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Introduction

In their paper [3], Bressan and Shen consider a class of (strictly hyperbolic) 2×2
systems of the form:

ut + f(u)x = 0, u(0, ·) = ū,(1)

θt + h(u)θx = 0, θ(0, ·) = θ̄,(2)

where f ∈ C2 is strictly convex (that is f ′′(x) > 0 for any x ∈ R), h is Lipschitz
continuous, ū ∈ L

1 ∩ L
∞, and θ̄ ∈ C0.

As proved in a classical paper of Kruzkov [7], there exists exactly one weak
entropy admissible solution of (1), which depends in a Lipschitz continuous way on
ū. Namely:

‖u1(t, ·) − u2(t, ·)‖L1 ≤ ‖ū1 − ū2‖L1 for any t ≥ 0,

where u1 and u2 are solutions of (1) with the initial data ū1 and ū2, respectively.
As soon as the function u is determined from (1), a solution of (2) can be

constructed by the standard method of characteristics. Indeed, the function θ must
be constant along the integral curves of the ODE

ẋ = h(u(t, x)).(3)

Uniqueness and continuous dependence of solutions of (2) can thus be derived from
the well-posedness of the Cauchy problem for (3).

We remark that the genuine nonlinearity of (1) implies that the total variation of
u(t0, ·) is locally bounded, for each t0 > 0. Hence the well posedness of the Cauchy
problem (3) with initial data x(t0) = x0 follows from [2].

It is worth noting that in [3] the well posedness of (3) follows from a more general
result on the well posedness of ODE’s of the form

ẋ = F (t, x),(4)

where F : [0, T ]× R −→ R is measurable and such that:

(A1) For every point (t̄, x̄) ∈ (0, T ] × R, there exists a slope λ(t̄,x̄) such that the
function F is constant along the segment I(t̄,x̄) = {(t, x) : t ∈ (0, t̄), x− x̄ =
λ(t̄,x̄)(t − t̄)}. Moreover, (t, x) ∈ I(t̄,x̄) implies that λ(t,x) = λ(t̄,x̄) and hence
I(t,x) ⊂ I(t̄,x̄).

(A2) There exist disjoint intervals [a, b] and [c, d] such that F (t, x) ∈ [a, b] and
λ(t,x) ∈ [c, d] for all (t, x) ∈ (0, T ] × R.

It is clear that since u is constant along the backward characteristics of (1), which
are the straight lines with corresponding slopes f ′(u), the composite function h ◦ u
satisfies (A1), (A2).
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A natural question is whether a similar result holds for the perturbed system

ut + f(u)x = g(u), u(0, ·) = ū,(5)

θt + h(u)θx = 0, θ(0, ·) = θ̄.

We will assume that g ∈ C1 and g′ is bounded. It is known [5], that (5) has then the
unique weak entropy admissible solution, acquiring (after possibly a modification
on a set of measure zero) the following properties. For each fixed (t̄, x̄) ∈ (0,∞)×R

the one-sided limits u(t̄, x̄±) exist and u(t̄, x̄−) ≥ u(t̄, x̄+) = u(t̄, x̄). Moreover, the
minimal and maximal backward characteristics y−(·; t̄, x̄) and y+(·; t̄, x̄) through
(t̄, x̄) are determined by solving

{

ẏ = f ′(v)
v̇ = g(v),

(6)

with initial data (y(t̄), v(t̄)) = (x̄, u(t̄, x̄−)) and (y(t̄), v(t̄)) = (x̄, u(t̄, x̄+)), respec-
tively. Along those characteristics u coincides with the corresponding function v;
that is u(t, y(t)) = v(t) for any t ∈ (0, t̄).

Consequently, the composite function F = h ◦ u satisfies:

(A1’) For every point (t̄, x̄) ∈ (0, T ]×R, there exists a C2 curve y(t̄,x̄) : (0, t̄) −→ R

along which the function F is Lipschitz continuous. Moreover, if y(t̄,x̄)(t) = x,
then y(t,x) = y(t̄,x̄) on (0, t). Finally, the first and the second derivatives of the
curves y(t̄,x̄) are uniformly bounded.

The purpose of this paper is to discuss the following two questions:

(I) Let F : [0, T ] × R −→ R be measurable and satisfy (A1’) and (A2) (where
the slope λ(t,x) is replaced by the derivative ẏ(t,x)). Is the problem (4) well
posed?

(II) Assuming that the system (5)(2) is strictly hyperbolic, that is the ranges of
the two functions f ′ and h are disjoint, is this system well posed?

The answer to the first question is negative, as is shown in the first section.
Nevertheless, the answer to (II) is positive. This is shown by the main theorem of
the paper, in section 2. In the third section we present another example, showing
that if f is not convex, the problem (1)(2) may not be well posed. Indeed, in this
case the corresponding ODE (3) may have multiple solutions. The last section
contains the technical details of the proof of our main theorem.

1. A counterexample

We give an example of a measurable function F : [0, 1] × R −→ R, satisfying
(A1’) and (A2) (with the slope λ(t,x) replaced by the derivative ẏ(t,x)), such that
there exist two solutions x1, x2 : [0, 1] −→ R of the Cauchy problem

ẋ = F (t, x), x(0) = 0.

Let y : [0, 1] −→ R be a smooth function such that

• y(t) = 1 − t for t ∈ [0, 1/3],
• y(1) = 1/3,
• y is decreasing, convex and 1 − t < y(t) < 4/3 − t for t ∈ (1/3, 1).
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Define a sequence of functions yn : [0, tn] −→ R in the following way. For n = 1
set t1 = 1 and y1 = y. For n > 1 let tn = 3

4yn−1(0). The graph of yn is constructed
by shifting the graph of yn−1 in a way that:

• yn(tn) = yn−1(0) − tn = tn/3,
• yn(t) = yn(0) − t for t ∈ [0, yn(0)/3],
• yn(t) > yn(0) − t for t ∈ (yn(0)/3, tn].

F is then described by:

F (t, x) =















1/3 for t ∈ [0, 1] and x ≤ t/3,
2 for t ∈ [0, 1] and x > y1(t),

1/3 for t ∈ [0, tn], x ∈ [yn(0) − t, yn(t)] and n ≥ 1,
2 for t ∈ [0, tn], x ∈ (yn(t), yn−1(0) − t) and n > 1.

t

1

x

1=t
1

x2

3/4=t 2

x1

F=1/3

y=y1

F=2

t3t4

y2

1/3

y
3

Figure 1

F is thus constant along appropriate smooth curves y(t,x) whose first derivatives
are uniformly bounded and negative, while the values of F belong to the interval
[1/3, 2]. However, x1(t) = t/3 and x2(t) = 2t are two solutions of the given Cauchy
problem.

2. The main result

Theorem 1. Let f ∈ C2 with f ′′(x) > 0 for all x ∈ R, g ∈ C1, with g′ bounded,
ū ∈ L

1 ∩ L
∞, θ̄ ∈ C0. Fix T > 0 and define the constants

C1 = K + T exp(T ‖g′‖L∞) max
[−K,K]

|g| ,
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C2 = C1 + T exp(T ‖g′‖L∞) max
[−C1,C1]

|g| ,

for some fixed K ≥ ‖ū‖L∞ . Let h : R −→ R be Lipschitzian on an open neighbour-
hood of [−C2, C2] and assume that there exist two disjoint intervals [a, b] and [c, d]
such that h(x) ∈ [a, b] and f ′(x) ∈ [c, d] for any x ∈ [−C2, C2].

Then the system (5)(2) has a unique admissible solution, that is the weak entropy
admissible solution of (5) and the broad solution of (2) (which is in fact continuous),
defined on [0, T ]×R, that depends continuously on the initial data. More precisely:
if ūn → ū in L

1, ‖ūn‖L∞ ≤ K, for each n, and θ̄n → θ̄ uniformly, then un(t, ·) →
u(t, ·) in L

1, for any t ∈ [0, T ] and θn → θ uniformly on compact subsets of [0, T ]×R

(here (un, θn) stands for the solution of (5)(2) with the initial data (ūn, θ̄n)).

Proof. For the convenience of the reader we divided the proof into five steps,
containing several lemmas, whose proofs will be given in the last section. Also, for
future considerations we assume that d < a, the other case beeing treated similarily.
By L > 0 we denote the Lipschitz constant of h on a neighbourhood of [−C2, C2].

STEP 1. Note first, that the unique weak entropy admissible solution of (5) satisfies

|u(t, x)| ≤ C1 for a.a. (t, x) ∈ [0, T ]× R.(7)

Lemma 1. Let v : [0, T ] −→ R be Lipschitzian, with v̇(t) ∈ [a, b] for a.a. t ∈ [0, T ].
Then the composition t 7→ u(t, v(t)) is measurable.

Consider the equation (3) with the initial data x(0) = x0. Lemma 1 guarantees
that the Picard operator P for this problem

P : U −→ U , P(v)(t) = x0 +

∫ t

0

h(u(τ, v(τ)))dτ,

U = {v : [0, T ] −→ R : v is Lipschitzian and v̇(t) ∈ [a, b] for a.a. t ∈ [0, T ]},

is well defined.
Our first goal will be to show that P is continuous and has a unique fixed point.

To do this, we will approximate P with the Picard operator of an another ODE,
whose right hand side will be the composition of h and a suitable approximation of
the discontinuous function u. �

STEP 2. Fix t0 ∈ [0, T ]. Let ψ ∈ L
1 be a piecewise constant function with finite

number of jumps located at points xi, and assume that ‖ψ‖L∞ ≤ C1. For each
xi, let ξi : [t0, T ] −→ R be the unique forward characteristic of (5), originating
from (t0, xi). Without loss of generality we may assume that each xi is a continuity
point of the function u(t0, ·), so each ξi can be prolonged along the unique backward
characteristic emanating from (t0, xi). Thus the functions ξi are defined on [0, T ]
(note that each ξi is differentiable at all but a countable number of points and there

holds ξ̇i ∈ [c, d]) and divide the stripe [0, T ]×R into finite number of regions Ri. Ri

is the (open) region with the property: Ri ∩ {(t0, x) : x ∈ R} = {t0} × (xi−1, xi).
We also have two unbounded Ri’s, defined in an obvious way.

Let αi : [0, T ] −→ R be the solution of

α̇i = g(αi), αi(t0) = ψ(
xi + xi−1

2
).

Define a measurable function w : [0, T ]× R −→ R, by

w(t, x) = αi(t) for (t, x) ∈ Ri.
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Note that since ‖ψ‖L∞ ≤ C1, |w(t, x)| ≤ C2 for all (t, x) ∈ ∪iRi. Moreover, in
each Ri the function w is C2 and Lipschitzian with the constant

L2 = max
[−C2,C2]

|g| .

Lemma 2. Fix ε > 0, then there exist t0 ∈ (0, T ) and a number δ > 0 such that if
‖ψ − u(t0, ·)‖L1 < δ then for any v ∈ U

∫ T

0

|h(w(τ, v(τ)) − h(u(τ, v(τ)))| dτ < ε.

�

STEP 3. We will discuss the ODE

ẋ = h(w(t, x)),(8)

(where the piecewise continuous function w is constructed as in step 2). Since the
slopes of discontinuities and the values of the composite function h ◦ w belong to
disjoint intervals, (8) is well posed.

Let x be any solution of (8), which crosses the curves ξi only at their differen-
tiability points. Define V : [0, T ] −→ R

V (t) = lim
ε→0

xε(t) − x(t)

ε
,

where xε is the solution of

ẋε = h(w(t, xε)), xε(t0) = x(t0) + ε.

V is well defined and continuous in the intervals where x remains in the same region
Ri. The standard computations [6] show also that there holds

V (t2) = V (t1) exp

(
∫ t2

t1

Dx(h ◦ w)(τ, x(τ)) dτ

)

, t1 ≤ t2.

On the other hand, at every point t in which x(t) = ξi(t), V has a jump described
by the formula

V (t+)

V (t−)
=
h(w(t, x(t)+)) − ξ̇i(t)

h(w(t, x(t)−)) − ξ̇i(t)
.

Define the functions z, ϕ, λ : [0, T ] −→ R

z(t) = ϕ(t)V (t),

ϕ(t) =
b− λ(t)

h(w(t, x(t))) − λ(t)
.

The function λ will be defined separately on each interval [ti−1, ti] (where ξi−1(ti−1) =
x(ti−1) and ξi(ti) = x(ti)) and have the following properties:

(P1) λ(ti−1) = ξ̇i−1(ti−1), λ(ti) = ξ̇i(ti),
(P2) λ(t) ∈ [c, d] for any t ∈ [0, T ],
(P3) λ is piecewise C1 and has only downward jumps,
(P4) for a.a. t ∈ [0, T ] one has

λ̇(t) ≤ β
h(w(t, x(t))) − λ(t)

t
+Q,

where the constants Q ≥ 0 and β ∈ [0, b−d
b−a

) are uniform, that is they do not

depend on a particular approximation w or a solution x of (8).
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Lemma 3. There exists a function λ : (0, T ) −→ R with the properties (P1)-(P4).

Compute the derivative of ϕ in the regularity intervals of λ

ϕ̇(t) =
−λ̇(t)[h(w(t, x(t))) − λ(t)]

[h(w(t, x(t))) − λ(t)]2

−
[b− λ(t)][Dt(h ◦ w)(t, x(t)) + h(w(t, x(t)))Dx(h ◦ w)(t, x(t)) − λ̇(t)]

[h(w(t, x(t))) − λ(t)]2

=
b− h(w(t, x(t)))

[h(w(t, x(t))) − λ(t)]2
λ̇(t)

−
b− λ(t)

[h(w(t, x(t))) − λ(t)]2
[Dt(h ◦ w)(t, x(t)) + h(w(t, x(t)))Dx(h ◦ w)(t, x(t))]

= ϕ(t)
b− h(w(t, x(t)))

b− λ(t)

λ̇(t)

h(w(t, x(t))) − λ(t)

−ϕ(t)
Dt(h ◦ w)(t, x(t)) + h(w(t, x(t)))Dx(h ◦w)(t, x(t))

h(w(t, x(t))) − λ(t)
.

Thus

ϕ̇(t)

ϕ(t)
≤ β

b− a

b− d

1

t
+
b− a

b− d

Q

a− d
+
LL2 + LL2 max(|a|, |b|)

a− d
≤ γ

1

t
+ C3,

where the constants γ ∈ (0, 1) and C3 > 0 depend only on the system (5)(2).

Compute now the derivative of z in the regularity intervals of λ

ż(t) = ϕ̇(t)V (t) + ϕ(t)V (t)Dx(h ◦ w)(t, x(t)) =
ϕ̇(t) + ϕ(t)D2h(w(t, x(t)))

ϕ(t)
z(t).

Hence
ż(t)

z(t)
≤ γ

1

t
+ C3,

and finally, for any t1, t2 which are in the same regularity interval of λ and t1 ≤ t2

z(t2)

z(t1)
≤ exp(C3(t2 − t1))

(

t2
t1

)γ

.(9)

Note that z is continuous at the points t where x(t) = ξi(t), as

z(t−) =
b− ξ̇i(t)

h(w(t, x(t)−)) − ξ̇i(t)
V (t−) =

b− ξ̇i(t)

h(w(t, x(t)+)) − ξ̇i(t)
V (t+) = z(t+).

Moreover, z has only downward jumps, since the same is true for ϕ (in each interval
(ti−1, ti)).

Concluding, the formula (9) holds for all t1, t2 ∈ [0, T ] such that t1 ≤ t2 and that
V (t1), V (t2) are defined. This yields

V (t2)

V (t1)
=
z(t2)

z(t1)

ϕ(t1)

ϕ(t2)
≤
b− c

a− d

b− c

b − d
exp (C3(t2 − t1))

(

t2
t1

)γ

≤M

(

t2
t1

)γ

,(10)

for all t1, t2 as above, where the constant M > 0 depends only on the system (5)(2)
Later on, by integrating the formula (10) one will be able to obtain an estimate on
continuous dependence of solutions to (8) on initial data. �

STEP 4. Now we conclude the proof of the well posedness of (3). By step 2,
the Picard operator P of (3) with initial data x(0) = x0 is a uniform limit of
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the corresponding Picard operators Pn, written for (8) with the approximating
function w constructed according to Lemma 2, and initial data x(0) = x0. Hence P
is continuous. P has also the relatively compact image, contained in U (note that
U is a closed, convex subset of the Banach space C0([0, T ],R)). By Schauder fixed
point theorem, P must thus have a fixed point, which is a solution of (3) with the
initial data x(0) = x0.

To prove the uniqueness of solutions of (3) and the continuous dependence on
x0, we first note

Lemma 4. Let e : [0, T ] −→ R be measurable and bounded by b − a. If v is a
solution of the problem

v̇(t) = Π[a,b][h(w(t, v(t)) + e(t)], v(0) = x0(11)

(here Π[a,b] : R −→ [a, b] is the projection of R onto [a, b]), then for any t ∈ [0, T ]

|v(t) − x(t)| ≤
Mtγ(b− a)γ

1 − γ

(
∫ t

0

|e(τ)| dτ

)1−γ

(x here stands for the unique fixed point of P).

Having once the estimate (10) established, one can see that Lemma 4 is proved
in the same way as Lemma 1 in [3].

Let x1, x2 be two solutions of (3). For i = 1, 2 set ei(t) = h(u(t, xi(t))) −
h(w(t, xi(t))) (where w is constructed as in step 3). Note that xi is a solution of
(11) with initial data v(0) = xi(0). By Lemma 4 we can thus estimate the differences
‖xi − yi‖L∞ , where yi is the solution of (8) with yi(0) = xi(0). On the other hand,
the difference ‖y1 − y2‖L∞ is estimated by means of the formula (10)

|y1(t) − y2(t)| ≤ (1 + b− a)max{Mtγ |y1(0) − y2(0)|
1−γ

, |y1(0) − y2(0)|}.

Since by Lemma 2
∫ T

0 |ei(τ)| dτ can be arbitrarily small, provided that the approx-
imating function w is choosen suitably, we obtain

‖x1 − x2‖L∞ ≤ (1 + b− a)max{MT γ |x1(0) − x2(0)|
1−γ

, |x1(0) − x2(0)|},(12)

which proves the well posedness of (3). (For the details, see the proof of Theorem
1 in [3].) �

STEP 5. The uniqueness and existence of the admissible solution of (5)(2) is clear
in view of step 4. To justify the continuous dependence on the initial data, note
that by [4] un(t, ·) → u(t, ·) in L

1, for any t ∈ [0, T ] (we use the notation introduced
in the statement of the theorem).

The convergence θn → θ is proved exactly as in [3]. �

3. The case of nonconvex flux

In this section we show that the convexity of the flux function f in (1) is crucial
for the well posedness of (3) and thus also for the well posedness of (1)(2). To do
this, we shall define two smooth functions f, h : R −→ R such that f ′(x) ∈ [−1/2, 1]
and h(x) ∈ [3, 5] for all x ∈ R, h beeing Lipschitzian, and a piecewise constant
function ū ∈ L

1 ∩ L
∞, with ū(x) ∈ [0, 2] for all x ∈ R, such that there exist two

solutions x1, x2 : [0, 2/9] −→ R of (3) with the initial data x(0) = 0. Note that in
view of Theorem 1 or Theorem 2 in [3], f ′′ must change sign in the interval [0, 2].
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u u u u
+

0

- m
u

1

9/2

λ

λ=1

λ=1/2

0

λ1

x

f(x):

h(x):

Figure 2

Define u+ = 0, u− = 1, um = 2. The function f , shaped as in Fig. 3 should
have the following features:

• f is smooth and f ′(x) ∈ [−1/2, 1] for all x ∈ R,
• f(x) = x for all x ∈ [u−, um],
• the upper concave envelope of f on [u+, um] is a straight line with the slope

1/2,
• the lower convex envelope of f on [u+, u−] is a straight line with the slope
λ1 on [u+, u1] and coincides with f on [u1, u

−], for some point u1 ∈ (u+, u−),
which is close to u−,

• the upper concave envelope of f on [u+, u−] coincides with f on [u+, u0] and
is a straight line with the slope λ0 on [u0, u

−], where u0 ∈ (u+, u1).

The fuction h, as in Fig. 3 should satisfy:

• h is smooth and h(x) ∈ [3, 5] for all x ∈ R,
• h(x) = 9/2 for x ∈ [u1, u

m] ∪ {u+},
• h(x) < 9/2 in (u+, u1).

The initial data ū is uniquely defined by:

• ū(x) = 0 for x ∈ (−∞, 0] ∪ [1,+∞),
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• ū(x) = U(2nx) for x ∈ (2−n−1, 2−n], n ≥ 0, where

U(x) =







u+ for x ∈ (1/2, 7/10)
um for x ∈ (7/10, 8/10)
u− for x ∈ (8/10, 1).

The solution of (1) is shown in Fig. 3 below.

11/21/41/8

u

u

u

u

u

u

-

m

+

m

+

λ=1/2λ=1

λ=1

λ=1/2

x

x

2

1

λ
1

u u1

-

λ
0

u0 u
+

u

-

-
u um +

t

x

u:
-

Figure 3

Note that the initial data U yields two shocks (of opposite signs), whose inter-
action gives in turn a centered rarefaction wave. This pattern is reapeated in a
self-similar way, namely u(t, x) = u(t/2, x/2) for x ∈ [0, 1] and t ∈ [0, 2/9]. Con-
sider now the ODE (3) with x(0) = 0. Certainly x1(t) = 9

2 t is a solution of this
problem. Defining h appropriately on [u+, u0], one can find another solution x2,
such that x1(t) − x2(t) = 2(x1(t/2) − x2(t/2)) for all t ∈ [0, 2/9]. The distance
between x1(t) and x2(t) increases rapidly when x2(t) lies inside the rarefaction
waves.

Note that the above result gives rise to the ill-posedness of (2) with θ̄(·) = 0. In
fact, for any α ∈ R the function

θ(t, x) =

{

0 for x < x1(t) or x > x2(t)
α for x ∈ [x2(t), x1(t)]

defined on [0, 2/9]× R is then a solution of (2).

4. The details of the proofs

Proof of Lemma 1. Fix any t0 ∈ (0, T ). We will show that the function t 7→
u(t, v(t)) is measurable on [t0, T ]. Let yt : [0, t] −→ R be the maximal backward
characteristic for (5), emanating from (t, v(t)),

{

ẏt = f ′(wt), yt(t) = v(t)
ẇt = g(wt), wt(t0) = u(t0, z(t)).
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For t ∈ [t0, T ] define Z(t) = yt(t0). Since u(t, v(t)) = wt(t), it is enough to prove that
the counterimage of any measurable set, under the function Z, remains measurable.
To do this, we will show that there exists a constant Ct0 > 0 such that

Z(t) − Z(s) ≥ Ct0(t− s), for t0 ≤ s < t ≤ T.(13)

Fix s, t as above. For τ ∈ [t0, s] define ∆(τ) = yt(τ) − ys(τ). We have

Z(t) − Z(s)

t− s
=

∆(t0)

∆(s)

∆(s)

t− s
=

∆(t0)

∆(s)

[

yt(s) − v(t)

t− s
+
v(t) − v(s)

t− s

]

(14)

≥
∆(t0)

∆(s)
(a− d).

We need to estimate ∆(s)
∆(t0)

.

CASE 1. wt ≤ ws in [t0, s]. Then ẏt ≤ ẏs in [t0, s], so

∆(s) = ∆(t0) +

∫ s

t0

ẏt(τ) − ẏs(τ)dτ ≤ ∆(t0),

and thus ∆(s)
∆(t0)

≤ 1. �

CASE 2. wt > ws in [t0, s]. In this case, for any τ ∈ [t0, s] there holds

yt(τ) − ys(τ) = yt(0) − ys(0) +

∫ τ

0

ẏt(ζ) − ẏs(ζ)dζ

≥ yt(0) − ys(0) +

∫ τ

0

wt(ζ) − ws(ζ)dζ min
[−C1,C1]

f ′′

≥ τ (wt(τ) − ws(τ)) exp(−T ‖g′‖L∞) min
[−C1,C1]

f ′′.

Since

ẏt(τ) − ẏs(τ) ≤ (wt(τ) − ws(τ)) max
[−C1,C1]

f ′′,

we obtain
ẏt(τ) − ẏs(τ)

yt(τ) − ys(τ)
≤ C̃t0 =

max[−C1,C1] f
′′

t0 min[−C1,C1] f
′′
.

Note that

ln

(

∆(s)

∆(t0)

)

=

∫ s

t0

∆′(τ)

∆(τ)
dτ =

∫ s

t0

ẏt(τ) − ẏs(τ)

yt(τ) − ys(τ)
dτ.

Finally

∆(s)

∆(t0)
≤ exp

(

(s− t0)max

{

ẏt(τ) − ẏs(τ)

yt(τ) − ys(τ)
; τ ∈ [t0, s]

})

≤ exp(T C̃t0).

�

Combining the above estimates with (14), one can see that (13) holds with

Ct0 = (a− d) exp(−T C̃t0).

Proof of Lemma 2. We will use the notions of the functions Z, wt and constants
Ct0 , introduced in the proof of Lemma 1.
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We will show that the estimate of Lemma 2 is true if t0 ∈ (0, T ), δ > 0 and

t0 ≤
ε

4C2L,
δ <

εCt0

2L exp(T ‖g′‖L∞)
.

Estimate:
∫ T

0

|h(w(τ, v(τ))) − h(u(τ, v(τ)))| dτ ≤ L

∫ T

0

|w(τ, v(τ)) − u(τ, v(τ))| dτ

≤ L

(

2C2t0 +

∫ T

t0

|w(τ, v(τ)) − u(τ, v(τ))| dτ

)

≤
ε

2
+ L

∑

i

∫ ti

ti−1

|αi(τ) − wτ (τ)| dτ,

where ξi−1(ti−1) = v(ti−1) and ξi(ti) = v(ti). By the Gronwall inequality
∫ ti

ti−1

|αi(τ) − wτ (τ)| dτ ≤

∫ ti

ti−1

|ψ(Z(τ)) − u(t0, Z(τ))| exp(T ‖g′‖L∞)dτ

≤
exp(T ‖g′‖L∞)

Ct0

∫ Z(ti)

Z(ti−1)

|ψ(x) − u(t0, x)| dx.

Finally
∫ T

0

|h(w(τ, v(τ))) − h(u(τ, v(τ)))| dτ ≤
ε

2
+ L

exp(T ‖g′‖L∞)

Ct0

δ < ε.

Proof of Lemma 3. Fix the interval [ti−1, ti]. The function λ will be constructed
in two different ways, according to if ti < T1 or ti−1 ≥ T1. The constant T1 ∈ (0, T ),
sufficiently small and depending only on the equation (5) will be determined later
(in CASE 1B below).

Let yi−1 : [0, ti−1] −→ R be the maximal backward characteristic, emanating
from the point (ti−1, x(ti−1)) and let yi : [0, ti] −→ R be the minimal backward
characteristic, emanating from (ti, x(ti)),

{

v̇i−1 = g(vi−1) vi−1(ti−1) = u(ti−1, x(ti−1)+)
ẏi−1 = f ′(vi−1) yi−1(ti−1) = x(ti−1),

{

v̇i = g(vi) vi(ti) = u(ti, x(ti)−)
ẏi = f ′(vi) yi(ti) = x(ti).

Note that the condition (P1) can be replaced by another condition

(P1)’ λ(ti−1) = ẏi−1(ti−1), λ(ti) = ẏi(ti),

as any function λ with the properties (P1)’ (P2) (P3) (P4) (on [ti−1, ti]) can be
modified in a way that it satisfies (P1) – (P4).

CASE 1A. ti < T1.Assume additionally that vi(0) ≤ vi−1(0).Then also vi−1(ti−1) ≥
vi(ti−1). Define

λ(t) =
t− ti−1

ti − ti−1
ẏi(ti) +

ti − t

ti − ti−1
ẏi−1(ti−1).
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The conditions (P1)’, (P2) and (P3) are fulfilled. We check (P4):

λ̇(t) =
ẏi(ti) − ẏi−1(ti−1)

ti − ti−1

=
f ′(vi(ti)) − f ′(vi(ti−1))

ti − ti−1
+
f ′(vi(ti−1)) − f ′(vi−1(ti−1))

ti − ti−1

≤ max
[−C1,C1]

|g| max
[−C1,C1]

f ′′ ≤ β
h(w(t, x(t)) − λ(t)

t
+Q,

provided that β ≥ 0 and Q ≥ max[−C1,C1] |g| max[−C1,C1] f
′′. �

Before we consider the case vi−1(0) < vi(0) we need some more computations.
Denote v0 = v(0) and y0 = yi−1(0). For ε > 0 define yε, vε : [0, T ] −→ R to be the
solutions of

{

v̇ε = g(vε) vε(0) = v0 + ε
ẏε = f ′(vε) yε(0) = y0.

For a fixed ε > 0 let ε′ be such that yε(ti−1 + ε′) = x(ti−1 + ε′). It is clear that the
function ε′ 7→ ε is strictly increasing and continuous in its domain [0, ε0). Define

λ(ti−1 + ε′) = ẏε(ti−1 + ε′) = f ′(vε(ti−1 + ε′)).(15)

We will compute the derivative of λ at ti−1. This will give us also the formula for

λ̇(t), with t ∈ [ti−1, ti−1 + ε0).

∫ ti−1+ε′

ti−1

h(w(τ, x(τ)))dτ = x(ti−1 + ε′) − x(ti−1)

= yε(ti−1 + ε′) − yi−1(ti−1)

= y0 − yi−1(ti−1) +

∫ ti−1+ε′

0

f ′(vε(τ))dτ

=

∫ ti−1+ε′

0

f ′(vε(τ))dτ −

∫ ti−1

0

f ′(v(τ))dτ

=

∫ ti−1

0

f ′(vε(τ)) − f ′(v(s))dτ +

∫ ti−1+ε′

ti−1

f ′(vε(τ))dτ.

Note that

lim
ε′
→0

1

ε′

∫ ti−1+ε′

ti−1

h(w(τ, x(τ)))dτ = h(w(ti−1, x(ti−1))),

lim
ε′→0

1

ε′

∫ ti−1+ε′

ti−1

f ′(vε(τ))dτ = f ′(v(ti−1)).

Hence

h(w(ti−1, x(ti−1))) − f ′(v(ti−1)) = lim
ε′
→0

1

ε′

∫ ti−1

0

f ′(vε(τ)) − f ′(v(τ))dτ

= lim
ε′→0

ε

ε′

∫ ti−1

0

f ′(vε(τ)) − f ′(v(τ))

vε(τ) − v(τ)

vε(τ) − v(τ)

ε
dτ

=
(

lim
ε′
→0

ε

ε′

)

∫ ti−1

0

f ′′(v(τ))C(τ)dτ,
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where

C(τ) = lim
ε→0

vε(τ) − v(τ)

ε
= exp

(
∫ τ

0

g′(v(s))ds

)

.

Consequently

lim
ε′
→0

ε

ε′
=
h(w(ti−1, x(ti−1))) − f ′(v(ti−1))

∫ ti−1

0
f ′′(v(τ))C(τ)dτ

.

Finally

λ̇(ti−1) =(16)

= f ′′(v(ti−1)) lim
ε′→0

vε(ti−1 + ε′) − v(ti−1)

ε′

= f ′′(v(ti−1))

[

lim
ε′
→0

vε(ti−1 + ε′) − vε(ti−1)

ε′
+ lim

ε′
→0

vε(ti−1) − v(ti−1)

ε′

]

= f ′′(v(ti−1))
[

g(v(ti−1)) +
(

lim
ε′→0

ε

ε′

)

C(ti−1)
]

= f ′′(v(ti−1))g(v(ti−1))

+
ti−1f

′′(v(ti−1))C(ti−1)
∫ ti−1

0 f ′′(v(τ))C(τ)dτ

h(w(ti−1, x(ti−1))) − f ′(v(ti−1))

ti−1
.

CASE 1B. ti < T1 and vi−1(0) < vi(0). Define λ by formula (15). By (16) we have

λ̇(ti−1 + ε′) = f ′′(vε(ti−1 + ε′))g(vε(ti−1 + ε′))

+
(ti−1 + ε′)f ′′(vε(ti−1 + ε′))C(ti−1 + ε′)

∫ ti−1+ε′

0
f ′′(vε(τ))C(τ)dτ

·

·
h(w(ti−1 + ε′, x(ti−1 + ε′))) − λ(ti−1 + ε′)

ti−1 + ε′
.

If ε ∈ [0, (vi(0) − vi−1(0))/2] , then

λ̇(ti−1 + ε′) ≤ Q+
(ti−1 + ε′)f ′′(vε(ti−1 + ε′))C(ti−1 + ε′)

∫ ti−1+ε′

0 f ′′(vε(τ))C(τ)dτ
·

·
h(w(ti−1 + ε′, x(ti−1 + ε′))) − λ(ti−1 + ε′)

ti−1 + ε′
,

for Q ≥ max[−C2,C2] |g| max[−C2,C2] f
′′. Note that

lim
ti−1+ε′→0

(ti−1 + ε′)f ′′(vε(ti−1 + ε′))C(ti−1 + ε′)
∫ ti−1+ε′

0 f ′′(vε(τ))C(τ)dτ
= 1,

and the convergence is uniform in ε. Thus (P4) is satisfied, for some β ∈ [1, (b −
a)/(b−d)), if T1 is small enough. In this way λ is defined on some interval [ti−i, ti−1+
ε′i−1].

In the similar way (taking ε ∈ [−(vi(0) − vi−1(0))/2, 0]), one can define λ on
some interval [ti − ε′i, ti].

If ε′i−1 + ε′i ≥ ti − ti−1, then for some t′ ∈ (ti−1, ti−1 + ε′i−1] ∩ [ti − ε′i, ti), our
function λ, defined as above separately on [ti−1, t

′) and (t′, ti] must have a downward
jump at t′, since yi(t) > yi−1(t) for t ∈ (0, ti−1]. Such jumps are allowed by (P3).

On the other hand, if ε′i−1 + ε′i < ti − ti−1, then in the ’missing’ interval [ti−1 +
ε′i−1, ti − ε′i] we define λ linearly (as in CASE 1A). The estimates similar to those
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of CASE 1A are valid because for the corresponding numbers εi−1, εi there holds
vi−1(0) + εi−1 = vi(0) − εi. �

CASE 2. ti−1 ≥ T1. Let λ1, λ2 : [ti−1, ti] −→ R be the solutions of the following
problems:

λ̇1(t) =
h(w(t, x(t))) − λ1(t)

t
+Q, λ1(ti−1) = ẏi−1(ti−1),

λ̇2(t) =
h(w(t, x(t))) − λ2(t)

t
+Q, λ2(ti) = ẏi(ti).

More explicitely:

λ1(t) =
ti−1ẏi−1(ti−1)

t
+
x(t) − x(ti−1)

t
+
Q

2

t2 − t2i−1

t
,

λ2(t) =
tiẏi(ti)

t
+
x(t) − x(ti)

t
+
Q

2

t2 − t2i
t

.

We will show that if Q is large enough then λ1(t) ≥ λ2(t) for some t ∈ (ti−1, ti).
This will justify the definition of the function λ as λ = λ1 on (ti−1, t) and λ = λ2

on (t, ti).

Note that λ1(t) ≥ λ2(t) if and only if

[x(ti−1) − ti−1ẏi−1(ti−1)] − [x(ti) − tiẏi(ti)] ≤
Q

2

[

t2i − t2i−1

]

.

We have

yi(ti−1) = x(ti) −

∫ ti

ti−1

ẏi(τ)dτ = x(ti) − (ti − ti−1)ẏi(ti) +

∫ ti

ti−1

ẏi(ti) − ẏi(τ)dτ

and since yi−1(ti−1) = x(ti−1),

yi(ti−1) − yi−1(ti−1) = x(ti) − x(ti−1) − (ti − ti−1)ẏi(ti) +

∫ ti

ti−1

ẏi(ti) − ẏi(τ)dτ

≤ x(ti) − x(ti−1) − ẏi(ti)(ti − ti−1) +
1

2

(

max
[−C1,C1]

|g| max
[−C1,C1]

f ′′

)

(ti − ti−1)
2.

Hence

[x(ti−1) − ti−1ẏi−1(ti−1)] − [x(ti) − tiẏi(ti)]

≤ ti(ẏi(ti) − ẏi(ti−1)) + ti(ẏi(ti−1) − ẏi−1(ti−1)) + C(ti − ti−1)
2

≤ C
[

ti(ti − ti−1) + ti(u(ti−1, yi(ti−1)) − u(ti−1, x(ti−1))) + (ti − ti−1)
2
]

,

where C > 0 is a constant depending only on the equation (5). By Oleinik inequality
([8]), the last estimate yields the desired

[x(ti−1) − ti−1ẏi−1(ti−1)] − [x(ti) − tiẏi(ti)]

≤ C

[

ti(ti − ti−1) +
ti
T1

(yi(ti−1) − x(ti−1)) + (ti − ti−1)
2

]

≤ C(t2i − t2i−1).

�
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