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Abstract. We consider systems of reactive Boussinesq equations in two dimen-
sional strips that are not aligned with gravity’s direction. We prove that for any
width of such strips and for arbitrary Rayleigh and Prandtl numbers, the systems
admit smooth, non-planar traveling wave solutions with the fluid’s velocity satisfying
no-slip boundary conditions.

1. Introduction

In this note we establish existence of non-planar traveling wave solutions of reactive
Boussinesq systems with no-slip boundary conditions (the fluid flow vanishes at the
boundary). Much of the analysis is similar to the no-stress case [5], but there are several
difficulties due to the no-slip boundary conditions that require new ideas. These are
explained below.

Existence of non-planar traveling waves for reaction-diffusion equations in a pre-
scribed flow has been a subject of active study in the last decade – we refer to [4]
and [17] for excellent overviews. When u is an imposed flow of shear type, then the
study of existence and stability of the multidimensional traveling waves for the single
temperature equation can be found, for example, in [6, 7, 13].

Recently, traveling waves have been also shown to exist in a reactive system with a
Boussinesq-type coupling between the temperature field and the fluid flow [3, 5, 14, 15].
In non-dimensional variables, this system has the form

Tt + u · ∇T − ∆T = f(T )

1

σ
(ut + u · ∇u) − ∆u+ ∇p = Tρ~g

div u = 0.

(1.1)

Here T is the temperature, u the fluid velocity and p the pressure. The parameters ρ
and σ are, respectively, the Rayleigh and Prandtl numbers, and ~g is the unit vector
in the direction of the gravity force. The Lipschitz continuous nonlinearity f is of
ignition type, that is,

(1.2) f(T ) = 0 on (−∞, θ0] ∪ {1}, f(T ) > 0 on (θ0, 1), f(T ) < 0 on (1,∞),

where the ignition takes place at some temperature T = θ0 ∈ (0, 1).
1
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The reactive Boussinesq system has been considered in the references mentioned
above in a two-dimensional strip, with either periodic or no-stress boundary conditions:
the normal component of the flow and the flow vorticity vanish at the boundary. When
the strip is vertical (gravity is aligned with the strip’s direction) it is not difficult to see
[9] that non-planar fronts do not exist for small Rayleigh numbers but planar fronts
with u = 0 exist for all values of parameters. On the other hand, for large Rayleigh
numbers, the planar fronts become unstable: there is a bifurcation at some critical ρc

[14, 15] so that non-planar fronts exist for ρ close to ρc. It turns out that the situation
is quite different when the domain is not vertical [3, 5]. In particular, it has been
observed in [3] that planar fronts cannot exist in a slanted strip and that a non-planar
traveling wave exists for small ρ > 0. This result has been extended to all ρ > 0 in
[5]. Reaction-diffusion-convection systems with the Lewis number different but close
to one have been considered in [10] by perturbative techniques.

We consider (1.1) in an infinite strip D ⊂ R
2. The vector ~g = (g1, g2) representing

the gravity direction is assumed to be non-parallel to the unbounded direction of D.
By an elementary change of variables, without loss of generality, we may restrict our
attention to the horizontal strip

(1.3) D = {(x, y); x ∈ (−∞,∞), y ∈ [0, h]}

and assume that

(1.4) g2 6= 0.

We are interested in the existence of a smooth traveling front solution T = T (x −
ct, y), u = u(x− ct, y) of (1.1). Naturally, it satisfies:

−cTx + u · ∇T − ∆T = f(T )

1

σ
(−cux + u · ∇u) − ∆u+ ∇p = Tρ~g

div u = 0.

(1.5)

We impose front-like boundary conditions for temperature and no-slip boundary con-
ditions for the flow:

Tx → 0 as x → −∞, T → 0 as x→ ∞,
∂T

∂y
= 0 at y = 0, h,

u = 0 at y = 0, h, |u| → 0 as x→ ±∞.
(1.6)

Notice that by the maximum principle any solution to (1.5), (1.6) satisfies:

0 ≤ T (x, y) ≤ 1 for all (x, y) ∈ D.

The main result of this note is the following:

Theorem 1.1. Assume that gravity satisfies (1.4) and the nonlinearity f satisfies
(1.2). Then there exists a smooth traveling front solution T, u, c of (1.5), (1.6) in
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the two-dimensional strip (1.3). In particular, this traveling wave satisfies: the speed
c > 0, the functions T, u ∈ C2,α(D), p ∈ C1,α

loc (D) (for some α > 0), ∇T ∈ L2(D),
u ∈ W 3,2(D) and the boundary conditions at infinity are approached uniformly in
y ∈ [0, h]:

lim
x→±∞

||u(x, ·)||L∞([0,h]) = lim
x→±∞

||∇u(x, ·)||L∞([0,h]) = lim
x→±∞

||∇T (x, ·)||L∞([0,h]) = 0.
(1.7)

(1.8) lim
x→+∞

||T (x, ·)||L∞([0,h]) = lim
x→−∞

||T (x, ·) − θ−||L∞([0,h]) = 0,

for some θ− ∈ (0, θ0] ∪ {1}. If, in addition, we have

(1.9) f(T ) ≤ [(T − θ0)+]2/h2 ∀T ∈ [0, 1]

then θ− = 1.

The paper is organized as follows. In Section 2, following the method of [8], we
introduce compactified versions of the problem (1.1) on truncated domains (rectangles)
of increasing lengths 2a > 0, and prove that they have solutions that are uniformly
bounded in a. In particular, the constants in the elliptic regularity inequalities depend
only on the local uniform properties of the embedding of the boundary of the domain
in the ambient space and they are independent of a. These and other uniform bounds
are contained in Theorem 2.1 and are proved in Section 3. The crucial estimate can be
found in Lemma 3.5 whose proof is new and does not follow from the analysis in [5].
The difficulty is due to the non-slip boundary conditions (see Remark 3.6). In Section
4 we conclude the proof of Theorem 1.1 by obtaining the traveling wave solution as
the limit of a subsequence of solutions to the compactified problems as a→ +∞. The
main novelty in this part of the argument is in the proof of Lemma 4.5, which replaces
the analysis of the inner and outer solutions from [5].

Acknowledgment. We thank the referee for bringing to our attention the paper
[10]. PC was supported by NSF grant DMS-0504213, LR was supported by an Alfred
P. Sloan fellowship and by NSF grant DMS-0604687.

2. The compact domain problem

In this section, following the approach of [5, 8], for each large a > 0 we consider the
problem in a finite rectangle Ra = [−a, a] × [0, h] and obtain bounds on the solutions
that are uniform in a. In order to avoid dealing with questions of regularity at the
corners, the Navier-Stokes part of the problem (1.1) will be considered on a larger
smooth convex domain Da, such that Ra ⊂ Da ⊂ Ra+1 (see figure 1).

The temperature T satisfies an approximate problem in the rectangle Ra:

(2.1) −cTx + u · ∇T − ∆T = f(T ) in Ra,
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with the boundary conditions from (1.6), replacing the conditions at ±∞ by prescrib-
ing the temperature on the vertical boundary of Ra:

(2.2)
T (−a, y) = 1, T (a, y) = 0 for y ∈ [0, h]
∂T

∂y
(x, 0) =

∂T

∂y
(x, h) = 0 for x ∈ [−a, a].

In order to formulate the problem for u in the larger domain Da we extend the function
T (x, y) from Ra to Da by the odd reflection across the vertical boundary of Ra:

(2.3) T (x, y) =

{

−T (−2a− x, y) + 2T (−a, y) for x < −a
−T (2a− x, y) + 2T (a, y) for x > a.

Note that

(2.4) ||T ||C1,α(Da) ≤ 2||T ||C1,α(Ra), ||∇T ||L2(Da) ≤ 2||∇T ||L2(Ra).

The flow u satisfies the following problem in Da:

(2.5)
1

σ
(−cux + u · ∇u) − ∆u+ ∇p = T~ρ in Da,

div u = 0 in Da,

with the no-slip boundary conditions

(2.6) u = 0 on ∂Da.

We denoted by ~ρ the vector ρ~g in (2.5).
Finally, we introduce the following normalization condition (see [6]):

(2.7) max{T (x, y); x ∈ [0, a], y ∈ [0, h]} = θ0.

Therefore, f(T ) ≡ 0 for x ≥ 0 and thus the maximum principle implies that:

(2.8) max{T (x, y); x ∈ [0, a], y ∈ [0, h]} = max{T (0, y); y ∈ [0, h]} = θ0.

The flow equations (2.5)-(2.6) may be also written in terms of a non-linear el-
liptic system for two unknowns: the stream-function ψ1 such that u = curl ψ1 =
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(ψ1,y,−ψ1,x), and the vorticity function ψ2 = ∆ψ1:

(2.9)

∆ψ1 − ψ2 = 0 in Da

∆ψ2 =

(

−curl(T~ρ) +
1

σ
curl(−cux + u · ∇u)

)

in Da

ψ1 = 0, ∇ψ1 = 0 on ∂Da.

The aim of this section is to prove existence of a regular solution to (2.1)-(2.2),
(2.5)-(2.7) and obtain uniform in a bounds for (c, u, T ). More precisely, we have the
following result.

Theorem 2.1. There exists a0 > 0 so that for all a > a0 the problem (2.1)-(2.2),
(2.5)-(2.7) has a solution c ∈ R, u ∈ C2,α(Da), T ∈ C1,α(Ra), p ∈ C1,α(Da). In
addition, we have the following bounds:

(2.10) |c| + ||T ||C1,α(Ra) + ||u||C2,α(Da) + ||∇T ||L2(Ra) + ||u||W 3,2(Da) +

∫

Ra

f(T ) ≤ C,

with a constant C which is independent of a > a0.

Proof. We postpone the proof of the uniform bound (2.10) to Section 3. Assuming that
the a priori bound (2.10) holds for any (smooth) solution of (2.1)-(2.2), (2.5)-(2.7), we
now prove the existence part of Theorem 2.1 by a degree argument. In order to set-up
a fixed point problem we let c ∈ R, u ∈ C2,α(Da), T ∈ C1,α(Ra) be given, and take the
homotopy parameter τ ∈ [0, 1]. We extend T to Da as in (2.3) and solve the following
system of elliptic equations for the unknowns ψ1 and ψ2 with a given right side:

(2.11)

∆ψ1 − ψ2 = 0 in Da

∆ψ2 = τ

(

−curl(T~ρ) +
1

σ
curl(−cux + u · ∇u)

)

in Da

ψ1 = 0, ∇ψ1 = 0 on ∂Da

and define v = ∇⊥ψ1. Having constructed v as above we let Z be the solution of the
linear problem

(2.12)

−cZx + τv · ∇Z − ∆Z = τf(T ) in Ra

Z(−a, y) = 1, Z(a, y) = 0 for y ∈ [0, h]
∂Z

∂y
(x, 0) =

∂Z

∂y
(x, h) = 0 for x ∈ [−a, a].

We now set the mapping:

(2.13) K(c, u, T, τ) = (c− θ0 + max{T (x, y); x ∈ [0, a], y ∈ [0, h]}, v, Z).

By construction a fixed point ofK1 := K(·, ·, ·, 1) is a solution of (2.1)-(2.2), (2.5)-(2.7).
The classical regularity results in [11, 12] imply that the operator

K : R × C2,α(Da) × C1,α(Ra) × [0, 1] −→ R × C2,α(Da) × C1,α(Ra)
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is well defined, continuous and compact. If we now calculate the Leray-Schauder degree
deg(Id −K(·, ·, ·, 0), BR(0), 0) and find it to be different from 0 (for some sufficiently
large radius R) then, in view of the uniform bounds (2.10) and the homotopy invariance
of the Leray-Schauder degree, we conclude that K1 must have a fixed point.

To this end, note that at τ = 0 we may solve both (2.11) and (2.12) explicitly: v = 0
and the function Z is given by

Z(x, y) = φc(x) :=
e−cx − e−ca

eca − e−ca
.

When c 6= 0 the function φc(x) satisfies

φc
xx + cφc

x = 0 in [−a, a], φc(−a) = 1, φc(a) = 0.

Therefore, the last two components of the operator K(c, u, T, 0) do not depend either
on u or on T and K has then an explicit form:

K0(c, u, T ) := K(c, u, T, 0) = (c− θ0 +MT , 0, Z),

where

MT = max{T (x, y); x ∈ [0, a], y ∈ [0, h]}.

As in [5], we note that K0 is homotopic to the map

F(c, u, T ) = (c− θ0 + max
x∈[0,a]

φc(x), 0, φc∗),

where c∗ is the unique number such that

max
x∈[0,a]

φc∗(x) = φc∗(0) = θ0.

The a priori bound (2.10) implies that homotopy can be taken to be compact and
without fixed points on the boundary of a sufficiently large ball BR(0) in R×C2,α(Da)×
C1,α(Ra) with the radius R independent of a.

By the homotopy invariance of the Leray-Schauder degree of compact perturbations
of identity we conclude that

deg(Id −K0, BR(0), 0) = deg(Id − F , BR(0), 0) = 1,

as the degree of the last map (Id−F)(c, u, T ) = (θ0 −φc(0), u, T −φc∗) is the product
of degrees of each component, all three of them being equal to 1. Hence the operator
K1 has to have a fixed point and the existence part of the proof of Theorem 2.1 is
complete.
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3. A proof of the uniform bound (2.10).

Let K(c, u, T, τ) = (c, u, T ), where K is defined as in (2.13). The proof of (2.10) will
be achieved through a sequence of lemmas estimating norms of the quantities T, u, c.
The main point is as in [5]: from the reaction-diffusion equation we deduce an upper
bound for ‖∇T‖2

L2 that is linear in the ‖u‖L∞; from the flow equation we deduce an
upper bound for ‖u‖L∞ that is sub-quadratic, ‖∇T‖α

L2 with an exponent α ∈ (0, 2).
These two bounds allow us to close the argument and show that both quantities are
bounded. The second upper bound is more difficult to obtain than in [5] because of
the no-slip boundary conditions. Throughout the rest of the paper we denote by C
any uniform constant, not depending on a, c, T, u.

Lemma 3.1. We have:

(3.1) ‖ψ1‖W 2,2(Da) ≤ C‖∇T‖L2(Ra).

Proof. By the standard elliptic estimates [12], we have

‖ψ1‖W 2,2(Da) ≤ C
(

||ψ1||L2(Da) + ||∆ψ1||L2(Da)

)

.

Using Poincaré’s inequality on [0, h] we obtain:

||ψ1||L2(Da) ≤ C||∇ψ1||L2(Da).

As
||∇ψ1||

2
L2(Da) ≤ ||∆ψ1||L2(Da) · ||ψ1||L2(Da),

we conclude that

(3.2) ||ψ1||W 2,2(Da) ≤ C||∆ψ1||L2(Da).

We multiply now the second equation in (2.11) by ψ1 to obtain

(3.3)

∣

∣

∣

∣

∫

Da

∆ψ2 · ψ1 +
τc

σ
(ψ2)xψ1 −

τ

σ
〈u,∇ψ2〉 · ψ1

∣

∣

∣

∣

≤ ||ψ1||L2(Da) · ||∇T ||L2(Da).

Furthermore, using the boundary conditions for ψ1 and ∆ψ1 = ψ2 we have
∫

Da

∆ψ2 · ψ1 = −

∫

Da

∇ψ2 · ∇ψ1 =

∫

Da

ψ2 · ∆ψ1 = ||∆ψ1||
2
L2(Da),

∫

Da

(ψ2)xψ1 = −

∫

Da

(∇ψ1)x · ∇ψ1 = −
1

2

∫

Da

(|∇ψ1|
2)x = 0,

∫

Da

〈u,∇ψ2〉 · ψ1 =
1

2

∫

Da

〈∇⊥(ψ2
1),∇ψ2〉 =

1

2

∫

∂Da

ψ2〈∇
⊥(ψ2

1), ~n〉 = 0.

Therefore, (3.3) becomes

‖∆ψ1‖
2
L2(Da) ≤ ‖ψ1‖L2(Da) · ‖∇T ||L2(Da).

Finally, in view of (2.4) and (3.2) we see that (3.1) follows.
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We denote by g ∈ C0,α(Da) the right hand side of the second equation in (2.11):

(3.4) g = τ

(

−curl(T~ρ) +
1

σ
curl(−cux + u · ∇u)

)

.

The following bound follows from a standard local a-priori estimate on the reg-
ular solutions of the Stokes problem, which can be found for example in [11]. For
completeness, we sketch a possible proof.

Lemma 3.2. We have

(3.5) ||ψ1||W 4,2(Da) ≤ C
(

||g||L2(Da) + ||ψ1||L2(Da)

)

.

Proof. The proof is based on the general regularity theory for elliptic systems [2].
Using the notation of this fundamental paper, the system (2.11) is described by the
matrix L, and the boundary conditions (after local flattening of the boundary) are
given by the matrix operator B:

L =

[

∆ −1
0 ∆

]

, B =

[

1 0
∂z 0

]

,

where by z we denote the variable transversal to ∂Da. These operators act on the
column vector (ψ1, ψ2)

t.
We assign the weights t1 = 4, t2 = 2, s1 = −2, s2 = 0, r1 = −4, r2 = 3. To obtain

the local a-priori internal and up to the boundary estimate:

(3.6) ‖ψ1‖W t1,2 ≤ C [‖g‖W−s2,2 + ‖ψ1‖L2 + ‖ψ2‖L2 ] .

one needs to check the related analytic Lopatinsky-Shapiro condition. To this end,
consider a single mode of the Fourier transform of the solution on the hyperplanes
parallel to the ’flattened’ boundary of Da. That is, for a fixed ξ ∈ R \ {0} consider a
solution of the form: (ψ1, ψ2) = (eixξψ1(z), e

ixξψ2(z)). It satisfies the following system
of ODEs (in z ≥ 0):

−|ξ|2ψ1(z) + ψ′′
1 (z) = ψ2(t), ψ1(0) = 0

−|ξ|2ψ2(z) + ψ′′
2 (z) = 0, ψ′

1(0) = 0.

It is easy to see that the only bounded solution (ψ1(z), ψ2(z)) is ψ1, ψ2 = 0.
Consequently Theorems 10.4 and 10.5 in [2] imply (3.6). Recalling that ψ2 = ∆ψ1

and using an interpolation inequality [12], the uniform global bound in (3.5) follows.

An upper bound for various quantities in terms of ‖u‖L∞ is provided by the following
lemma.

Lemma 3.3. We have

(3.7) |c| + ||∇T ||2L2(Ra) +

∫

Ra

f(T ) ≤ C(1 + ||u||L∞(Da)).
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This estimate can be proved exactly as in [5] (see Lemmas 2.2, 2.5 and 2.6 of this
reference), using the reaction-diffusion equation for T . In particular, it is here that
the normalization condition (2.7) is used in order to obtain an upper bound for |c| in
(3.7), using the maximum principle and the sliding method. Then the bound for f(T )
follows immediately after integration of the 2.1 over Ra. The estimate for ‖∇T‖L2 is
somewhat more involved – we refer the reader to [5] for details.

We will also need the following elementary lemma:

Lemma 3.4. Let α, β, γ ≥ 0. Then,

(i) α ≤ β + γα1/2 implies α ≤ β2 + (1 + γ)2,
(ii) α ≤ 1 + β5/4 + βα1/4 implies α ≤ C(1 + β4/3), and the constant C does not

depend on α, β.

Proof. In (i) it is enough to consider α ≥ β2. In this case however, α ≤ (1 + γ)α1/2

and the result follows.
In the same manner, the condition in (ii) implies α ≤ C for α ≥ (2β)4/3.

Lemma 3.5. We have the following uniform bound:

||∇T ||L2(Ra) ≤ C.

Proof. We start by estimating ||ψ1||W 3,2(Da). Using an interpolation inequality [1] we
obtain

||ψ1||W 3,2(Da) ≤ C||ψ1||
1/2
W 4,2(Da) · ||ψ1||

1/2
W 2,2(Da).

where the constant C does not depend on a. Therefore by Lemma 3.2 and Lemma 3.1
we obtain, using the definition of the function g:

||ψ1||W 3,2(Da) ≤ C
(

||∇T ||L2(Da) +
(

c+ ||u||L∞(Da)

)

||ψ1||W 3,2(Da)

)1/2

· ||ψ1||
1/2

W 2,2(Da)

≤ C
(

||∇T ||2L2(Ra) +
(

1 + ||u||L∞(Da)

)

||ψ1||W 3,2(Da)||∇T ||L2(Ra)

)1/2

≤ C
(

||∇T ||L2(Ra) +
(

1 + ||u||L∞(Da)

)1/2
||∇T ||

1/2

L2(Ra)||ψ1||
1/2

W 3,2(Da)

)

,

where we used curl(u · ∇u) = u · ∇(curl u) and Lemma 3.3 to bound |c|.
Applying now Lemma 3.4 (i) with

α = ||ψ1||W 3,2(Da), β = C||∇T ||L2(Ra), γ = C(1 + ||u||L∞(Da))
1/2||∇T ||

1/2
L2(Ra),

we arrive at

(3.8) ||ψ1||W 3,2(Da) ≤ C
(

1 + ||∇T ||2L2(Ra) + ||u||L∞(Da)||∇T ||L2(Ra)

)

.

On the other hand, applying twice the interpolation inequality of Theorem 5.8 [1],
we obtain

(3.9) ||u||L∞(Da) ≤ C||u||
1/2

W 1,4(Da)||u||
1/2

L4(Da) ≤ C||u||
1/4

W 2,2(Da)||u||
3/4

W 1,2(Da).
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Combining (3.8), (3.9) and recalling Lemma 3.1 we deduce

||u||L∞(Da) ≤ C||ψ1||
1/4

W 3,2(Da)||ψ1||
3/4

W 2,2(Da)

≤ C
(

1 + ||∇T ||2L2(Ra) + ||u||L∞(Da)||∇T ||L2(Ra)

)1/4

‖∇T‖
3/4
L2(Ra)

≤ C
(

1 + ||∇T ||
5/4

L2(Ra) + ||u||
1/4
L∞(Da)||∇T ||L2(Ra)

)

.

We use now Lemma 3.4 (ii) to arrive at

(3.10) ||u||L∞(Da) ≤ C(1 + ||∇T ||
4/3

L2(Ra)).

By Lemma 3.3 this yields the desired uniform estimate on ||∇T ||L2(Ra).

Note now that Lemma 3.5 and the estimate (3.10) imply that

||u||L∞(Da) ≤ C.

Other uniform bounds in (2.10) follow now from Lemma 3.3, Lemma 3.2, the bound
(3.8) and from standard elliptic estimates for T in Ra. Also, the same bound as in
Lemma 3.2 holds if we replace L2 (and W 4,2) by Lp (W 4,p respectively) for any p ≥ 2.
This ends the proof of (2.10) and that of Theorem 2.1.

Remark 3.6. In order to obtain uniform bounds on the quantities in (2.10), we
needed to prove that ||u||L∞(Da) ≤ C. In the situation of [5], the stress-free boundary
conditions imply that ψ2 = curl u is zero on ∂Da. Multiplying the second equation in
(2.11) by ψ2 one obtains then ||∇ψ2||L2(Da) ≤ C||∇T ||L2(Ra). This, in view of Lemma
3.3 implies ||u||L∞(Da) ≤ C||ψ1||W 3,2(Da) ≤ C||∇T ||L2(Ra). In our situation, when ψ2 is
free on ∂Da, one cannot proceed in a similar manner. A simpler case is when g does
not depend on u, which happens at the infinite Prandtl number, 1/σ = 0. In this
particular case the calculations towards Lemma 3.5 are much simpler.

4. Identification of the limit and a proof of Theorem 1.1

For a proof of Theorem 1.1, we denote by ca, T a, ua, pa a solution of (2.1)-(2.2),
(2.5)-(2.7). Note that by a bootstrap argument we also have

||T a||C2,α(Da−1) ≤ C.

Therefore we may choose a sequence an → ∞ such that cn := can converges to some c ∈
R and Tn := T an , un := uan converge in C2,α

loc (D) to some T, u ∈ C2,α(D). Also, pn :=

pan converges in C1,α
loc (D) to some p ∈ C1,α

loc (D). Obviously, c, T, u, p must satisfy (1.1)
and the correct boundary conditions at x = 0 and x = h in (1.6). The normalization
(2.7) and its consequence (2.8) imply that

max{T (x, y); x ≥ 0, y ∈ [0, h]} = θ0.
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Since ∇T ∈ L2(D) ∩ C1,α(D) and u ∈ W 3,2(D) ∩ C2,α(D), we obtain (1.7). Note that
by (2.10), we also have a bound for the total reaction rate:

(4.1)

∫

D

f(T ) < +∞.

As in [5] (Lemma 3.2), we can prove the following lemma: we leave the minor
modifications to the reader.

Lemma 4.1. The propagation speed is positive: c > 0.

Next, we show that temperature approaches constant limits at the two ends of the
domain.

Lemma 4.2. There exist θ−, θ+ ∈ [0, 1] such that

lim
x→±∞

||T (x, ·) − θ±||L∞([0,h]) = 0.

Proof. We argue by contradiction. Assume, for example, that limn→∞ T (xn, yn) = θ1
and let limn→∞ T (x̃n, ỹn) = θ2 with some θ1 6= θ2 and limn→∞ xn = limn→∞ x̃n = +∞.
Integrating the first equation in (1.1) on Sn := [xn, x̃n]× [0, h] and using the boundary
conditions we obtain

−c

∫ h

0

[T (x̃n, y) − T (xn, y)] dy

= −

∫ h

0

[(Tu1 − Tx)](x̃n, y) − (Tu1 − Tx)](xn, y)] dy +

∫

Sn

f(T ),

(4.2)

where u1 refers to the horizontal component of the velocity vector u. Note that by
(1.7) and (4.1), the right hand side in (4.2) converges to 0 as n → ∞. At the same
time, because of our assumptions on (xn, yn) and (x̃n, ỹn), together with (1.7), the left
hand side converges to −ch(θ2 − θ1). In view of Lemma 4.1 we conclude that θ1 = θ2.

Now, by (4.1), Lemma 4.2 implies that

f(θ−) = f(θ+) = 0.

As in [5] (Lemmas 3.3 and 3.4, respectively), one also has the following two results:

Lemma 4.3. The temperature limits satisfy θ− > θ+.

Lemma 4.4. For every ǫ > 0 there exists A such that for all sufficiently large n:

|∇Tn(x, y)| ≤ ǫ ∀(x, y) ∈ [A, an] × [0, h].

We now deduce:

Lemma 4.5. For every ǫ > 0 there exists A such that for all sufficiently large n:

|Tn(x, y)| ≤ ǫ ∀(x, y) ∈ [A, an] × [0, h].
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Proof. If the claim is not true then there is some ǫ0 > 0 and a sequence An converging
to +∞ such that:

(4.3) Tn(An, yn) ≥ ǫ0,

for some yn ∈ [0, h] and possibly passing to a subsequence in Tn. Notice that by
Lemma 4.4 it must happen that

(4.4) lim
n→+∞

(an −An) = +∞.

Now, define Φn(x, y) = Tn(x+ An, y) and ζn(x, y) = un(x+ An, y) on domains Ran

and Dan
“shifted” to the left by the distance An. Using the normalization (2.8), we

have on R̃n = [0, an −An] × [0, h]

−cn(Φn)x + ζn · ∇Φn − ∆Φn = 0.

Multiplying the last equation by Φn and integrating over R̃n we obtain

cn

∫

R̃n

∂x|Φn|
2 −

∫

∂R̃n

|Φn|
2ζn · ν + 2

∫

∂R̃n

Φn∂νΦn = 2

∫

R̃n

|∇Φn|
2,

where ν is the outward normal to ∂R̃n. Using the boundary conditions, this yields

(4.5)

∫ h

0

[

(ζ1
n − cn)|Φn|

2 − 2Φn∂xΦn

]

(0, y) dy ≥ 0

where the superscript in ζ1
n refers to the horizontal component of the vector ζn.

On the other hand, Φn and ζn obviously satisfy the same uniform bounds as Tn and
un in (2.10) and therefore they converge (uniformly on compact sets, together with
their derivatives) to some Φ and ζ defined by virtue of (4.4) on whole D. Moreover,
Φ is a solution of

(4.6) −cΦx + ζ · ∇Φ − ∆Φ = 0

and it converges to some Φ± as x → ±∞ (the argument is as in the proof of Lemma
4.2). Integrating (4.6) on D and using boundary conditions we obtain

c(Φ− − Φ+) = 0,

which by Lemma 4.1 implies Φ− = Φ+. Thus, by the maximum principle Φ must be
constant and, say, equal to Φ0. Obviously, by (4.3), Φ0 ≥ ǫ0 > 0. Passing to the limit
in (4.5), we obtain

(4.7) |Φ0|
2

∫ h

0

(ζ1 − c)(0, y) dy ≥ 0.

On the other hand, since div un = 0 and un = 0 on ∂Dan
, we have

∫ h

0
ζ1
n(0, y) dy = 0

which implies that
∫ h

0
ζ1(0, y) dy = 0. Finally, (4.7) becomes

−hc|Φ0|
2 ≥ 0,
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which contradicts the positivity of c in Lemma 4.1.

In view of Lemma 4.5 we obtain θ+ = 0, which by Lemma 4.2 proves (1.8). The
final statement, asserting that (1.9) is a sufficient condition for θ− = 1 is obtained
exactly as in Lemma 3.7 of [5]. This completes the proof of Theorem 1.1.
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