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The presence of cuts in a thin planar sheet can dramatically alter
its mechanical and geometrical response to loading, as the cuts al-
low the sheet to deform strongly in the third dimension. We use
numerical experiments to characterize the geometric mechanics of
kirigamized sheets as a function of the number, size and orientation
of cuts. We show that the geometry of mechanically loaded sheets
can be approximated as a composition of simple developable units:
flats, cylinders, cones and compressed Elasticae. This geometric
construction yields simple scaling laws for the mechanical response
of the sheet in both the weak and strongly deformed limit. In the ulti-
mately stretched limit, this further leads to a theorem on the nature
and form of geodesics in an arbitrary kirigami pattern, consistent
with observations and simulations. By varying the shape and size of
the geodesic in a kirigamized sheet, we show that we can control the
deployment trajectory of the sheet, and thence its functional proper-
ties as a robotic gripper or a soft light window. Overall our study of
random kirigami sets the stage for using cuts to control the shape of
and shield the stresses in thin sheets.

kirigami | thin shell | deployable structures

K irigami, the art of paper cutting, is now increasingly
being seen as a paradigm for the design of mechanical

metamaterials that exhibit exceptional geometric and struc-
tural properties (1–3). The basis for kirigami is the well known
observation that the mechanical response of thin sheets is ex-
clusively due to the geometrical scale separation induced by
slenderness which makes bending deformations inexpensive
compared to stretching. In kirigami, the presence of cuts
provides for an extra degree of control via the internal local-
ization of large bending deformations at cuts; these allow for
the nature and scale of internal large-scale bending modes
by varying the number, size and location of the cuts. This
raises a number of questions associated with both the forward
problem of understanding the mechanics of these topologically
and geometrically complex materials as well as the inverse
problem of designing the cuts to obtain different types of ar-
ticulated deformations for shape optimization. Recent work
in the context of the forward problem has focused primar-
ily on the mechanics of kirigami with simple distributions of
periodic cuts, aimed at characterizing the response using a
combination of theory, experiment and computation (4, 5).
In contrast, the inverse problem of designing cuts that allow
for articulated shape transformations has been limited pri-
marily to geometric optimization (6, 7), without much in the
nature of the mechanical response of the resulting structures.
To design cut patterns to control the shape and response of
kirigamized sheets, we need to combine aspects of both these
classes of problems by understanding the geometric mechanics
of sheets with multiple, aperiodic cuts. Here, we take a step
in this direction by describing the geometry and mechanics of
kirigami sheets with aperiodic, randomly located cuts in the
dilute limit, so that the cuts do not themselves intersect.

Geometry and mechanics of a sheet with a single cut

To get a sense of the geometry of a kirigamized sheet, in
Fig. 1 a, we show the shape of a thin circular sheet of radius R,
thickness h (R/h� 1) and a single horizontal cut of length l.
When the nomimal strain γ > 0 induced by the applied vertical
force crosses a threshold, the initially planar sheet buckles out
of the plane into a complex geometrical shape. If the sheet
has multiple cuts, as in Fig. 1 b, the deformed geometry is
even more complex. However, casual observations of the sheet
show that the underlying constituents of the deformed sheet
are actually simple conical and cylindrical domains connected
by transition layers; increasing the topological complexity of
the sheet increases the number, size, shape and orientational
order of such domains.

(a) (b)

Fig. 1. (a) When a thin circular paper sheet (R = 8.9 cm, h = 0.01 cm) with a cut
of length l = 6.4 cm) is loaded along diametrically opposite ends, it buckles into a
complex 3D surface, but can be approximated as a composition of two cones (black
dashed lines), and two cylindrical cores (in dotted lines). (b) A perforated sheet with
the same dimensions as in (a) with several cuts deforms into an even more beautiful
3D structure when pulled as shown.

Significance Statement

Kirigami, the art of cutting a sheet of paper to make it de-
formable and deployable, has emerged as a new way to create
mechanical metamaterials. However, the principles determin-
ing the geometrical limits of deployability and the mechanical
response of arbitrary, aperiodic kirigami structures still remain
unknown. Here we show that the geometry of kirigamized
sheets can be understood in terms of the composition of ele-
mentary shapes such as cones and cylinders, and their me-
chanical response takes the form of scaling laws for all regimes
of deformation. Our geometric approach thus provides a simple
paradigm for understanding and eventually designing complex
kirigami objects.
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We use numerical simulations to study the geometrical
mechanics of kirigamized sheets (details in SI sec. S2), starting
from the Föppl-von Kármán plate energy of a triangulated
plate that is minimized using a conjugate gradient method.
Cuts are defined as thin rectangular slits of length l, and small
width w, with a semicircular tip of diameter w added to the
tip of the cuts of width w.

Figure 2 a shows the mean curvature of the deformed sheet
for different values of the strain γ when the cut is initially
orthogonal (θ = π/2) to the loading axis (the line connecting
the loading points) (Fig. 2 a (i)). It is evident that for very
low strains γ � 1, the sheet just stretches, but remains planar.
When γ > γc, the sheet buckles with bending deformations
becoming localized along two conical domains centered near
the ends of the cut, and a large cylindrical domain of nearly
uniform mean curvature κ appears to connect the cut edges
and the loading points on both sides. Further stretching of the
sheet causes an increase in the curvature of these cylindrical
domains, and reduces the Euclidean distance between the end-
points (A and B) of the cuts to S from its initial length l. This
deformation localization enables the straightening (in three
dimensions) of the lines connecting the ends of the cuts to the
points of force application O1, O2 shown in Fig. 2 a, as shown
in Fig. 2 b. Simultaneously, the free edges associated with the
cut deform into a shape that resembles Euler’s elastica (8) as
shown in the Fig. 2 c. When the applied strain becomes very
large, the end points of these elasticae, corresponding to the
ends of the cut, come together so that the polygons connecting
the ends of the cut to the points of force application straighten
out and merge. If the sheet thickness is very small (h/R→ 0),
we thus expect that the sheet will be locally flat-folded onto
itself, a limit that we will address later.

Moving from this geometric description of the sheet to its
mechanical response, the force-displacement response of the
kirigami sheet described in Fig. 2 a-c is shown in Fig. 2 d. At
very low values of strain γ, the force is linearly proportional
to the strain, but once the sheet buckles, the force flattens
out to a plateau-like regime as the sheet stretches by bend-
ing out the plane. Eventually, as the ends of the cut come
together, the sheet stiffens as it cannot deform any further
without significant stretching and the force increases show-
ing a near-divergence. When the sheet buckles out of the
plane, there are two almost equivalent modes of deformation:
a symmetric mode when both cylindrical domains on either
side of the cut are in-phase, and an antisymmetric mode both
cylindrical domains on either side of the cut are out-of-phase.
The plateau force for these two cases differ marginally, but
the linear and the divergent response away from the plateau
is indistinguishable as can be seen in Fig. 2 d.

To understand the origin of this divergence, we use a scaling
approach. The torque due to the applied force f acting over
a length S corresponding to the (small) distance between
the ends of the cut is balanced by the internal elastic torque
EIκc where κc is the characteristic mean curvature in the
neighborhood of the end of the cut, with EI being the bending
stiffness of the sheet( E is the Youngs’s modulus and I is
the second moment of area around the axis normal to the
deformed area near the cut corner), so that fS ∼ EIκc. As
shown in Fig. 2 e, at the ends of the cut of small width w, the
characteristic curvature κc ∼ θc/w, where θc is the angle at the
slit corner. As the sheet is pulled apart by the forces so that

they are 2Rγ apart, geometry implies that θcS/2 ∼ 2Rγ and
S ≈ 2

√
(l/2)2 − 2R2γ. Substituting these geometric relations

into the overall torque balance then yields the relation

f ∼ EI

wR

γ

(l̄)2 − γ
[1]

where l̄ = l/(2
√

2R). Writing the stretch ratio of deformation
as the end-to-end displacement R(1 + γ) normalized by the
length of the shortest segment connecting the force application
points to the ends of the cut, i.e. the piecewise linear geodesic
length lg =

√
(l/2)2 +R2, eq. 1 can be expressed in a more

familiar form f̂ ∼ 1/(1−R(1 + γ)/lg) where f̂ = f/(EIwR)
which we see is similar to the divergent response of a freely-
jointed polymer chain (9). The inset to Fig. 2 d shows that
the mechanical response with the rescaled definition of the
stretch agrees remarkably well with this simple scaling esti-
mate. We pause to note that the divergent mechanical response
of freely-jointed chain is intimately linked to the balance be-
tween entropic effects and a finite chain length, quite unlike
the divergent response of the athermal kirigami sheet which is
due to the localization of curvature of the sheet at the ends of
the cut.

Having understood the geometry and mechanical response
of a sheet with a single symmetrically placed cut, we ask what
would happen when the length l and/or its orientation θ is
varied. Fig. 2 f inset shows the mechanical response for various
cases where l is varied keeping the cut orientation orthogonal
to the clamped axis (θ = π/2) in red curves. The mechanical
response in all cases is qualitatively similar to Fig. 2 d, with a
shift in the applied strain γ at the onset of plateau response,
the magnitude of the plateau force, and the strain at the onset
of divergent response. Larger l result in a lower value of the
threshold in γ and a lower force plateau persisting for longer,
before the force diverges. Similarly changing the orientation θ
of the cut changes the mechanical response and the plateau
value increases as the initial cut direction is more aligned with
the direction of the clamping axis. The deformed geometric
configurations for all the cases are shown in Fig. S5, S6.

To quantify these observations, we note that the linear re-
sponse at very small strain corresponds to the planar stretching
of sheet. The presence of the cut leads to a stress intensifica-
tion near the ends of the cut. Following Inglis’ seminal work
(10), the stress near the tip of a cut of length 2l and a very
small radius of curvature w can be approximated as σ0

√
l/w,

where σ0 is the far field applied stress on a large plate. Assum-
ing the planar elastic deformation is confined near the crack
tip, we get σ0

√
l/w ∼ Eγ. Hence we expect σ0 ∼ f ∼ 1/

√
l

(SI Fig. S4 b). Following the initial linear increase in the force
with applied strain, the sheet buckles when the compressive
load on a plate whose size scales as the size of the cut reaches
the buckling threshold. Since the buckling stress σb ∼ B/hl2,
with B being the flexural rigidity of the sheet, thus the buck-
ling force fb ∼ (B/h2R)(1/l2) (SI Fig. S4 d). The strain at
which sheet buckles (γb) can be estimated from a balance of
the linearly increasing planar stress (∼ Eγb/

√
l/w) with the

buckling stress. Thus γb ∼ 1/l3/2 (SI Fig. S4 c).
Following the onset of buckling, for small out-of-plane dis-

placements δ � l of the cut boundary, the curvature of the
deformed cylindrical core of the sheet scales as κ ∼ δ/l2. Thus
the total bending energy of the sheet scales as U ∼ Bκ2A ∼
Bδ2R/l3, with A ∼ Rl being the area of the localization size
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Fig. 2. (a) The mean curvature of a loaded sheet with two point loads at O1 and O2 for various applied strain γ. The grey lines are the geodesics connecting the loading
points without intersecting the cuts, and the blue lines are tracking the cut shape. Highly localized bending deformation, as indicated by the mean curvature, can be observed.
(b) Geodesic connecting the loading points O1, O2 extracted from Fig. 2 a) better align with the axis O1O2 with increasing strain. (c) The evolving shape of the cut shows
resemblance to Euler’s elastica. (d) Force displacement curves for the case shown in (a) with l/R = 0.86 and θ = π/2 subjected to point load at the opposite ends as shown
in the inset. The curves show three distinct regimes corresponding to the cases shown in Fig. 2 a. Green curve corresponds to the case shown in Fig. 2 a and red curve
corresponds to the case with cut edges buckling out-of-plane in opposite direction. The rescaled strain in a form similar to “finite extensibiltiy" models shows a power-law scaling
with an exponent−1. (e) A zoomed in view of the cut corner for the case Fig. 2 a (iii), and a schematic showing the relevant length scales that govern the mechanics in this
regime. (f) Scaling force with (1/(l3 sin3 θ)) collapses the plateau mechanical response for the cases with varying cut length l and orientation theta. Unscaled data shown in
the inset. Red curves correspond to the cases with θ = π/2, and l/R = 0.86, 1.29, 1.71. Green curves are the cases with θ = π/4, π/3, 5π/12 and l/R = 0.86. ((d)
Strongly strained kirigami sheets qualitatively show a “freely-jointed" polymer-chain like divergence as the length O1O2 → lg . Shown are the cases with θ = π/2 and
l/R− [0.57− 1.71].

approximated by area under quadrilateral O1AO2B shown in
Fig. 2 b. Thus the force scales as f = ∂U/∂(Rγ) ∼ BRδ/l3.
For a cut oriented at an arbitrary angle θ to the clamped
axis, we replace l by its orthogonal projection to the loading
axis l sin θ. Fig. 2 f shows the collapsed data from Fig. 2 f
inset, indicating that the bending energy localization in the
elasticae corresponding to the two edges of cut determines
the magnitude of plateau response in the force-displacement
curves. We note that we have ignored the contribution of en-
ergy from the conical domains since the size of conical domains
is much smaller than the cylinder-like domains just above the
onset of out-of-plane deformation, and further mean curvature
decays away from the cone tip as κ ∼ 1/r. At large applied
strain, when the geodesics are relatively better aligned with
the loading axis, application of further strain induces a strong
bending deformation at the cut corners. Sheets with a finite
tearing threshold stress generally tear as a result of this defor-
mation, and this raises a class of different questions about the
nature and shape of the curve of tearing (11). Fig. 2 g depicts
the rescaled force-displacement curves showing the divergence
response of sheets with varying cut length which agree well

with the scaling arguments presented above in eq. 1.

Geometry and mechanics of a sheet with multiple cuts

We now turn to understand how the geometric mechanics of
sheets kirigamized with a single cut translates into our un-
derstanding of sheets with multiple cuts, as shown in Fig. 3.
As examples, the mean curvature maps in Fig. 3 a show the
similarity in the localized deformation for the cases with 2
and 12 cuts that are perpendicular to the loading axis (Other
cases are shown in SI Fig. S9). It is clear that the deformed
geometry in such cases consists of four conical domains, and
N + 1 connected elasticae where N is the number of cuts.
Indeed, irrespective of the number of cuts, the conical do-
mains localize near the ends of the cuts that are nearest to
the loading points and are connected by a flat sheet for the
cases with larger N . Fig. 3 b shows the mechanical response of
sheets kirigamized with varying number of cuts and shows that
increasing the number of cuts softens the system, reducing
the plateau force and delaying the transition to the ultimately
divergent force-displacement response. To characterize the
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Fig. 3. (a) Localized bending deformation in the sheets with multiple cuts aligned orthogonal to the loading axis show similar geometric structures regardless the number of
cuts, shown are front and side views of the cases with 2 and 12 cuts. (b) Mechanical response for kirigami sheets with different number parallel of cuts (θ = π/2, l = 0.57R).
(inset) Rescaled force with the length d (labelled in (a)) collapsed the plateau regime. (c) Localized deformation in a random kirigami sheet with 21 randomly distributed cuts of
same length (dashed lines) with a total length of all cuts 8R. The mean curvature of the deformed sheet is projected on the initial flat configuration. (d) Mechanical response
of a randomly kirigamized sheet perforated with 21 randomly distributed uniform cuts, with varying total cut length has similar behavior was sheets with single and multiple
structured cuts. (inset) Rescaled force data collapsed the plateau force reasonably well.

mechanical response in the case with multiple cuts, we ap-
proximate the bending energy localized in N + 1 elasticae
close to the onset of out-of-plane deformation. As shown in
the S.I. S3, this results in the U ∼ BR2dγ/l3, and hence
f ∼ ∂U/∂(Rγ) ∼ BRd/l3 where d is the distance between
the loading point and the nearest cut. Consistent with this,
rescaling the force with d collapses the data over the scale of
intermediate deformations as shown in the inset of Fig. 3 b.

At large strains the strong bending deformations near the
cone tips similar to the case with single cut discussed ear-
lier. Predicting the location of conical domains will enable
predicting the stress concentrations, and the potential sites of
structural failure in practical applications. Our observations
suggest that the conical domains appear at the end of a cut
if the addition of that cut increases the geodesic length. To
formalize this, we define a binary participation ratio (PR) for
each cut as

PRi =
{

1 if l0g − lig > 0,
0 if l0g − lig = 0

where l0g is the geodesic length evaluated for a given cut arrange-
ment, and lig is the geodesic length with the ith cut removed
from the arrangement. For the cases shown in Fig. 3 a-b, two
cuts that nearest to the loading points have a PR = 1 and
all other cuts have PR = 0. For such cases, any cut with a
projected length l sin θ > d the distance of the force applica-
tion point does not influence lg, and thence the mechanical
response. Similarly, for the cases with two cuts of varying
projected lengths (SI Fig. S7, S8), conical domains disappear
at the corners of cuts with PR = 0. In Fig. 3 a-b, we see
that an increase in the number of cuts increases the length lg.

Since the divergent force-displacement response emerges as
2R(1+γ)→ lg, the plateau response in the force-displacement
curves is observed at larger γ for larger N . In cases with
N > 2, fixing the location of the cuts closest to the points of
force application sets the trajectory of geodesics as well as lg,
regardless the presence of the inner cuts; hence the divergence
transition occurs at same strain regardless of the presence of
the inner cuts. In fact the force-displacement curves overlap
at all applied strains for such cases, and the geometry of the
deformed sheets is identical (SI Fig. S10).

The geometry of the geodesics controls the mechanical
response of the overall system when the cuts are randomly
distributed. In Fig. 3 c, we show an example with 21 cuts
of the same length 8R, with the location of the cut midpoint
and its orientation randomly chosen such that a minimum
separation exists between the cuts, and from the clamped
points (varying the cut length does not change any of our
results qualitatively). The localization of deformation in mul-
tiple elasticae and conical domains is evident while the sheet
remains flat and undeformed near some cuts.

To obtain the average response for the random kirigami
cases, we repeat the simulations keeping

∑
l, sum of all cut

lengths, a constant. Fig. 3 d shows the mechanical response
for random kirigami. The results represent mean statistics of
the response for 10 samples per case. The overall nature of the
force-displacement curve is similar to that of a single cut, and
as expected the plateau force decreases for the cases with longer
cuts. The cases with smaller

∑
l show a very weak deviation

from the initial linear response, but with increasing
∑

l a
clear plateau is observed. The force-displacement divergence
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is observed when the geodesic connecting the points of force
application straightens out under applied strain. Relatively
large variance in force beyond the initial linear response exists.
This is due to the strong dependence of mechanics on the cut
length and location beyond the initial linear regime. Similarly,
increasing the number of cuts while keeping

∑
l constant,

results in similar observations (SI Fig. S12) with a lower
number of longer length cuts resulting in a lower plateau
force response and an increased variance.

It is evident from the geometry of random kirigami that the
deformation gets localized near a few cuts (see SI Fig. S11).
Just as for the case with structured cuts, where the mechanical
response depends on the distance of cut from the point of
application of force, its projected length and its participation
ratio PR, for random cuts that are not very close to one
another, a similar scenario arises. At the onset of the buckling
transition from the initial planar stretching response at very
low strains, each cut with PR > 0 introduces a soft bending
deformation mode in the sheet with a characteristic bending
force f∗, given by the smallest buckling load, i.e.

f∗ ∼ Eh3 min
i

[
di

l3i sin3 θdi

+ 2R− di
l3i sin3 θ2R−di

]
2R [2]

where di is the minimum distance of the midpoint of the cut of
length li from the loading points, and 2R−di is the distance of
the cut midpoint from the farthest loading point, and θdi and
θ2R−di are the angles that the cut makes with the line joining
the midpoint of the cut to the points of force application.
The above result follows from the assumption that at the
onset of plateau regime, the characteristic mean curvature for
bending localization is set by the cut that corresponds to f∗,
so that the two terms in eq. 2 follow from the energy of two
elasticae that exist on both sides of the cut. Here, we note
that the cuts with PR = 0 do not alter the plateau response
near its onset as seen with the cases in Fig. 3 b (see also
SI Fig. S7 and S8). These observations allow us to determine
the rescaled mechanical response shown in the inset of Fig. 3 d,
providing a reasonable collapse in the plateau region of force-
displacement data. The spread in the scaled data is likely due
to the simplification that the area of the sheet where energy
is localized is assumed to span the sheet (hence the factor 2R
in eq. 2), and that additional cuts which buckle following the
onset of first buckling also contribute to localize the bending
deformation as apparent in SI video 6. All together, this
allows us to reduce a given random kirigamized sheet to a
simpler, “mechanical equivalent" (SI Fig.S13). Since the cuts
with PR = 0 do not effect the geometric mechanics of the
sheet, simply removing them from the given cut arrangement
results in a sheets with identically geometric mechanics with
reduced number of cuts. Thus our simple scaling approach
reduces the complexity of random kirigami using elementary
geometric mechanics.

In the ultimate deformation limit of sheets with multi-
ple cuts, the shape of the sheet is determined by the (3-
dimensional) straightening of the shortest path (corresponding
to the geodesic) connecting the points of force application.
Geodesics for all the cases have three components: two line
segments connecting the points of application of force to the
ends of the cuts nearest to these points, and a piecewise polyg-
onal geodesic passing through the ends of all cuts.

Zero-thickness, flat-folded kirigami

For an initially flat sheet, our observations suggest that the
shortest path between the points of force application for simple
cut patterns is just a piecewise polygonal curve that connects
these points, i.e. geodesics in a planar sheet with random cuts
are piecewise polygonal. When a very thin sheet is deformed
by boundary forces, its ultimate shape is characterized by the
formation of sharp creases as the sheet folds on itself, as shown
in Fig. 5. These observations of the geometry of strongly
deformed kirigamized sheets show that the polygonal geodesic
in the plane become an approximately straight geodesic in R3

connecting the points of force application. When this sheet is
flat-folded, the geodesic is rectified leading to a configuration
that is a piecewise affine isometric immersion of the plane.
We leave precise theorems and proofs of these statements for
a separate study (12), but provide an intuitive argument for
them here.

Fig. 4. The path-shortening algorithm yields a polygonal competing to be a geodesic.

We represent the given set of cuts L, contained within an
open, bounded, convex domain Ω ⊂ R2, as the union of the
edges of a graph G. Without loss of generality, G may be
taken as planar, i.e. each pair of its edges intersects at most
at a single common vertex.

The polygonal structure of geodesics follows from the idea of
a path-shortening algorithm. Given p, q ∈ Ω̄\L and a piecewise
C1 curve τ : [0, 1] → Ω̄ \ L with τ(0) = p and τ(1) = q, one
successively replaces its portions by segments, as follows. Let
t1 ∈ (0, 1] be the first time that the segment pτ(t1) intersects
L. If τ(t1) = q, then pq is the desired geodesic connecting p
and q. Otherwise, pτ(t1) must contain some of the vertices of
the cuts. Call p1 the closest one of these vertices to τ(t1) and
perform the concatenation of the segment p1τ(t1) with the
curve τ restricted to [t1, 1]. The process is now repeated from
p1. After finitely many such steps one obtains a polygonal
connecting p and q, with a shorter length than τ .

The construction of the desired isometric immersion fol-
lows from the folding algorithm below that consists of three
steps. Let p, q ∈ ∂Ω and denote by dist(p, q) the length of the
geodesics between p, q. Then, we start with two preparatory
steps.
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Fig. 5. Strongly stretched inextensible sheet of negligible bending rigidity, h→ 0, can be folded to 2d sheets. This is illustrated through three different kirigamized sheets. The
two projections are experimentally realized by creasing the sheets: (i) 1 crease along each cylindrical core, and (ii) 3 creases to flatten the conical domains near the cut corners.
The flat foldability of a strongly stretched sheet leads to straightening of geodesics (shown in red curve) in 3d space.

Step 1. Sealing portions of inessential cuts that do not affect
dist(p, q). To this end, label cuts (the edges of G) by l1, . . . , ln.
Move the first endpoint vertex of l1 toward its second vertex,
and start “sealing” the portion of the cut l1 left behind. The
length of the geodesics connecting p and q may drop initially,
in which case the configuration is left unchanged. Otherwise,
the geodesic distance is continuously nonincreasing, although it
may initially remain constant. The sealing process is stopped
when the aforementioned distance becomes strictly less than
the original one, and the new position point is labeled as the
new vertex endpoint of l1. In the next step, the remaining
endpoint is moved along l1 toward the (new) first endpoint
and the process is repeated, thus possibly sealing the cut l1
further. The same procedure is carried out for each li in the
given order i = 1, . . . n. It follows that upon repeating the
same process for the newly created configuration, labeled the
minimal configuration will not be further altered.

While different ordering of cuts and vertices may yield
different minimal configurations and new geodesics may be
created in the cut-sealing process, all original geodesics are
preserved. Also, since the newly created set L is a subset of
the original one, finding the isometric immersion relative to
the new L will yield the desired isometric immersion.

Step 2: Ordering of the geodesics and connected components
of Ω \ L. There are two important properties of a minimal
configuration: the graph G has no loops (i.e. it is a collection
of its connected components that are trees), and each vertex
that is a leaf in some tree is a vertex of some geodesic.

With these properties, one proceeds to label all geodesics
in a consecutive order, with τ1 � . . . � τN . Here, τr � τr+1
means that the concatenated polygonal curve from p to q via
τr and then back to p via τr+1 encloses a region Dr and it
is oriented counterclockwise with respect to Dr. Next, one
labels and orders the trees {Tm}sm=1 in D̄r so that Dr \ L is
partitioned into subregions {Pm}sm=0 and {Qm}sm=1 in the
following way: each Pm is a polygon bounded by the “right
most” path from the tree Tm, the “left most ” path from
Tm+1, and the intermediate portions of τr and τr+1 which are

concave with respect to Pm. Each Qm is a finite union of
polygons enclosed within the single tree Tm, again bounded
by the intermediate portions of geodesics τr and τr+1. Note
that τr and τr+1 may have nontrivial overlaps and some of
{Qm}sm=1 may be absent.

Step 3: Constructing a desired isometric immersion. Fi-
nally, we fix the segment I = [0, de1] along the x1-axis in
R3, with d = dist(p, q).To construct an isometric immersion
u of Ω \ L such that u(p) = 0, u(q) = de1, u(τr) = I for
r = 1, . . . , N , and where each segment on τr is mapped onto
a designated segment portion of I, w first note that u consists
exclusively of planar folds and returns the image that is a
subset of R2.

By Step 2,Dr =
⋃s

m=0 Pm∪
⋃s

m=1 Qm, for r = 1, · · · , N−1,
so that it is possible to construct u on P0, Q1, Q2, . . . , Qm, Pm,
even though the step to construct u on P1, . . . , Pm−1 can be
highly technical (12). Since the exterior region D0 = Ω \⋃N−1
r=0 Dr does not contain trees, the two outermost geodesics

σ1 and σN are convex, and so the definition of u on D0 consists
of several simple folds. We note that the condition p, q ∈ ∂Ω
is essential here: indeed there exist minimal configurations
for p, q /∈ ∂Ω, that do not admit any isometry u with the
property that the Euclidean distance from u(p) to u(q) equals
the geodesic distance from p to q in Ω \ L (for further details,
we refer to (12)).

Functional kirigami structures

The geometric mechanics of ordered and disordered kirigami
leads us naturally to questions of design for function, which
we demonstrate with two examples. The first is the use of
kirigamized sheets to robotic grasping. To be effective, a
grasper must enable controlled gripping, lifting and relocating
objects of varying scales and shapes with minimal external
energy input. We define an active grasper as one that re-
quires continuous application of tensile force (external energy)
to grasp and relocate, while a passive grasper only requires
external work to be done in order to grasp and release the
object, with energy-free relocation as shown in the schematic
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Fig. 6. (a) The kirigami grasper can be employed in active and passive modes
requiring different energy input. A simple framework of grasper function on a generic
mechanical displacement of the sheet. (b) A kirigami grasper design for grasping
objects. The deformed sheet shows the concave regions (for active grasping), and
open holes (for passive grasping). (c) Passsive grasping of an racquet ball. (d) Active
grasping of a tennis ball.

in Fig. 6 a. Kirigami enables both designs; while the active
gripper accommodates the target object in the curved fea-
tures of the deformed sheet, the passive gripper utilizes the
holes/cuts in the structure to accommodate objects. The
passive mode thus requires a prestretch to deform the 2d cut
into a 3d slot/hole of the size similar to the target object.
On releasing the prestretch the cut boundary forms contact
with the object, grasping it. The arrested object is released
by applying an extensional strain to the sheet. The sequence
is demonstrated in Fig. 6 c and S.I. Movie 3. In the passive
mode, the conical tips and the cylindrical core of the kirigami
sheet enables confinement of the target object as shown in
Fig. 6 c and S.I. Movie 3.

The kirigamized grasper has multiple smaller cuts, in ad-
dition to the larger cut in the middle as shown in Fig. 6 b.
The additional cuts are prescribed in a way that all cuts have
PR > 0, and buckle under the applied strain. Further, the
largest cut is split in the middle by a small cut, oriented along
the pulling axis. Together these features enable symmetric
deformation of the flat kirigami sheet, and improve the sta-
bility in handling due to additional points of contact with
the grasped object as shown in Fig. 6 b. We note that the
simplest kirigamized gripper with a single cut (Fig. 1 a, 2 a)
deforms asymmetrically, and hence cannot be effectively used
as a grasper in both active and passive modes. In practical
scenarios however symmetric deformation can be realized if
the sheet is stretched significantly (13).

The range of applicability of a kirigami gripper can be
understood from a balance of the forces due to the bending
of kirigami sheet, and the weight of the object to grasp. For
a cut of length l, the characteristic grasping force of the

1

0 1.00

1.10

1.15

dφ
0 π/90 π/60-π/90-π/60

lg/2R

transmittanceshielding

π/60 -π/180

dφ

dφ = -π/30(a)

(b)

Fig. 7. (a) Kirigami sheets with curved cuts (dashed lines) show very different
response to an applied strain. Red line is the geodesic connecting points of application
of force O1, O2 (b) A phase diagram quantifying the mechanical shielding and
transmittance response of the deployed kirigami structures.

deformed sheet can be written as fg ∼ µ(B/l)c(γ), with µ
being the coefficient of friction and c(γ) is a strain dependent
geometric factor. For an object with effective density ρ and
size l, force balance yields µ(B/l)c(γ) ∼ ρgl3. This provides a
non-dimensional kirigami grasper parameter ρgl4/(µBc(γ)),
which has values ranging between 1− 100 for the successful
grasping demonstrations using a plastic gripper.

Although our discussion so far was restricted to cuts that are
straight rectangular slits, the ideas established are applicable
to general shaped cuts. Inspired by the recent efforts towards
design of kirigami-inspired mechanically deployable structures
(1), we demonstrate a simple deployable kirigami structure
here, whose force-dependent shielding and transmission can
be tuned with simple geometric parameters.

Fig. 7 a shows a case of physical kirigamized sheets per-
forated with five concentric circular arcs. The arcs extend
between ±dφ and ±(π − dφ) w.r.t. the vertical axis, and the
radius is linearly increased between the five arcs. The planar
kirigami sheets (with marginally different dφ) show very differ-
ent geometric mechanics under a small applied strain. For the
case when dφ = −π/30, the geodesic connecting O1 and O2
skirts the outer cut without intersecting any of the inner cuts.
The inner cuts have PR = 0, and hence do not introduce any
soft deformation modes. Under an applied deformation, the
outer frame localizes the bending while the inner structure
stays nearly planar without any deformation or stays “me-
chanically shielded”. A small change in dφ(−π/180) results
in the cut arrangement such that the geodesic connecting O1
and O2 meanders through the corners of all cuts. Under an
applied load, this structure shows a large relative out-of-plane
displacement of different domains of the sheet (S.I. Movie 4).
Further changing dφ = π/60, results in a straight geodesic con-
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necting O1 and O2, and hence tensile loading of this structure
results in the in-plane deformation.

We quantify the functional response of such kirigamized
structures using dφ as a tunable parameter. A straightforward
observation is that force required to deform such class of
structures which increases monotonically with dφ (SI Fig.S14).
The geometric consequence of different geodesic paths can be
quantified in terms of two functional features of this family of
kirigami structures: transmittance and shielding (1c:materials).
In practical scenarios this corresponds to the light transmitted
though an optical window when illuminated with a light rays
perpendicular to the rest plane. Shielding is proposed to
be linked its ability to restrict the mechanical deformation
to the boundary, and effectively protecting the interior. We
restrict the deformation to small strains 0.01−1%, a practically
relevant regime. And since the geometric mechanics is strain-
dependent, we take a representative value for comparison
corresponding to the highest applied strain.

Fig. 7 b shows a phase diagram showing shielding and
transmittance as a function of dφ. The properties are evaluated
at a strain of 1%. Both flatness and transmittance curves
display a non-monotonic trends. The cases with large lg show
high shielding ability since their interior remains relatively
flat, while a high transmittance is achievable in the cases with
lg → 2R. Further the strain sensitivity of transmittance is
enhanced with increasing lg/2R (SI Fig.S15). For the cases
with lg = 2R a weak dependence on the functional properties
can be seen since the structures deform primarily by planar
stretching.

Discussion

Our study of random kirigami has shown how elementary geo-
metric and energetic concepts allow us to understand the three-
dimensional structure and mechanical response of kirigamized
sheets. This leads to a geometric view of how cuts respond
or not, along with scaling arguments for all regimes of defor-
mation. The resulting simplicity of the framework reduces
a complex nonlinear problem to geometrical constructions,
and thus eases the search for novel engineering solutions us-
ing kirigami in such instances as grasping and windowing,
which we hope are just the beginning of a different way of
thinking about using topological and geometrical mechanical
metamaterials.

Materials and Methods

Numerical Simulations. For our numerical experiments, use the fi-
nite difference scheme outlined in (14) and (15) to represent the
sheets and minimize the Föppl-von Kármán plate energy on trian-
gular meshes of the geometry, fixing the two clamped regions at
various distances apart, with otherwise free boundary conditions.
The Young (elastic) modulus, Poisson ratio, and thickness used to
calculate the elastic energy are 1 GPa, 0.4, and 0.01 cm respectively.
The geodesics of the mesh were computed using an open source
code (16) based on fast marching approach (17)

Quantification of functional response. Transmission of the kirgami
window is quantified as the difference between the area of unde-
formed sheet and the projected area of deformed sheet on the rest
plane, normalized by the undeformed sheet area. The shielding
effect is quantified by the average flatness of the sheet. We define
flatness as the variance in the radial correlation distribution of the

average face normal of an area element with the orientation of the
element at sheet center, (

∑
i
n̂0.n̂(ri)a(ri))/A(ri + ∆r). Here, n̂0

is the unit normal to a infinitesimal element at ri → 0 and n̂(ri) is
the unit normal to an element at a distance ri from the center with
an area a(ri). This quantity represents the average orientation of
all elements located between ri and ri + ∆r with the orientation of
the center.
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1. Deformation of a kirigami sheet with a cut in its middle aligned orthogonal to the line joining the points of force application in
experiments and numerical simulation. The mean curvature is highlighted on the deformed configuration in the simulations.

2. Deformation of a kirigami sheet with: 2 parallel cuts, 12 parallel cuts, and 21 randomly oriented cuts of total length 8R .
3. Deployable functional kirigami grasper. The grasper is laser cut from a plastic sheet with a diameter of 7 inches.
4. Deployable functional kirigami transmission window constructed from a plasticized paper sheet 7 inches in diameter.

S1. Experiments

The experimental samples were fabricated by laser cutting plasticised and vinyl sheets. The 3D surface profile was extracted by scanning
the deformed kirigami sheets with a high-resolution 3D scanner (Artec Space Spider) followed by post processing the meshes to obtain
discrete curvature. The transmission experiments were performed by illuminating the area of the kirigamized sheet to a nearly uniform
light source that was kept fixed, and imaging the transmitted light on a dark screen. The images were thresholded in MATLAB, the
fraction of illuminated area was evaluated.

S2. Numerical simulation

The Föppl-von Kármán plate energy can be written in terms of the first and second fundamental forms a and b of a flat region U ∈ R2

mapped to the three-dimensional midsurface of the plate in R3:

U =
1
2

∫
U

[
h

4

∥∥a−1
0 (a− a0)

∥∥2
e

+
h3

12

∥∥a−1
0 (b− b0)

∥∥2
e

]
dA [S1]

where the norm ‖X‖2
e = Y ν

1−ν2 tr2X + Y
1+ν tr(X

2), and a0 and b0 represent the initial (zero-energy) fundamental forms of the sheet. For
flat sheets, a0 is specified by the initial vertex configuration (see below) and b0 = 0 for all entries. For a triangular mesh approximating a
continuous surface, the integral is replaced by a sum over triangles. We follow the scheme used in (S15) to define at and bt on triangle t as

at =
(
~e1 · ~e1 ~e1 · ~e2
~e1 · ~e2 ~e2 · ~e2

)
[S2]

bt =
(

2~e1 · (~n0 − ~n2) −2~e1 · ~n0
−2~e1 · ~n0 2~e2 · (~n1 − ~n0)

)
[S3]

and the differential area element

dAt =

√
det(a)
2

[S4]

with ~ei as the directed edges of the triangle and ~ni as the surface normals, defined on the midpoint of and constrained to be perpendicular
to each edge in the mesh. This definition of surface normals requires one extra degree of freedom per edge of the mesh, and is detailed in
(S14). The extra factor of 1/2 in the differential area element dA is required due to the parameterization of each triangle patch as a right
unit triangle (half of a unit square). With these definitions of a and b, the total Föppl-von Kármán energy of the mesh is minimized over
the mesh degrees of freedom (the free vertex positions and edge normals) using the L-BFGS method.

The strain deformation was applied to vertices at opposite ends of the sheet, which were then held fixed. The simulations were
performed by sequentially increasing the separation of such nodes while keeping the other degrees of freedom fixed. The energy was
minimized over the free mesh variables at each step after perturbing the mesh vertices with a small, random, displacement. A deformation
force was simply obtained by the first derivative of total energy, f = ∂U/∂x. In case of kirigami with curved cuts, specified perturbations
were employed in the initial steps of the simulation to bias the direction of initial out-of-plane deformation.

S3. Energy scaling of kirigamized sheets

Consider a sheet of radius R with single cut AB of length l at its at a distance d away from point O1. O1 and O2 are the loading
points. Since the deformation in the case is symmetric on either sides of the axis O1O2. We focus on the deformation of the sheet area
under 4O1AO2. Consider a small displacement of point O1 to O′1 by a distance Rγ. The point A shifts to its new position A′. From
geometry, O1A = O′1A

′ =
√

(l/2)2 + d2 and O2A = O′2A
′ =
√

(l/2)2 + (2R− d)2. From 4O′1A′O, (S/2)2 = d2 + (l/2)2 − (d + Rγ)2

From 4O′1OC, (Rγ + d)2 = d2 + δ2. Similarly from 4O′2OD, (Rγ + (2R− d))2 = (2R− d)2 + δ2.
Total bending energy of the sheet is approximated by the deformation of sheet under O1AO2B at the onset of buckling. We further

assume that the mean curvature of the domain is same as that of the cut boundary. Thus the bending energy of the sheet can be written as
Utotal ∼ UO1AO2B

∼ UO1AB + UO2AB

∼ B(
δ1

S2 )2ld+B(
δ2

S2 )2l(2R− d)

∼ B
2Rdγ

((l/2)2 − 2Rdγ)2 ld+B
2R(2R− d)γ

((l/2)2 − 2R(2R− d)γ)2 (2R− d)l
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To find the force,

f =
1
R

∂

∂
Utotal|γ→0

= 32B
d2

l3
+

32B(2R− d)2

l3
+O(γ)

The two components in the above equation correspond to the plateau transition for bucking both edges of a cut. A special case is
the case where the cut is a perpendicular bisector to the line joining the loading points O1 and O2, in which case d = R, and hence
fthreshold ∼ BR2

l3
For the cases shown in Fig. 3 a-b, and the Fig.S3, the total energy will have three contributions from three components as highlighted.

Thus bending energy scales as

Utotal ∼ UO1A1A2O2B2B1

∼ 2 ∗ UO1A1B1 + UA1A2B2B1

∼ 2B(
δ

S2 )2(ld+ l(R− d))

∼ 2B
2Rdγ

((l/2)2 − 2Rdγ)2 lR

Thus fthreshold ∼ d for the case of symmetric cut intersecting the axis O1O2.

-1 0.5-0.5 0 1

dx = 0.5 mm 1.3 mm 2.8 mm

Fig. S1. Mean curvature of a physical kirigami sheet as different displacements are applied to stretch it. The conical domains near both ends of cut, and a large cylindrical
domain in the middle can be visualized. The mean curvatures of these localized domain increases with increasing strain. The diameter of the sheet is 17.5 cm. The data is
obtained by surface scanning the deformed sheet, and computing mean curvature from the extracted triangulated mesh.
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Fig. S2. Schematic of a sheet of radius R, and a cut of length l. The center of the cut is located on the line O1O2.
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Fig. S3. Schematic of a sheet of radius R, and two symmetric cuts of length l. The center of the cut is located on the line O1O2.

Chaudhary et al. PNAS | January 9, 2022 | vol. XXX | no. XX | 3



force-displacement curves for varying cut length l, and  θ=π /2  
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Fig. S4. (a) Force displacement response for sheets of radius R with a cut of length l located at its center and oriented orthogonal to the loading axis. (b) The linear regime
from figure (a) where f ∼ γ, on left, and the scaled force on the right. (c) The critical buckling strain γb at which the force deviated from its linear response is plotted against
the cut length. The power-law curves of exponents -3/2 is shown for comparison. (d) The critical buckling force b plotted agains the nondimensional cut length.
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Fig. S5. Mean curvature profile of deformed kirigami sheet with varying cut length l and θ = π/2.
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Fig. S6. Mean curvature profile of deformed kirigami sheet with fixed cut length l = 0.86R and variable θ.
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Fig. S7. Mean curvature profile of deformed kirigami sheet with two parallel cuts. The right cut is of l = 0.57R, and the left cut is of l = 0.57R + dl and θ = π/2.
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Fig. S8. Mean curvature profile of deformed kirigami sheet with two inclined cuts. The right cut is inclined at θ = π/2, and the left cut is inclined at θ = d with l = 0.57R.
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Fig. S9. Mean curvature profile of deformed kirigami sheet with multiple parallel cuts of fixed length l = 0.57R.
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Fig. S10. Mean curvature profile of deformed kirigami sheet with variable parallel cuts of fixed length l = 0.57R, keeping the geodesic length lg constant.
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Fig. S11. Mean curvature profile of deformed kirigami sheet with randomly arranged uniform cuts of total cut length l, and fixed number of cuts N = 21.
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Fig. S12. Mechanical response of random kirigami.
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increasing lg/2R

Fig. S14. Force displacement response for cases with curved cuts of varying dφ.
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Fig. S15. Optical transmittance of two experimental kirigami sheet with curved cuts, and different geodesic lengths.
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