Shift Differentials of Maps in BV Spaces.

Alberto Bressan and Marta Lewicka

SISSA Ref. 59/98/M (June, 1998)

1 Introduction

Aim of this note is to provide a brief outline of the theory of shift-differentials, introduced in [2], and show how their construction can be extended to the case of vector valued functions.
In the following, we consider the space $B V$ of scalar integrable functions having bounded variation, endowed with the \mathbf{L}^{1} norm. We recall that, given a map Φ : $X \mapsto Y$ between normed linear spaces, its differential at a point x_{0} is the linear map $\Lambda: X \mapsto Y$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|\Phi\left(x_{0}+h\right)-\Phi\left(x_{0}\right)-\Lambda(h)\right\|_{Y}}{\|h\|_{X}}=0 \tag{1.1}
\end{equation*}
$$

This concept of differential (see for example [6]) is one of the cornerstone of mathematical analysis, providing a basic tool in the study of regular maps. For maps which do not admit a first-order linear approximation, various concepts of weak or generalized differential can be found in the literature [4] [7] [9] [11]. The present paper intends to provide some further contribution in this direction.
The primary motivation for the introduction of shift differentials comes from the theory of hyperbolic conservation laws [8] [10]. As a simple example, consider Burgers' equation

$$
\begin{equation*}
u_{t}+\left[u^{2} / 2\right]_{x}=0 \tag{1.2}
\end{equation*}
$$

with the family of initial conditions

$$
\begin{equation*}
u^{\theta}(0, x)=\theta x \cdot \chi_{[0,1]}(x) \tag{1.3}
\end{equation*}
$$

By χ_{I} we denote here the characteristic function of the interval I. Assuming $\theta>0$, the corresponding solution of (1.2)-(1.3) is

$$
\begin{equation*}
u^{\theta}(t, x)=\frac{\theta x}{1+\theta t} \cdot \chi_{[0, \sqrt{1+\theta t}]}(x) . \tag{1.4}
\end{equation*}
$$

Observe that the map $\theta \mapsto u^{\theta}(0, \cdot)$ describes a smooth curve in \mathbf{L}^{1}, namely a segment. However, for $t>0$, the map $\theta \mapsto u^{\theta}(t, \cdot)$ is Lipschitz continuous but nowhere differentiable because the location $x^{\theta}(t)=\sqrt{1+\theta t}$ of the shock varies with θ. Therefore, the limit

$$
\lim _{\Delta \theta \rightarrow 0} \frac{u^{\theta+\Delta \theta}-u^{\theta}}{\Delta \theta}
$$

is not well defined as an element of the space \mathbf{L}^{1}.
More generally, call $S: \mathbf{L}^{1} \times\left[0, \infty\left[\mapsto \mathbf{L}^{1}\right.\right.$ the semigroup [5] [8] generated by the nonlinear conservation law

$$
\begin{equation*}
u_{t}+f(u)_{x}=0 \tag{1.5}
\end{equation*}
$$

In other words, let $t \mapsto u(t, \cdot)=S_{t} \bar{u}$ be the unique entropic solution of (1.5) with initial condition $u(0, x)=\bar{u}(x)$. Then for each $t>0$ the flow map $\bar{u} \mapsto S_{t} \bar{u}$ is a contraction in the space \mathbf{L}^{1}, in general non differentiable in the usual sense.

To cope with this situation, a new differential structure on the space $B V$ of integrable functions with bounded variation can be introduced. Let a function $u \in B V$ be given. In order to define a "tangent space" at u, we follow a procedure which is now standard in differential geometry. On the family of continuous maps $\gamma:\left[0, \theta^{*}\right] \mapsto \mathbf{L}^{1}$, with $\gamma(0)=u$ and $\theta^{*}>0$ (possibly depending on γ), consider the equivalence relation

$$
\begin{equation*}
\gamma \sim \gamma^{\prime} \quad \text { iff } \quad \lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|\gamma(\theta)-\gamma^{\prime}(\theta)\right\|_{\mathbf{L}^{1}}=0 \tag{1.6}
\end{equation*}
$$

Every equivalence class can be regarded as a "first-order tangent vector" at the point u. Call \widehat{T}_{u} the set of all these equivalence classes. Observe that, if Φ is any Lipschitz continuous map from \mathbf{L}^{1} into itself, then $\gamma \sim \gamma^{\prime}$ implies $\Phi \circ \gamma \sim \Phi \circ \gamma^{\prime}$. Therefore Φ induces a well defined map $D \Phi(u): \widehat{T}_{u} \mapsto \widehat{T}_{\Phi(u)}$. In principle, this map $D \Phi$ could be regarded as an abstract differential of Φ at the point u. However, this does not seem a fruitful point of view. Indeed, the set \widehat{T}_{u} of all equivalence classes is extremely large and cannot be adequately described. Therefore, one usually works with a particular subset $T_{u} \subset \widehat{T}_{u}$ of tangent vectors which admit a suitable representative.

The standard choice at this stage is to consider a family T_{u} of tangent vectors which can be put in a one-to-one correspondence with $\mathbf{L}^{1}(\mathbb{R})$. More precisely, T_{u} is defined as the family of all equivalence classes of the maps

$$
\begin{equation*}
\theta \mapsto \gamma_{v}(\theta) \doteq u+\theta v, \quad v \in \mathbf{L}^{1}(\mathbb{R}) \tag{1.7}
\end{equation*}
$$

As we saw earlier, this choice is not adequate for describing a first-order variation of the flow map S_{t} for (1.2). For example, taking

$$
\bar{u}(x) \doteq x \cdot \chi_{[0,1]},
$$

the path $\vartheta \mapsto \gamma(\vartheta) \doteq u^{1+\vartheta}(0, \cdot)$ in (1.3) determines an equivalence class in $T_{\bar{u}}$. On the other hand, the equivalence class of the path $\vartheta \mapsto S_{t} \circ \gamma(\vartheta)=u^{1+\vartheta}(t, \cdot)$ defined at (1.4) determines some tangent vector which is not in the space $T_{S_{t} \bar{u}} \doteq \mathbf{L}^{1}$.

In this paper, given $u \in B V$, we study a different space T_{u} of tangent vectors, which can be put into a one-to-one correspondence with $\mathbf{L}^{1}(\mathrm{D} u)$. Here $\mathrm{D} u$ denotes the (signed) Radon measure corresponding to the distributional derivative of u. The basic idea is the following. In the special case where v is continuously differentiable with compact support, to v we associate the equivalence class of the map $\theta \mapsto u^{\theta}$, where u^{θ} is implicitly defined as

$$
\begin{equation*}
u^{\theta}(x+\theta v(x))=u(x) \tag{1.8}
\end{equation*}
$$

for all $\theta \geq 0$ sufficiently small. We then show that this correspondence can be uniquely extended to the whole space $\mathbf{L}^{1}(\mathrm{D} u)$. Observe that in (1.7) the graph of u^{θ} is obtained by lifting the graph of u vertically by θv. On the other hand, in (1.8), the graph of u is shifted horizontally by θv. This motivates the term "shift-differential" used in the sequel.

In Section 2 of this paper we review the definition and the basic properties of shift differentials, for maps within the space of scalar $B V$ functions. All results are taken from [2], to which we refer for details of the proofs.
In Section 3 we extend the notion of shift differential to the case of vector-valued $B V$ functions. If $u: \mathbb{R} \mapsto \mathbb{R}^{n}$ is a $B V$ function, a shift tangent vector is defined in terms of:
(i) A decomposition of u into n scalar components,
(ii) A n-tuple of functions $\left(v_{1}, \ldots, v_{n}\right) \in \mathbf{L}^{1}(\mathrm{D} u)$, determining the rate at which each component of u is shifted.

This approach is strongly motivated by the study of hyperbolic systems of conservation laws. The main result in [2] shows that the flow generated by a single conservation law is differentiable "almost everywhere". We conjecture that a similar result holds for $n \times n$ strictly hyperbolic systems of conservation laws, with the above definition of shift differential. For piecewise Lipschitz solutions to general $n \times n$ systems of conservation laws, a detailed analysis of first order variations can be found in [3]. Shift differentials of an approximate flow, defined within a class of piecewise constant functions, played a key role in [1] to construct the semigroup generated by a 2×2 system of conservation laws.

2 Shift Tangent Vectors

Throughout the following, our basic function space is the normed space

$$
\begin{equation*}
X \doteq\left(\mathbf{L}^{1}(\mathbb{R}) \cap \mathbf{B V}(\mathbb{R}) ;\|\cdot\|_{\mathbf{L}^{1}(\mathbb{R})}\right) \tag{2.1}
\end{equation*}
$$

Here $\mathbf{L}^{1}(\mathbb{R})$ refers to the standard Lebesgue measure. The elements of X are thus equivalence classes of functions. For sake of definiteness, we shall always deal with left continuous representatives. By $\operatorname{Lip}(\mathbb{R})$ we denote the space of Lipschitz continuous functions. The Lipschitz constant and the \mathbf{L}^{∞} norm of v are denoted by $\operatorname{Lip}(v)$ and $\|v\|_{\mathbf{L}^{\infty}}$, respectively. For $u \in \mathbf{B V}(\mathbb{R})$, by $\mathbf{L}^{1}(\mathrm{D} u)$ we denote the space of functions integrable w.r.t. the Radon measure $\mathrm{D} u$.
Given $u \in X$, for every $v \in \mathbf{L}^{1}(\mathrm{D} u)$ we shall construct a first-order variation $\theta \mapsto u^{\theta}$ of u, consistent with the definition (1.8) in the smooth case. The idea is to approximate v by a family of Lipschitz continuous functions v^{θ} and define u^{θ} implicitly by

$$
\begin{equation*}
u^{\theta}\left(x+\theta v^{\theta}(x)\right)=u(x) . \tag{2.2}
\end{equation*}
$$

Observe that the condition $\operatorname{Lip}\left(\theta v^{\theta}\right)<1$ is essential in order that the function u^{θ} in (2.2) be well defined. Some key properties of the approximating functions v^{θ} are singled out by the next definition.

Definition 1. Let $u \in X$ and $v \in \mathbf{L}^{1}(\mathrm{D} u)$. Consider a family of functions $v^{\theta} \in$ $\mathbf{L}^{1}(\mathrm{D} u) \cap \operatorname{Lip}(\mathbb{R})$, with $\theta \in\left(0, \theta^{*}\right]$. We say that v^{θ} hat-converges to v, and write $v^{\theta} \xrightarrow{\wedge} v$, provided that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \int\left|v^{\theta}(x)-v(x)\right| d \mu_{u}(x)=0, \quad \limsup _{\theta \rightarrow 0} \operatorname{Lip}\left(\theta v^{\theta}\right)<1, \quad \lim _{\theta \rightarrow 0}\left\|\theta v^{\theta}\right\|_{\mathbf{L}^{\infty}}=0 \tag{2.3}
\end{equation*}
$$

Here and in the sequel, $\mu_{u} \doteq|\mathrm{D} u|$ denotes the Radon measure of total variation of u. Clearly, $\mathbf{L}^{1}\left(\mu_{u}\right) \approx \mathbf{L}^{1}(\mathbf{D} u)$. Observe that the last two conditions in (2.3) essentially depend on the parametrization of the family $\left\{v^{\theta}\right\}$. Indeed, from any family of Lipschitz functions $v^{\theta} \rightarrow v$, it is always possible to recover a hat-convergent family by a simple reparametrization:

Lemma 1. For any $u \in X$ and $v \in \mathbf{L}^{1}(\mathrm{D} u)$ there exists a family of functions $v^{\theta} \in \mathbf{C}_{c}^{\infty}(\mathbb{R}), \theta \in\left(0, \theta^{*}\right]$ satisfying

$$
\begin{equation*}
\operatorname{Lip}\left(\theta v^{\theta}\right) \leq \sqrt{\theta}, \quad\left\|\theta v^{\theta}\right\|_{\mathbf{L}^{\infty}} \leq \sqrt{\theta}, \quad \quad \lim _{\theta \rightarrow 0} v^{\theta}=v \quad \text { in } \quad \mathbf{L}^{1}(\mathrm{D} u) \tag{2.4}
\end{equation*}
$$

In particular $v^{\theta} \xrightarrow{\wedge} v$.
If $\operatorname{Lip}\left(\theta v^{\theta}\right) \leq \alpha<1$, then the function $y_{\theta}(x) \doteq x+\theta v^{\theta}(x)$ is Lipschitz continuous with $\operatorname{Lip}\left(y_{\theta}\right) \leq 1+\alpha$. Its inverse $x_{\theta}(y)$ is also Lipschitz continuous, with constant $\operatorname{Lip}\left(x_{\theta}\right) \leq 1 /(1-\alpha)$. Hence, the function u^{θ} in (2.2) is well defined. In particular, if $v^{\theta} \xrightarrow{\wedge} v$, then for all $\theta>0$ sufficiently small the definition (2.2) is meaningful. We now introduce a convenient notation for the functions u^{θ}, obtained by shifting horizontally the graph of u.

Definition 2. If $u \in X$ and $\operatorname{Lip}\left(\theta v^{\theta}\right) \leq \alpha<1$, we denote by $v^{\theta} \star u$ the function implicitly defined by

$$
\begin{equation*}
\left(v^{\theta} \star u\right)\left(x+\theta v^{\theta}(x)\right)=u(x) . \tag{2.5}
\end{equation*}
$$

With the above notations, the basic definition of shift tangent vector can now be introduced.

Definition 3. Fix $u \in X$ and consider a path $\theta \mapsto u^{\theta} \in \mathbf{L}^{1}(\mathbb{R})$, defined on some interval $\theta \in\left(0, \theta^{*}\right]$. We say that the path u^{θ} generates the shift tangent vector
$v \in \mathbf{L}^{1}(\mathrm{D} u)$ if, for some functions $v^{\theta} \xrightarrow{\wedge} v$, one has

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|u^{\theta}-v^{\theta} \star u\right\|_{\mathbf{L}^{1}(\mathbb{R})}=0 . \tag{2.6}
\end{equation*}
$$

Roughly speaking, this means that in first approximation the functions u^{θ} are obtained by shifting the graph of u horizontally by the amount θv. For the above definition to be meaningful, there must be a one-to-one correspondence between shift tangent vectors and functions in $\mathbf{L}^{1}(\mathrm{D} u)$. In other words, all families v^{θ} hatconverging to the same function v should determine paths belonging to the same equivalence class. This is indeed the content of the following theorem.

Theorem 1. Let $u \in X, v, \tilde{v} \in \mathbf{L}^{1}(\mathrm{D} u)$ and assume $v^{\theta} \xrightarrow{\wedge} v, \tilde{v}^{\theta} \xrightarrow{\wedge} \tilde{v}$. Then

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta} \int\left|\left(v^{\theta} \star u\right)(y)-\left(\tilde{v}^{\theta} \star u\right)(y)\right| d y=\int|v(x)-\tilde{v}(x)| d \mu_{u}(x) . \tag{2.7}
\end{equation*}
$$

Theorem 1 yields the uniqueness of shift tangent vectors. Indeed, assume that the path $\theta \mapsto u^{\theta}$ generates the shift tangent vectors $v, \tilde{v} \in \mathbf{L}^{1}(\mathrm{D} u)$. Choosing functions $v^{\theta} \xrightarrow{\wedge} v, \tilde{v}^{\theta} \xrightarrow{\wedge} \tilde{v}$, from Theorem 1 it now follows

$$
\begin{aligned}
\|v-\tilde{v}\|_{\mathbf{L}^{1}(\mathrm{D} u)} & =\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|v^{\theta} \star u-\tilde{v}^{\theta} \star u\right\|_{\mathbf{L}^{1}(\mathbb{R})} \\
& \leq \lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|v^{\theta} \star u-u^{\theta}\right\|_{\mathbf{L}^{1}(\mathbb{R})}+\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|u^{\theta}-\tilde{v}^{\theta} \star u\right\|_{\mathbf{L}^{1}(\mathbb{R})} \\
& =0
\end{aligned}
$$

Therefore, v and \tilde{v} must coincide almost everywhere w.r.t. the measure $\mathrm{D} u$.
On the other hand, let $v^{\theta} \xrightarrow{\wedge} v, \tilde{v}^{\theta} \xrightarrow{\wedge} v$. Then by (2.7) the paths $\gamma(\theta) \doteq v^{\theta} \star u$, $\tilde{\gamma}(\theta) \doteq \tilde{v}^{\theta} \star u$ are equivalent. This shows that the construction of a tangent vector does not depend on the choice of the family v^{θ} in (2.3).

Example 1. Let $u(x)=x \cdot \chi_{[0,1]}(x)$ and define the parametrized curve

$$
u^{\theta}(x)=(1+\theta)^{2} x \cdot \chi_{[0,1+\theta]}(x)
$$

Then the curve $\theta \mapsto u^{\theta}$ generates the shift tangent vector $v \in \mathbf{L}^{1}(\mathrm{D} u)$, with

$$
v(x)=\left\{\begin{array}{cll}
-2 x & \text { if } & x \in[0,1) \\
1 & \text { if } & x=1
\end{array}\right.
$$

Indeed, one can check that (2.4) holds, choosing for example $v^{\theta}(x)=\max \{-2 x, 1+$ $(x-1) / 2 \theta\}$.

It is interesting to relate the standard notion of differentiability to the existence of a shift tangent vector. Recall that a continuous path $\theta \mapsto u^{\theta}$ with $u^{0}=u \in X$ is shift differentiable if there exists $v \in \mathbf{L}^{1}(\mathrm{D} u)$ such that (2.6) holds for some $v^{\theta} \xrightarrow{\wedge} v$. On the other hand, the path is differentiable in the usual sense if there exists $w \in \mathbf{L}^{1}(\mathbb{R})$ such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0}\left\|\frac{u^{\theta}-u}{\theta}-w\right\|_{\mathbf{L}^{1}(\mathbb{R})}=0 . \tag{2.8}
\end{equation*}
$$

Theorem 2. Consider a map $\theta \mapsto u^{\theta} \in X$, with $u^{0}=u$, generating the shift tangent vector $v \in \mathbf{L}^{1}(\mathrm{D} u)$. Then this map is differentiable at $\theta=0$ in the usual sense if and only if $v \cdot \mathrm{D} u$ is absolutely continuous w.r.t. Lebesgue measure. In this case we have $v \cdot \mathrm{D} u=-w \cdot d x$ with w defined by (2.8).
Viceversa, let (2.8) hold. Then the curve $\theta \mapsto u^{\theta}$ generates a shift tangent vector $v \in \mathbf{L}^{1}(\mathrm{D} u)$ if and only if the measure $w \cdot d x$ is absolutely continuous w.r.t. the measure $\mathrm{D} u$, and the equality $w \cdot d x=-v \cdot \mathrm{D} u$ holds.

Starting from the definition of shift tangent vector, one can introduce the notion of shift differentiability for a map with values in the space X as in (2.1). In the following, we consider a locally Lipschitz continuous operator Φ mapping the function space X into itself.

Definition 4. We say that Φ is shift differentiable at the point $u \in X$ along the direction $v \in \mathbf{L}^{1}(\mathrm{D} u)$ if there exists $w \in \mathbf{L}^{1}(\mathrm{D} \Phi(u))$ such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|w^{\theta} \star \Phi(u)-\Phi\left(v^{\theta} \star u\right)\right\|_{\mathbf{L}^{1}(\mathbb{R})}=0 \tag{2.9}
\end{equation*}
$$

for some $v^{\theta} \xrightarrow{\wedge} v, w^{\theta} \xrightarrow{\wedge} w$. In this case, we call w the shift derivative of Φ at the point u along v and write $w=\stackrel{\leftrightarrow}{\nabla}_{v} \Phi(u)$.

Remark 1. The Lipschitz continuity of Φ and Remark 2 imply that, if Φ is shift differentiable at u along the direction v, then (2.9) holds for all $\tilde{v}^{\theta}, \tilde{w}^{\theta}$ hat-converging to v and $\overleftrightarrow{\nabla}_{v} \Phi(u)$ respectively. Moreover, Remark 3 shows that, if a shift derivative exists, it is necessarily unique.

Definition 5. We say that Φ is shift-differentiable at u if there exists a continuous linear map $\Lambda: \mathbf{L}^{1}(\mathrm{D} u) \rightarrow \mathbf{L}^{1}(\mathrm{D} \Phi(u))$ such that the following holds. For all $v \in$ $\mathbf{L}^{1}(\mathrm{D} u)$ there exist $v^{\theta} \xrightarrow{\wedge} v$ and $w^{\theta} \xrightarrow{\wedge} \Lambda v$ such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left\|w^{\theta} \star \Phi(u)-\Phi\left(v^{\theta} \star u\right)\right\|_{\mathbf{L}^{1}(\mathbb{R})}=0 . \tag{2.10}
\end{equation*}
$$

In this case we say that Λ is the shift differential of Φ at u and write $\Lambda=\stackrel{\leftrightarrow}{\nabla} \Phi(u)$.
In other words Φ is shift differentiable at u if it is shift differentiable along each direction $v \in \mathbf{L}^{1}(\mathrm{D} u)$ and the map $v \mapsto \stackrel{\leftrightarrow}{\nabla}_{v} \Phi(u)$ is linear.

Remark 2. By Theorem 1, the shift differential of Φ is a linear continuous map Λ whose norm is bounded by the local Lipschitz constant of Φ.

3 The vector valued case

In this section we consider the notion of shift tangent vector at a point $u \in X$, where X is now the space of all vector valued, integrable functions $u: \mathbb{R} \mapsto \mathbb{R}^{n}$ of bounded variation, endowed with the \mathbf{L}^{1} topology. As mentioned in the Introduction, to define such a tangent vector we first need to split the vector u into n scalar components, then we have to specify the rate at which each component shifts.

The first task is accomplished by assigning, for each $x \in \mathbb{R}$, a (positively oriented) basis of unit vectors in \mathbb{R}^{n}, say $r_{1}(x), \ldots, r_{n}(x)$. Calling $l_{1}(x), \ldots, l_{n}(x)$ the dual basis, for every $x \in \mathbb{R}$ we thus have

$$
\begin{array}{r}
r_{1}(x) \wedge \cdots \wedge r_{n}(x)>0 \\
\left|r_{i}(x)\right|=1, \quad\left\langle l_{i}(x), r_{i}(x)\right\rangle=\delta_{i j} \quad \text { for all } i, j . \tag{3.2}
\end{array}
$$

We then assign n scalar functions v_{1}, \ldots, v_{n} determining the shifts. In this way, we thus determine a matrix valued function $A: \mathbb{R} \mapsto \mathbb{R}^{n \times n}$ having the r_{i}, l_{i} as right and left eigenvectors, and the v_{i} as eigenvalues. In other words:

$$
\begin{equation*}
A(x) w=\sum_{i=1}^{n} v_{i}(x)\left\langle l_{i}(x), w\right\rangle r_{i}(x), \quad x \in \mathbb{R}, w \in \mathbb{R}^{n} \tag{3.3}
\end{equation*}
$$

In the following we shall assume that, for every $i=1, \ldots, n$,
(A1) the functions $r_{i}, \quad l_{i}: \mathbb{R} \mapsto \mathbb{R}^{n}$ are Borel measurable and uniformly bounded, (A2) $v_{i} \in \mathbf{L}^{1}\left(\mu_{u}\right)$.

We recall that $\mu_{u} \doteq|\mathrm{D} u|$ denotes the Radon measure of total variation of u. In analogy with Definition 1, we introduce

Definition 5. We say that the family of matrix valued functions $A^{\theta}: \mathbb{R} \mapsto \mathbb{R}^{n \times n}$, parametrized by $\theta \in\left(0, \theta^{*}\right]$, hat-converges to A (and write $A^{\theta} \xrightarrow{\wedge} A$), provided that:
(i) for each $\theta \in\left(0, \theta^{*}\right], A^{\theta}$ has the form:

$$
A^{\theta}(x) w=\sum_{i=1}^{n} v_{i}^{\theta}(x)\left\langle l_{i}^{\theta}(x), w\right\rangle r_{i}^{\theta}(x), x \in \mathbb{R}, w \in \mathbb{R}^{n}
$$

where $\left\{r_{i}^{\theta}(x)\right\}_{i=1}^{n}$ and $\left\{l_{i}^{\theta}(x)\right\}_{i=1}^{n}$ are the corresponding bases of right and left eigenvectors of $A^{\theta}(x)$, normalized as in (3.2),
(ii) For each given θ, the functions $r_{i}^{\theta}, l_{i}^{\theta}: \mathbb{R} \mapsto \mathbb{R}^{n}$ and $v_{i}^{\theta}: \mathbb{R} \mapsto \mathbb{R}$ are Lipschitz continuous and bounded. Moreover, they remain constant outside a compact interval K^{θ},
(iii) for each $i=1 \ldots n$ one has

$$
\begin{gather*}
\lim _{\theta \rightarrow 0} \int_{\mathbb{R}}\left\{\left|r_{i}^{\theta}(x)-r_{i}(x)\right|+\left|l_{i}^{\theta}(x)-l_{i}(x)\right|+\left|v_{i}^{\theta}(x)-v_{i}(x)\right|\right\} d \mu_{u}(x)=0 \tag{3.4}\\
\lim _{\theta \rightarrow 0} \theta^{1 / 4}\left(\operatorname{Lip}\left(r_{i}^{\theta}\right)+\operatorname{Lip}\left(l_{i}^{\theta}\right)+\operatorname{Lip}\left(v_{i}^{\theta}\right)+\left\|v_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}}\right)=0 \tag{3.5}\\
\lim _{\theta \rightarrow 0} \max _{j}\left\{\left\|v_{j}^{\theta}\right\|_{\mathbf{L}^{\infty}}\right\} \int_{\mathbb{R}}\left(\left|r_{i}^{\theta}(x)-r_{i}(x)\right|+\left|l_{i}^{\theta}(x)-l_{i}(x)\right|\right) d \mu_{u}(x)=0 \tag{3.6}\\
\left\|r_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}} \equiv 1, \quad \sup _{i, \theta}\left\|l_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}}<\infty \tag{3.7}
\end{gather*}
$$

The next lemma ensures that some hat-convergent family always exists.
Lemma 2. Let the matrix valued funtion A in (3.3) satisfy (A1)-(A2) Then there exists $\theta^{*}>0$ and a family of matrix valued functions A^{θ}, with $\theta \in\left(0, \theta^{*}\right]$, such that $A^{\theta} \xrightarrow{\wedge} A$.

Proof. Denote by R the matrix valued function, having r_{1}, \ldots, r_{n} as column vectors. By (3.2), its inverse R^{-1} is the matrix having l_{1}, \ldots, l_{n} as row vectors. By (3.1) and the assumption (A1), there exists some $Q>0$ such that $\operatorname{det} R(x) \in[1 / Q, Q]$ for all x. Fix $\theta \in(0,1)$. By Lusin's theorem, there exists a compact set B_{θ} such that

$$
\begin{equation*}
\mu_{u}\left(\mathbb{R} \backslash B_{\theta}\right)<\theta \tag{3.8}
\end{equation*}
$$

and such that the restriction of R to B_{θ} is continuous. The complementary set $\mathbb{R} \backslash B_{\theta}$ consists of two open half-lines $\left(-\infty, b_{0}\right)$ and $\left(a_{0}, \infty\right)$ and a countable number of open intervals $\left(a_{k}, b_{k}\right), k \geq 1$. For each such k, let $\widetilde{R}^{k}:\left[a_{k}, b_{k}\right] \mapsto \mathbb{R}^{n \times n}$ be a continuous matrix valued function with the following properties:

$$
\begin{align*}
& \widetilde{R}^{k}\left(a_{k}\right)=R\left(a_{k}\right), \quad \widetilde{R}^{k}\left(b_{k}\right)=R\left(b_{k}\right), \\
& \text { each column vector } \widetilde{r}_{i}^{k}(x) \text { has unit length }, \\
& \left\|\widetilde{R}^{k}(x)-R\left(a_{k}\right)\right\| \leq C\left\|R\left(b_{k}\right)-R\left(a_{k}\right)\right\|, \tag{3.9}\\
& \operatorname{det} \widetilde{R}^{k}(x) \in\left[1 / Q_{1}, Q_{1}\right]
\end{align*}
$$

for some constants $Q_{1}>Q$ and $C>0$ depending only on Q, and for all $x \in\left[a_{k}, b_{k}\right]$. We now define

$$
\widetilde{R}^{\theta}(x) \doteq\left\{\begin{array}{lll}
R(x) & \text { if } & x \in B_{\theta}, \\
R\left(b_{0}\right) & \text { if } & x \in\left(-\infty, b_{0}\right), \\
R\left(a_{0}\right) & \text { if } & x \in\left(a_{0}, \infty\right), \\
\widetilde{R}^{k} & \text { if } & x \in\left(a_{k}, b_{k}\right) .
\end{array}\right.
$$

Let $\widetilde{L}^{\theta} \doteq\left(\widetilde{R}^{\theta}\right)^{-1}$. Then \widetilde{R}^{θ} and \widetilde{L}^{θ} are continuous, constant outside the compact interval $\left[b_{0}, a_{0}\right]$, bounded by a number which does not depend on θ, and such that each column vector $\tilde{r}_{i}^{\theta}(x)$ has unit length. Repeating this construction for every $\theta>0$, by (3.8) and (3.9) we thus obtain functions $\tilde{r}_{i}^{\theta}, \tilde{l}_{i}^{\theta}, i=1, \ldots, n$, normalized as in (3.2), such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0}\left(\left\|\tilde{r}_{i}^{\theta}-r_{i}\right\|_{\mathbf{L}^{1}(|\mathrm{D} u|)}+\left\|\tilde{l}_{i}^{\theta}-l_{i}\right\|_{\mathbf{L}^{1}(|\mathrm{D} u|)}\right)=0 \tag{3.10}
\end{equation*}
$$

By a mollification and renormalization procedure, we can also assume that the all functions $x \mapsto \tilde{r}_{i}^{\theta}(x)$ and $x \mapsto \tilde{l}^{\theta}(x)$ are smooth.
Next, we approximate each v_{i} in $\mathbf{L}^{1}\left(\mu_{u}\right)$ by a sequence $\left\{\tilde{v}_{i}^{k}\right\}_{k \geq 1}$ of smooth functions with compact support.
Define a sequence $\left\{\theta_{k}\right\}_{k \geq 1}$, strictly decreasing to 0 and such that, for each k,

$$
\begin{equation*}
\max _{j}\left\{\operatorname{Lip}\left(\tilde{r}_{j}^{1 / k}\right)\right\}+\max _{j}\left\{\operatorname{Lip}\left(\tilde{l}_{j}^{1 / k}\right)\right\} \leq \theta_{k}^{-1 / 8} \tag{3.11}
\end{equation*}
$$

Moreover, define

$$
r_{i}^{\theta}(x) \doteq \tilde{r}_{i}^{1 / k}, \quad l_{i}^{\theta}(x) \doteq \tilde{l}_{i}^{1 / k}, \quad \text { for } x \in\left(\theta_{k-1}, \theta_{k}\right]
$$

After having constructed the eigenvector functions $r_{i}^{\theta}, l_{i}^{\theta}$, we now determine a second sequence $\left\{\theta_{k}^{\prime}\right\}_{k \geq 1}$, strictly decreasing to 0 , with the property that for each k,

$$
\begin{align*}
\max _{j}\left\{\operatorname{Lip}\left(\tilde{v}_{j}^{k}\right)\right\}+ & \max _{j}\left\{\left\|\tilde{v}_{j}^{k}\right\|_{\mathbf{L}^{\infty}}\right\} \leq\left(\theta^{1 / 4}+\max _{j}\left\{\left\|\tilde{r}_{j}^{\theta}-r_{j}\right\|_{\mathbf{L}^{1}(\mathrm{D} u)}\right\}\right. \\
& \left.+\max _{j}\left\{\left\|\tilde{l}_{j}^{\theta}-l_{j}\right\|_{\mathbf{L}^{1}(\mathrm{D} u)}\right\}\right)^{-1 / 2} \text { for all } \theta \in\left(0, \theta_{k}^{\prime}\right] . \tag{3.12}
\end{align*}
$$

One can now define:

$$
v_{i}^{\theta}(x)=\tilde{v}_{i}^{k} \text { for } x \in\left(\theta_{k-1}^{\prime}, \theta_{k}^{\prime}\right] .
$$

This completes the construction of the approximating family A^{θ}. All requirements of Definition 5 are then satisfied. Indeed, (3.4) follows from (3.10) and the convergence $\tilde{v}_{i}^{k} \rightarrow v_{i}$ in $\mathbf{L}^{1}\left(\mu_{u}\right)$. The bounds (3.11) and (3.12) together imply (3.5), while (3.6) is also a consequence of (3.12). By construction, $\left|r_{i}^{\theta}(x)\right|=1$ for all i, θ, x. This property, together with the uniform boundedness of the matrices \widetilde{L}^{θ}, yields (3.7).

Let now A be a matrix valued function, described in terms of its eigenvectors and eigenvalues as in (3.3). Let the conditions (A1)-(A2) be satisfied and assume $A^{\theta} \xrightarrow{\wedge} A$. We wish to construct a path $\theta \mapsto u^{\theta} \in \mathbf{L}^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)$, originating from $u^{0}=u$, corresponding to the shift tangent vector determined by A. Roughly speaking, u^{θ} should thus be obtained from u by shifting each component $u_{i} \doteq\left\langle l_{i}, u\right\rangle r_{i}$ in the amount θv_{i}. Some notation must first be introduced. For a fixed $\theta>0$ consider the points $P_{k}^{\theta} \doteq \frac{k}{2} \theta^{3 / 4}, \quad k \in \mathbb{Z}$. Moreover, for each integer k let I_{k}^{θ} and J_{k}^{θ} be the open intervals centered at P_{k}^{θ} and with lenghts $\frac{1}{2} \theta^{3 / 4}$ and $\theta^{3 / 4}$, respectively.

Definition 6. Let $A^{\theta} \xrightarrow{\wedge} A, \theta \in\left(0, \theta^{*}\right]$. Then for each $\theta \in\left[0, \theta^{*}\right]$ we define the function $u^{\theta} \doteq A^{\theta} \star u$ by the formula:

$$
\begin{align*}
& u^{\theta}(x)=\sum_{i=1}^{n}\left\langle l_{i}^{\theta}\left(P_{k}^{\theta}\right), u\left(x-\theta v_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right\rangle r_{i}^{\theta}\left(P_{k}^{\theta}\right), \quad \text { for } x \in I_{k}^{\theta} \text { and } \theta>0, \tag{3.13}\\
& u^{0}(x)=u(x), \quad \text { for } x \in \mathbb{R} .
\end{align*}
$$

Note that, restricted to each interval I_{k}^{θ}, one has $u^{\theta}=w_{k}^{\theta}(\theta, \cdot)$, where w_{k}^{θ} is the solution to the linear hyperbolic system with constant coefficients:

$$
w_{t}+A^{\theta}\left(P_{k}^{\theta}\right) w_{x}=0, \quad w(0, \cdot)=u
$$

The values of u^{θ} on I_{k}^{θ} depend only on the values of u on J_{k}^{θ}. From the assumptions (ii) and (iii) in Definition 5 it follows:

Lemma 3. The path $\theta \mapsto u^{\theta} \doteq A^{\theta} \star u$ is continuous at $\theta=0$, namely

$$
\lim _{\theta \rightarrow 0} \int_{\mathbb{R}}\left|u^{\theta}-u\right| d x=0
$$

The following is a natural generalization of Definition 3 .
Definition 7. Let $A: \mathbb{R} \mapsto \mathbb{R}^{n \times n}$ satisfy (A1)-(A2). We say that a path $\theta \mapsto w^{\theta} \in$ $\mathbf{L}^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)$, defined on some interval $\left[0, \theta^{*}\right]$, with $w^{0}=u$, generates the shift tangent vector determined by the matrix valued function A, if for some hat-converging family $A^{\theta} \xrightarrow{\wedge} A$ one has

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta} \int_{\mathbb{R}}\left|w^{\theta}-A^{\theta} \star u\right| d x=0 \tag{3.14}
\end{equation*}
$$

To justify the above definition, one needs to check that the equivalence class of the path $A^{\theta} \star u$ does not depend on the choice of the approximating family A^{θ}. This is the content of the next theorem.

Theorem 3. Let A be a matrix valued function, satisfying (A1) and (A2). Let $A^{\theta} \xrightarrow{\wedge} A$ and $\widetilde{A^{\theta}} \xrightarrow{\wedge} A$. Then the paths $u^{\theta}=A^{\theta} \star u$ and $\tilde{u}^{\theta}=\widetilde{A}^{\theta} \star u$ satisfy

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{1}{\theta} \int_{\mathbb{R}}\left|u^{\theta}-\tilde{u}^{\theta}\right| d x=0 \tag{3.15}
\end{equation*}
$$

Toward a proof of Theorem 3, two technical lemmas will be used.
Lemma 4. Let $a, b, y, z \in \mathbb{R}$ and $a<b$. Then

$$
\int_{a}^{b}|u(x-y)-u(x-z)| d x \leq|y-z| \cdot \text { Tot.Var. }\{u ;[a-\max \{|y|,|z|\}, b+\max \{|y|,|z|\}]\} .
$$

Lemma 5. Let $\left\{r_{i}\right\}_{i=1}^{n}$ and $\left\{\tilde{r}_{i}\right\}_{i=1}^{n}$ be two bases of \mathbb{R}^{n} and $\left\{l_{i}\right\}_{i=1}^{n}$, $\left\{\tilde{l}_{i}\right\}_{i=1}^{n}$ their corresponding dual bases, normalized as in (3.2) and bounded by a number M. Let $\lambda_{1}, \ldots, \lambda_{n}$ be real numbers. Fix an open interval I and let J be a second open
interval, with the same center as I but twice as long. Then for every $t \geq 0$ such that $|I|>2 t \max _{i}\left|\lambda_{i}\right|$ one has

$$
\begin{aligned}
& \int_{I}\left|\sum_{i=1}^{n}\left\langle l_{i}, u\left(x-t \lambda_{i}\right)\right\rangle r_{i}-\sum_{i=1}^{n}\left\langle\tilde{l}_{i}, u\left(x-t \lambda_{i}\right)\right\rangle \tilde{r}_{i}\right| d x \\
& \quad \leq 2 M t \cdot\left(\max _{i}\left|\lambda_{i}\right|\right) \cdot\left(\sum_{i=1}^{n}\left|l_{i}-\tilde{l}_{i}\right|+\sum_{i=1}^{n}\left|r_{i}-\tilde{r}_{i}\right|\right) \cdot \text { Tot.Var. }\{u ; J\} .
\end{aligned}
$$

Proof of Theorem 3. Note first that $\int_{\mathbb{R}}\left|u^{\theta}-\tilde{u}^{\theta}\right| d x \leq \mathrm{I}_{1}+\mathrm{I}_{2}$, where

$$
\begin{aligned}
\mathrm{I}_{1} \doteq \sum_{k} \int_{I_{k}^{\theta}} \mid \sum_{i=1}^{n}\left\langle l_{i}^{\theta}\left(P_{k}^{\theta}\right)\right. & \left., u\left(x-\theta v_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right\rangle r_{i}^{\theta}\left(P_{k}^{\theta}\right) \\
& -\sum_{i=1}^{n}\left\langle l_{i}^{\theta}\left(P_{k}^{\theta}\right), u\left(x-\theta \tilde{v}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right\rangle r_{i}^{\theta}\left(P_{k}^{\theta}\right) \mid d x \\
\mathrm{I}_{2} \doteq & \sum_{k} \int_{I_{k}^{\theta}} \mid \sum_{i=1}^{n}\left\langle l_{i}^{\theta}\left(P_{k}^{\theta}\right),\right. \\
& \left.\quad u\left(x-\theta \tilde{v}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right\rangle r_{i}^{\theta}\left(P_{k}^{\theta}\right) \\
& -\sum_{i=1}^{n}\left\langle\tilde{l}_{i}^{\theta}\left(P_{k}^{\theta}\right), u\left(x-\theta \tilde{v}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right\rangle \tilde{r}_{i}^{\theta}\left(P_{k}^{\theta}\right) \mid d x
\end{aligned}
$$

Let M be a common bound for all functions $l_{i}^{\theta}, r_{i}^{\theta}$. Using Lemma 4 we estimate the first integral:

$$
\begin{aligned}
& \mathrm{I}_{1} \leq M \sum_{i=1}^{n} \sum_{k} \int_{I_{k}^{\theta}}\left|u\left(x-\theta v_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)-u\left(x-\theta \tilde{v}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right)\right| d x \\
& \begin{aligned}
\leq & M \theta \sum_{i=1}^{n} \sum_{k}\left|v_{i}^{\theta}\left(P_{k}^{\theta}\right)-\tilde{v}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right| \cdot \operatorname{Tot} . \operatorname{Var} .\left\{u ; J_{k}^{\theta}\right\} \\
\leq & M \theta \sum_{i=1}^{n}\left\{\sum_{k} \int_{J_{k}^{\theta}}\left|J_{k}^{\theta}\right|\left(\operatorname{Lip}\left(v_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{v}_{i}^{\theta}\right)\right) d \mu_{u}(x)\right. \\
& \left.\quad+\sum_{k} \int_{J_{k}^{\theta}}\left|v_{i}^{\theta}(x)-\tilde{v}_{i}^{\theta}(x)\right| d \mu_{u}(x)\right\} \\
\leq & 2 M \theta \sum_{i=1}^{n}\left\{\left|J_{k}^{\theta}\right|\left(\operatorname{Lip}\left(v_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{v}_{i}^{\theta}\right)\right) \cdot \operatorname{Tot} . \operatorname{Var} .\{u ; \mathbb{R}\}\right. \\
& \left.\quad+\int_{\mathbb{R}}\left|v_{i}^{\theta}(x)-v_{i}(x)\right| d \mu_{u}(x)+\int_{\mathbb{R}}\left|\tilde{v}_{i}^{\theta}(x)-v_{i}(x)\right| d \mu_{u}(x)\right\}
\end{aligned}
\end{aligned}
$$

Concerning the second integral, using Lemma 5 we obtain

$$
\begin{aligned}
& \mathrm{I}_{2} \leq 2 M \theta \cdot \max _{i}\left\{\left\|v_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}}\right\} \\
& \cdot \sum_{k}\left(\sum_{i=1}^{n}\left|r_{i}^{\theta}\left(P_{k}^{\theta}\right)-\tilde{r}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right|+\sum_{i=1}^{n}\left|l_{i}^{\theta}\left(P_{k}^{\theta}\right)-\tilde{l}_{i}^{\theta}\left(P_{k}^{\theta}\right)\right|\right) \cdot \text { Tot.Var. }\left\{u ; J_{k}^{\theta}\right\} \\
& \leq 2 M \theta \cdot \max _{i}\left\{\left\|v_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}}\right\} \\
& \cdot \sum_{i=1}^{n} \sum_{k}\left\{\int_{J_{k}^{\theta}}\left|J_{k}^{\theta}\right|\left(\operatorname{Lip}\left(r_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{r}_{i}^{\theta}\right)+\operatorname{Lip}\left(l_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{l}_{i}^{\theta}\right)\right) d \mu_{u}(x)\right. \\
& \left.+\int_{J_{k}^{\theta}}\left(\left|r_{i}^{\theta}(x)-\tilde{r}_{i}^{\theta}(x)\right|+\left|l_{i}^{\theta}(x)-\tilde{l}_{i}^{\theta}(x)\right|\right) d \mu_{u}(x)\right\} \\
& \leq 4 M \theta \cdot \max _{i}\left\{\left\|v_{i}^{\theta}\right\|_{\mathbf{L}^{\infty}}\right\} \\
& \cdot \sum_{i=1}^{n}\left\{\left|J_{k}^{\theta}\right|\left(\operatorname{Lip}\left(r_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{r}_{i}^{\theta}\right)+\operatorname{Lip}\left(l_{i}^{\theta}\right)+\operatorname{Lip}\left(\tilde{l}_{i}^{\theta}\right)\right) \cdot \operatorname{Tot} . \operatorname{Var} .\{u ; \mathbb{R}\}\right. \\
& +\int_{\mathbb{R}}\left|r_{i}^{\theta}(x)-r_{i}(x)\right| d \mu_{u}(x)+\int_{\mathbb{R}}\left|l_{i}^{\theta}(x)-l_{i}(x)\right| d \mu_{u}(x) \\
& \left.+\int_{\mathbb{R}}\left|\tilde{r}_{i}^{\theta}(x)-r_{i}(x)\right| d \mu_{u}(x)+\int_{\mathbb{R}}\left|\tilde{l}_{i}^{\theta}(x)-l_{i}(x)\right| d \mu_{u}(x)\right\}
\end{aligned}
$$

The above estimates together yield

$$
\lim _{\theta \rightarrow 0} \frac{1}{\theta}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0
$$

proving Theorem 3.

References

[1] Bressan, A. \& Colombo, R.M.: The semigroup generated by 2×2 conservation laws, Arch. Rational Mech. Anal. 133 (1995), 1-75.
[2] Bressan, A. \& Guerra, G.: Shift-differentiability of the flow generated by a conservation law, Discr. Cont. Dynam. Syst. 3 (1997), 35-58.
[3] Bressan, A. \& Marson, A.: A variational calculus for shock solutions of systems of conservation laws, Comm. Part. Diff. Eq. 20 (1995), 1491-1553.
[4] Clarke, F.H.: Optimization and Nonsmooth Analysis, Wiley Interscience, 1983.
[5] Crandall, M.: The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 26 (1977), 1097-1119.
[6] Dieudonné, J.: Foundations of Modern Analysis, 4th ed, Academic Press 1963.
[7] Evans, L.C. \& Gariepy, R.F.: Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
[8] Kruzkov, S.: First order quasilinear equations with several space variables, Math. USSR Sbornik 10 (1970), 217-243.
[9] Rudin, W.: Real and Complex Analysis, 2nd ed., McGraw Hill, New York 1974.
[10] Smoller, J.: Shock waves and reaction diffusion equations, Springer-Verlag, New York, 1982.
[11] Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, New York 1989.

A. Bressan

S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy, E-mail: bressan@sissa.it
M. Lewicka
S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy, E-mail: lewicka@sissa.it

