined above is performed in Banach spaces to generate a “root” of the functional G.
An important feature of (3) is that although a linear combination of derivatives of v1

is governed by G[u0], it is v1, not ∇v1, that is determined by G[u0]. More generally,
derivatives of G[u0] of a certain order determine only derivatives of v1 up to the same
order. Hence, in the inductive version of (3) and a counterpart of (2):

ul
.
= ul−1 + vl, G[ul−1] + 2 sym

(
(∇ul−1)T∇vl

)
= 0, G[ul] = (∇vl)T∇vl,(4)

each step in the iteration contributes a loss of derivatives. If u0 is, say, 100 times continu-
ously differentiable then G[u0], as it involves ∇u0, is 99 times continuously differentiable
and thus v1 is also 99 times differentiable and so is u1. Then, u100 will be continuous only
and G[u100] does not make sense. As a consequence, the iteration process is terminated.

In an outstanding paper published in 1956, John Nash introduced an important technique
of smoothing operators to compensate for the aforementioned loss of derivatives. He
proved that any smooth d-dimensional Riemannian manifold admits a (global) smooth
isometric embedding in Rn, for n = 3sd+4d in the compact case and n = (d+1)(3sd+4d)
in the general case. Specifically for (4), Nash replaced ul−1 by a function with a better
regularity to regain the lost derivative, solved for vl, and modified the iteration process
accordingly. His technique proved to be extremely useful in nonlinear PDEs, and it is
now known as the hard implicit function theorem, or the Nash-Moser iteration.

2.3. Quest for the smallest dimension n. Following Nash, one naturally looks for
the smallest dimension of the ambient space. In 1970, Mikhael Gromov and Vladimir
Rokhlin, and independently John Greene, proved that any d-dimensional smooth Rie-
mannian manifold admits a local smooth isometric embedding in Rsd+d. The proof
is based on Nash’s iteration scheme. In his book [1], Gromov studied various prob-
lems related to the isometric embedding of Riemannian manifolds. He proved that
n = sd + 2d+ 3 is enough for the compact case. Then in 1989, Matthias Günther vastly
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simplified Nash’s original proof: by rewriting the differential equations cleverly, he was
able to employ the contraction mapping principle, instead of the Nash-Moser iteration,
to construct solutions. Günther also improved the dimension of the target space to
n = max{sd + 2d, sd + d+ 5}. It is still not clear whether this is the best possible result.

For d = 2 better results are available. According to Gromov and Günther, any com-
pact 2-dimensional smooth Riemannian manifold can be isometrically embedded in R10

smoothly, whereas the local version in R4 is due to Eduard Poznyak in 1973. The case
of d = 2 and n = s2 = 3 will be discussed in a separate section below.

On the other hand, the case d ≥ 3, n = sd is sharply different from the 2-dimensional
case in which there is only one curvature function. This function determines the type
of the Darboux equation associated to (1), whereas for d ≥ 3, the role of various curva-
tures is not clear. In 1983, Robert Bryant, Phillip Griffiths and Dean Yang studied the
characteristic varieties associated with differential systems for the isometric embedding
in Rsd of smooth (Md, g). They proved that these varieties are never empty if d ≥ 3,
implying, in particular, that the governing systems are never elliptic, no matter what
assumptions are put on curvatures. They also proved that the characteristic varieties are
smooth for d = 4 and not smooth for d = 6, 10, 14, . . .. In 2012, Qing Han and Marcus
Khuri extended that result to any d ≥ 5 under an additional “smallness” assumption.

For d = 3, Bryant, Griffiths and Yang in 1983 classified the type of differential systems
for the isometric embedding by its curvature functions. Here, an important quantity is
the signature of the curvature tensor viewed as a symmetric linear operator acting on the
space of 2-forms. In particular, any smooth 3-dimensional Riemannian manifold admits
a smooth local isometric embedding in R6 if the signature is different from (0, 0) and
(0, 1). In 1989, Yusuke Nakamura and Yota Maeda showed the same existence result if
the curvature tensors are not zero; their key argument was the local existence of solutions
to differential systems of principal type. In 2018, Chen, Clelland, Slemrod, Wang and
Yang provided an alternative proof using strongly symmetric positive systems.

2.4. Non-smooth immersions. On the other end of the spectrum, there are results
showing that isometric immersions have completely different qualitative behaviours at
low and high regularity. Nash in 1954 and Nicolaas Kuiper in 1955 proved the existence
of a global C1 isometric embedding of d-dimensional Riemannian manifolds in Rd+1.
These are not mere existence statements, as their results in fact show that every short
immersion (or embedding), i.e. u : B1 → Rd+1 for which condition (1) is replaced by:

(5) (∇u)T∇u < g in B1,

can be uniformly approximated by C1-regular actual solutions (immersions or embed-
dings) to (1). The inequality above is understood pointwise, in the sense of matrices.
This abundance of solutions, usually referred to as flexibility results, is typical in ap-
plications of Gromov’s h-principle in which a PDE is replaced by a partial differential
relation (a differential inclusion) whose solutions are then modified through an iteration
technique called convex integration to produce a nearby solution of the underlying PDE.
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In 1965, Yuri Borisov used this approach to Hölder - regular solutions and announced
that flexibility holds with regularity C1,α for any α < 1

1+2sd
and analytic g on B1. He

subsequently gave full details of the proof in 2004 for dimension d = 2 and α < 1
13 .

In 2012 Sergio Conti, Camillo De Lellis and Laszlo Szekelyhidi validated the original
Borisov’s statement in case of C2 metrics on d-dimensional balls, and in case of compact
Riemannian manifolds (Md, g) with α < 1

1+2sd(d+1) . The same results and exponent

bounds also hold for any target ambient dimension n > d. However, in 1978 Anders
Källen proved that any Cβ metric, with β < 2, allows for flexibility up to exponent β

2 ,
provided that n is sufficiently large. Recently, the second author of this paper proved
flexibility of the related Monge-Ampere system, which is the linearization of the isometric
immersion problem (1) around g = Idd, and in which any C1 - regular subsolution can be
uniformly approximated by C1,α exact solutions, for any α < 1

1+2sd/(n−d) , in agreement

with the fully nonlinear case at n = d+ 1 and the Kallen result when n→∞.

Dependence of the flexibility threshold exponents on sd reflects the technical limitation
of the method rather than the absolute lack of flexibility beyond those thresholds. In
the proofs, the symmetric, positive definite “defect” D = g − (∇u)T∇u is decomposed
into a linear combination of sd rank-one defects with nonnegative coefficients. Each
of these “primitive defects” is then cancelled by adding to u a small but fast oscillating
perturbation, which however causes increase of the second derivative of u by the factor of
the oscillation frequency. The ultimate Hölder regularity of the approximating immersion
interpolates between the controlled C1 norms of the adjusted u and the blow-up rate
of the C2 norm, dictated by the number of these one-dimensional adjustments. In case
of higher codimension when n > d + 1, several primitive defects may be cancelled at
once, reducing the blow-up rate of second derivatives and thus improving the regularity
exponent α. In the same vein, if the number of primitive defects in the decomposition of
D could be lowered, for example by an appropriate change of variables, then flexibility
would hold with higher α. This observation is precisely behind the improved regularity
statements for d = 2 - dimensional problems, listed in the next section.

3. Isometric embeddings of surfaces

3.1. Local isometric embedding of surfaces in R3. We now give an overview of
the question of isometrically embedding a 2-dimensional Riemannian manifold in R3.
There are basically two methods to study the local case. The first one, already known
to Jean Darboux in 1894, restates the problem equivalently as finding a local solution of
a nonlinear equation of the Monge-Ampère type. Specifically, let g be a Cr-metric on a
simply connected Ω ⊂ R2 for some r ∈ [2,∞]. If there exists u ∈ Cs(ω,R), solving:

(6) det(∇2
gu) = K(det g)(1− |∇gu|2),

with |∇gu| < 1 for some s ∈ [2, r], then (Ω, g) admits a Cs-isometric immersion in
R3. The equation (6) is now called the Darboux equation; and its type is determined
by the sign of the Gauss curvature K of g: elliptic if K is positive, hyperbolic if K is
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negative, and degenerate if K vanishes. Remarkably, even today, the local solvability of
the Darboux equation in the general case is not covered by any known theory of PDEs.

A different method to study the local isometric embedding of surfaces in R3 relies on the
classical theory of surfaces asserting that such immersion exists provided the solvability
of the Gauss-Codazzi system. Namely, let {Γijk}i,j,k=1,2 be the Christoffel symbols of
the given metric g, and K its Gauss curvature. Then the coefficients of the second
fundamental form II = Ldx2

1 + 2Mdx1dx2 +Ndx2
2 satisfy:

∂2L− ∂1M = Γ1
12L+ (Γ2

12 − Γ1
11)M − Γ2

11N,

∂2M − ∂1N = Γ1
22L+ (Γ2

22 − Γ1
21)M − Γ2

21N,

LN −M2 = K(g11g22 − g2
12).

(7)

We note in passing that the first attempt to establish the local isometric embedding of
surfaces in R3 was neither through (6) nor (7): in 1908, Hans Levi solved the case of
surfaces with negative curvature by using the equations of virtual asymptotes.

It was several decades later that (6) attracted attention of those interested in the isomet-
ric embedding. In the early 1950s, Philip Hartman and Aurel Wintner studied (6) with
K 6= 0 and proved existence of its local solution. The case when K vanishes did not give
way to the efforts of mathematicians for a long time. In 1985 and 1986, Chang-Shou Lin
made important breakthroughs, establishing existence in a neighborhood of p ∈ Ω such
that K(p) = 0 and dK(p) 6= 0 (in 2005 Han gave an alternative proof of this result), or
p such that K ≥ 0 in the whole neighbourhood. Later, in 1987, Gen Nakamura covered
the case of K(p) = 0, dK(p) = 0 and HessK(p) < 0. For the case of nonpositive K,
Jia-Xing Hong in 1991 also proved the existence of a sufficiently smooth local isometric
embedding in a neighborhood of p if K = hϕ2m, where h is a negative function and ϕ is
a function with ϕ(p) = 0 and dϕ(p) 6= 0. In 2010, Han and Khuri proved existence of the
smooth local isometric embedding near p if K changes its sign only along two smooth
curves intersecting transversely at p. All these results are based on careful studies of the
Darboux equation.

In 2003, Han, Hong, and Lin studied (7) and proved the local isometric embedding
for a large class of metrics with nonpositive Gauss curvature K, for which directional
derivative has a simple structure for its zero set. This gives the results of Nakamura and
Hong as special cases. On the other hand, Aleksei Pogorelov in 1972 constructed a C2,1

metric g on B1 ⊂ R2 with a sign-changing K such that (Br, g) cannot be realized as a
C2 surface in R3 for any r > 0. Nikolai Nadirashvili and Yu Yuan in 2008 constructed a
C2,1 metric g on B1 of K ≥ 0, with no C2 local isometric embedding in R3.

3.2. Global isometric embedding of surfaces in R3. In 1916, Hermann Weyl posed
the following problem: does every smooth metric on S2 with positive Gauss curvature
admit a smooth isometric embedding in R3? The first attempt to solve the problem
was made by Weyl himself, through the continuity method and the a priori estimates
up to the second derivatives. Twenty years later, Hans Lewy solved the problem for
analytic metrics g. In 1953, Luis Nirenberg gave a complete solution under the very
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mild hypothesis that g is C4. The result was extended to the C3 case by Erhard Heinz
in 1962. In a completely different approach, Aleksandr Alexandroff in 1942 obtained a
generalized solution to Weyl’s problem as a limit of polyhedra. Further, it is known from
the work of Pogorelov in the 1950s that closed C1 surfaces with positive Gauss curvature
and bounded extrinsic curvature are convex, and that closed convex surfaces are rigid
in the sense that their isometric immersions are unique up to rigid motions. In 1994
and 1995, Pei-Feng Guan and Yanyan Li, and Hong and Zuily independently generalized
Nirenberg’s result for metrics on S2 with nonnegative Gauss curvature.

The investigation of the isometric immersion of metrics with negative curvature goes back
to David Hilbert. He proved in 1901 that the full hyperbolic plane cannot be isometrically
immersed in R3. The next natural step is to extend such a result to complete surfaces
whose Gauss curvature is bounded above by a negative constant. The final solution
to this problem was obtained by Nikolai Efimov in 1963: he proved that any complete
negatively curved smooth surface does not admit a C2 isometric immersion in R3 if its
Gauss curvature is bounded away from zero. In the years following, Efimov extended
his result in several ways. Before the 1970s, the study of negatively curved surfaces
was largely directed at the nonexistence of isometric immersions in R3. In the 1980s,
Shing-Tung Yau proposed to find a sufficient condition for complete negatively curved
surfaces to be isometrically immersed in R3. In 1993, Hong identified such condition in
terms of the Gauss curvature decaying at a certain rate at infinity. His discussion was
based on a differential system equivalent to the Gauss-Codazzi system (7).

3.3. Non-smooth immersions of surfaces. Extension of the rigidity of Weyl’s prob-
lem to Hölder-regular C1,α isometric immersions, is originally due to Borisov in the late
1950s, who proved that for α > 2

3 , the image of a surface with positive Gauss curva-

ture has bounded extrinsic curvature. Hence, if (S2, g) is a Riemannian manifold with
K > 0 then u(S2) is the boundary of a bounded convex set that is unique up to rigid
motions of R3, provided that u ∈ C1,α with α > 2

3 . In particular, if K is constant then

u(S2) = 1√
K
S2. In 2012 Conti, De Lellis and Szekelyhidi provided a direct analytic proof

of these results, based on a clever use of the commutator estimate.

As we have mentioned before, flexibility for isometric immersions of surfaces in R3 has
been proved by Conti, De Lellis and Szekelyhidi, up to the regularity exponent 1

7 . This
results has been improved by De Lellis, Dominik Inauen and Szekelyhidi in 2018 where
they proved that any short immersion (or embedding) of a 2-dimensional Riemannian
manifold (B1, g) into R3, can be uniformly approximated by a sequence of C1,α isometric
immersions (embeddings) for any α < 1

5 . Their key argument relies on the fact that
every two-dimensional metric is locally conformally equivalent to the Euclidean metric
g = Id2. This means that a positive definite defect D = g − (∇u)T∇u may be, by a
change of variables, reduced to the diagonal form, which decomposes into two primitive
defects rather than three, resulting in a lower rate of blow-up of the second derivatives in
the Nash-Kuiper iteration scheme and subsequently higher regularity of the immersions
derived in the limiting process. The same statement, albeit at the linearized level, has
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been recently used by the second author of this paper, to show density in the space of
continuous functions on Ω̄ ⊂ R2, of the set of weak solutions u ∈ C1,α(Ω̄,Rn) with any
α < 1

1+4/(n−2) , to the following equation with a given right hand side f :

∂11u · ∂22u− |∂12u|2 = f in Ω.

For the codimension n − 2 = 1, this generalizes the prior density result for the Monge-
Ampère equation and its weak C1,α solutions at α < 1

5 , due to Wentao Cao and Szeke-

lyhidi. The parallel rigidity statements are likewise available when α > 2
3 .

Regarding the flexibility vs rigidity in the regularity interval [1
5 ,

2
3 ], Gromov conjectured

that the actual threshold occurs sharply at α = 1
2 . This is supported by the work of

De Lellis and Inauen in 2020 in which they proved that for any α < 1
2 , an appropriate

convex integration construction yields C1,α isometric immersions of a spherical cup,
whose Levi-Civita connection differs from the standard one, whereas any such immersion
with regularity α > 1

2 must necessarily induce the compatible Levi-Civita connection.

4. Applications to general relativity

Quasi-local mass in general relativity is a notion associated with closed spacelike 2-
surfaces in a 4-dimensional spacetime. Its purpose is to evaluate the amount of matter
and gravitational energy contained within the surface, and can potentially be used to
detect the formation of black holes. In this section, we briefly discuss an application of
Weyl’s embedding problem to the quasi-local masses. For more information, see [4].

Consider a smooth, orientable, compact Riemannian manifold (Ω3, g), with connected
boundary Σ of positive Gaussian curvature. According to Weyl’s embedding theorem, Σ
may be uniquely (up to rigid motions) isometrically embedded into R3. This embedding
induces the mean curvature H0, which, in general, differs from the mean curvature H of
Σ as a submanifold of Ω. In 1992, based on a Hamilton-Jacobi analysis of the Einstein-
Hilbert action, David Brown and James York defined the quasi-local mass of Σ to be:

mBY (Σ) =
1

8π

(∫
Σ
H0 dσ −

∫
Σ
H dσ

)
.

A fundamental result concerning mBY was established by Yuguang Shi and Luen-Fai
Tam in 2002. Namely, they showed that if H is positive and the scalar curvature of g is
nonnegative, then mBY (Σ) is nonnegative and it vanishes if and only if (Ω, g) isometri-
cally embeds into R3. From a geometric perspective, this result may be interpreted as a
comparison theorem for compact manifolds of nonnegative scalar curvature.

Despite this beautiful result, the Brown-York definition has several deficiencies, most
notably that it is not ‘gauge independent’ when considered in a spacetime context. This
motivated Chiu-Chu Melissa Liu and Shing-Tung Yau in 2003, and then Mu-Tao Wang
and Yau in 2009 to each define more general notions of quasi-local mass which satisfy a
range of desirable properties. Like mBY , both of these masses also employ the Weyl em-
bedding theorem, and are consequently restricted to surfaces Σ which are topologically
2-spheres. It should be noted that Wang-Yau utilize the theorem to produce isometric



ISOMETRIC IMMERSIONS 9

embeddings into Minkowski space, even if the Guassian curvature changes sign. Re-
cently, another quasi-local mass in this family was proposed by Aghil Alaee, Khuri and
Yau, which allows for surfaces of higher genus and also requires their embedding into
Minkowski space. A natural question then arises that would have important implica-
tions: which closed surfaces admit isometric embeddings into Minkowski space? This
problem gives rise to an underdetermined system of equations, and thus one may guess
that there are no obstructions. However, even for the torus, the problem remains open.

5. Applications to the mathematical materials science

When the ambient and intrinsic dimensions agree, n = d, the problem (1) is linked with
the satisfaction of the orientation preservation by u : B1 → Rd, expressed as:

(8) det∇u > 0 in B1.

Under this condition, a sufficient and necessary condition for the local solvability of (1) is
the vanishing of the Riemannian curvature of g, which also guarantees that the solution
u is smooth and unique up to rigid motions. On the other hand, without the restriction
(8), there always exists a Lipschitz continuous u constructed by convex integration, which
indeed changes orientation in any neighbourhood of any point at which g has non-zero
curvature. The set of such Lipschitz immesions is dense in the set of short immersions,
similarly to other h-principle statements that we have listed before.

In the former context, it is natural to pose the quantitative question: what is the infimum
of the averaged pointwise deficit of u from being an orientation-preserving isometric
immersion of g? This deficit is measured by the following non-Euclidean energy on a
domain Ω ⊂ Rd with respect to the Riemannian manifold (Ω, g):

(9) Eg(u) =

∫
Ω

dist2
(
(∇u)g−1/2,SO(d)

)
dx.

Above, SO(d) denotes the special orthogonal group, namely rotations in Rd, and dist(·, ·)
is the distance in the space of matrices Rd×d. By the polar decomposition theorem, an
equidimensional u satisfies (1) and (8) if and only if ∇u ∈ SO(d)g1/2 in Ω, which happens
precisely when Eg(u) = 0. The follow-up questions now are:

(i) Can one quantify the infimum of Eg in relation to g and Ω?
(ii) What is the structure of minimizers to (9), if they exist?
(iii) In the limit of Ω becoming (d−1)-dimensional, what are the asymptotic properties

of the energies Eg and their minimizers in relation to the curvatures of g?

5.1. Connection to calculus of variations and elasticity. The field of calculus of
variations originally centered around minimization problems for integral functionals of
the general form below, in which W : Ω×Rn×Rn×d → R is a given energy density, and
where u may be subject to various constraints, for example the boundary conditions:

(10) E(u) =

∫
Ω
W
(
x, u(x),∇u(x)

)
dx for u : Rd ⊃ Ω→ Rn,
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The systematic study of existence of minimizers to (10), their uniqueness and qualitative
properties, began with Leonhard Euler and Johann Bernoulli in the XVIIth century
and progressed due to seminal contributions by Charles Morrey and Ennio De Giorgi
in the XXth century. These questions are strongly tied to the convexity, in the ∇u
variable in W , in turn implying the so-called sequential lower semicontinuity of E ; a
condition necessary to conclude that the minimizing sequences to (10) accumulate at the
minimizers. This is the direct method of calculus of variations, which however does not
apply to the functional in (9), precisely due to its lack of convexity.

An example of an important class of problems of the form (10) is the basic variational
model pertaining to the nonlinear elastic energy of prestressed bodies:

(11) Eg(u) =

∫
Ω
W
(
(∇u)g−1/2

)
dx for u : R3 ⊃ Ω→ R3,

where W : R3×3 → R is the given energy density, carrying the elastic moduli of the phys-
ical material whose referential configuration is Ω, and satisfying the necessary physically-
relevant conditions (frame invariance and the zero-penalty for all rigid motions). The
theory of elasticity is one of the most important subfields of continuum mechanics. It
studies materials which are capable of undergoing large deformations, due to the distribu-
tion of local stresses and displacements, and resulting from the application of mechanical
or thermal loads. The model (11) postulates formation of a target Riemannian metric g
and the induced multiplicative decomposition of the deformation gradient ∇u into the
elastic part (∇u)g1/2, and the inelastic part g1/2 responsible for the morphogenesis. The
form of g is dictated by the material’s response to pH, humidity, temperature, growth
hormone distribution and other stimuli, and it is specific to each problem.

The functional in (11) corresponds to a range of hyperelastic energies approximating the
behavior of a large class of elastomeric materials, and it is consistent with the microscopic
derivations based on statistical mechanics. It reduces (via a change of variables) to
the classical nonlinear three-dimensional elasticity, for g with vanishing Riemannian
curvature, which occurs precisely when min Eg = 0. It can be proved that in the opposite
case, i.e. for a non-Euclidean g, the infimum of Eg in the absence of any forces or
boundary conditions remains strictly positive, pointing to the existence of residual strain.

For domains Ω that are thin films, one considers a family of problems:

(12) Ehg (uh) =

∫
Ωh

W
(
(∇uh)g−1/2

)
dx for u : Ωh → R3,

parametrised by the small thickness h of Ωh = ω × (−h/2, h/2). The task is now to
determine the asymptotic limit of their minimizations as h→ 0, rather than to minimize
Ehg for each particular h. This can be achieved using the method of Γ-convergence, to
identify the “singular limit” energy Ig characterized by the property that the minimizers
and minimum values of (12) converge to the minimizers and the minimum values of Ig.
In general, one expects that inf Ehg ' hγ as h → 0 with the optimal scaling exponent γ
determined from g and the appropriate curvatures of g contributing to the form of Ig.
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5.2. Dimension reduction of thin prestressed films. Using flexibiliy of the iso-
metric immersions of Riemannian manifolds (M2, g) into R3 at Hölder regularity below

C1,1/5, one can show that inf Ehg ≤ Chβ for any β < 2
3 . On the other hand, having any

β ≥ 2 automatically implies (in fact, it is equivalent to) that the restriction g(·, 0)2×2 of
the metric g to the midplate ω ⊂ R2 has an isometric immersion into R3 with Sobolev
regularity H2 (i.e. with its second order derivatives square integrable).

β constraint / regularity asymptotic expansion limiting energy Ig

2
y ∈ H2(ω,R3)

(∇y)T∇y = g(·, 0)2×2

y(·){
3d : y + x3b

} ‖(∇y)T∇b− 1
2
∂3g(·, 0)2×2‖2[

∂1y, ∂2y, b
]
∈ SO(3)g(·, 0)1/2

4

R12,cd(·, 0) = 0

(V,wh) ∈ H2 ×H1(ω,R3)

sym
(
(∇y0)T∇V

)
= 0,

sym
(
(∇y0)T∇wh

)
→ S

y0 + hV + h2wh

‖ 1
2
(∇V )T∇V + S + 1

24
(∇b1)T∇b1

− 1
48
∂33g(·, 0)2×2‖2

+‖(∇y0)T∇p+ (∇V )T∇b1‖2

+‖
[
Ri3,j3(·, 0)

]
i,j=1,2

‖2

6
...

Rab,cd(·, 0) = 0

V ∈ H2(ω,R3)

sym
(
(∇y0)T∇V

)
= 0

y0 + h2V
‖(∇y0)T∇p+ (∇V )T∇b1 + α

[
∂3R

]
‖2

+‖PS⊥
y0

[
∂3R

]
‖2 + ‖PSy0

[
∂3R

]
‖2

2k
...

Rab,cd(·, 0) = 0[
∂
(i)
3 R

]
(·, 0) = 0 ∀i ≤ n− 3

V ∈ H2(ω,R3)

sym
(
(∇y0)T∇V

)
= 0

y0 + hk−1V{
3d : y0 +

k−1∑
i=1

xi3
i!
bi

+hk−1V + hk−1x3p
}

‖(∇y0)T∇p+ (∇V )T∇b1

+α
[
∂
(k−2)
3 R

]
‖2 + ‖PS⊥

y0

[
∂
(k−2)
3 R

]
‖2

+‖PSy0
[
∂
(k−2)
3 R

]
‖2

Figure 1. The first column gathers equivalent conditions for the scaling
inf Ehg ∼ Chβ, in terms of the Riemann curvatures Rab,cd of g. The second
column provides the asymptotic expansion of the minimizing sequence.
The third column gives the form of the Γ-limits in this infinite hierarchy.

One can show that the only viable scaling exponents in: inf Ehg ∼ Chβ in the regime
β ≥ 2, are the even powers β = 2k. For each k, the complete set of results is available:
the conditions/constraints on the curvatures of g equivalent to the indicated scaling; the
necessary asymptotic expansion of the minimizing sequence uh in terms of the transversal
(thin direction) variable x3 and the regularity of the fields present in that expansion; the
limiting energy Ig given in terms of these fields and the unconstrained curvatures. That
hierarchy of dimensionally reduced energies is schematically presented in Figure 1.

Parallel general results can be derived in the abstract setting of Riemannian manifolds,
for more general dimensions of the midplate d > 2 and the ambient space n > d, and also
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for g replaced by the film’s thickness - depending prestrain, incompatible only through
a perturbation of order which is a power of h. While the systematic description of the
singular limits associated with the exponents β ∈ (2

3 , 2) is not yet available, there are a
number of illustrative examples of the emerging patterns and the corresponding scalings
in that range. For this discussion we refer to [3] and the references therein.
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