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Abstract. We summarize some recent results of the authors and their collaborators, regarding
the derivation of thin elastic shell models (for shells with mid-surface of arbitrary geometry) from
the variational theory of 3d nonlinear elasticity. We also formulate a conjecture on the form and
validity of infinitely many limiting 2d models, each corresponding to its proper scaling range of
the body forces in terms of the shell thickness.
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1. Introduction

Elastic materials exhibit qualitatively different responses to different kinematic boundary con-
ditions or body forces. A sheet of paper may crumple under compressive forces, but it shows a
more rigid behavior in a milder regime. A cylinder buckles in presence of axial loads. A clamped
convex shell enjoys great resistance to bending and stretching, but if a hole is pierced into it,
the whole structure might easily collapse. Growing tissues, such as leaves, attain non-flat elastic
equilibrium configurations with non-zero stress, even in the absence of any external forces.

Such observations gave rise to many interesting questions in the mathematical theory of elas-
ticity. Its main goal is to explain these apparently different phenomena based on some common
mathematical ground. Among others, the variational approach to the nonlinear theory has been
very effective in rigorously deriving models pertaining to different scaling regimes of the body
forces [9]. The strength of this approach lies in its ability to predict the appropriate model to-
gether with the response of the plate without any a priori assumptions other than the general
principles of 3d nonlinear elasticity.

The purpose of this paper is to introduce some new results and conjectures on the variational
derivation of shell theories. They can be considered as generalizations of the results in [9], justifying
a hierarchy of theories for nonlinearly elastic plates. This hierarchy corresponds to the scaling of
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the elastic energy in terms of thickness h, in the limit as h → 0. Some of the derived models were
absent from the physics and engineering literature before.
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2. The set-up and a glance at previously known results

2.1. Three dimensional nonlinear elasticity and the limiting lower dimensional the-

ories. The equations for the balance of linear momentum for the deformation u = u(t, x) ∈ R
3

of the reference configuration Ω ⊂ R
3 of an elastic body with constant temperature and density

read [1]:

(2.1) ∂ttu − divDW (∇u) = f,

where DW is the Piola-Kirchhoff stress tensor, f is the external body force, and the elastic energy
density W is assumed to satisfy the following fundamental properties of frame indifference (with
respect to the group of proper rotations SO(3)), normalization and non-degeneracy:

∀F ∈ R
3×3 ∀R ∈ SO(3) W (RF ) = W (F ), W (R) = 0,

W (F ) ≥ c · dist2(F, SO(3)),
(2.2)

with a uniform constant c > 0.
The steady state solutions to (2.1) satisfy the equilibrium equations: −divDW (∇u) = f which,

expressed in their weak form, yield the formal Euler-Lagrange equations for the critical points of
the total energy functional:

(2.3) J(u) =

�
Ω

W (∇u) −

�
Ω

fu,

defined for deformation u : Ω −→ R
3. We will refer to the term E(u) =

�
Ω

W (∇u) as the elastic

energy of the deformation u.
As a first step towards understanding the dynamical problem (2.1) it is natural to study the

minimizers of (2.3), in an appropriate function space. The questions regarding existence and
regularity of these minimizers are vastly considered in the literature. However, due to the loss
of convexity of W , caused by the frame indifference assumption, these problems cannot be dealt
with the usual techniques in the calculus of variations; see [1] for a review of results and open
problems.

One advantageous direction of research has been to restrict the attention to domains Ω which
are thin in one or two directions, and hence practically reduce the theory to a 2d or 1d problem.
Indeed, the derivation of lower dimensional models for thin structures (such as membranes, shells,
or beams) has been one of the fundamental questions since the beginning of research in elasticity
[20]. The classical approach is to propose a formal asymptotic expansion for the solutions (in
other words an Ansatz) and derive the corresponding limiting theory by considering the first
terms of the 3d equations under this expansion [2]. The more rigorous variational approach of
Γ-convergence was more recently applied by LeDret and Raoult [13] in this context, and then
significantly furthered by Friesecke, James and Müller [9], leading to the derivation of a hierarchy
of limiting plate theories. Among other features, it provided a rigorous justification of convergence
of minimizers of (2.3) to minimizers of suitable lower dimensional limit energies.
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2.2. Γ-convergence. Recall [6] that a sequence of functionals Fn : X −→ [−∞,+∞] defined on
a metric space X, Γ-converges to the limit functional F : X −→ [−∞,+∞] whenever:

(i) (the Γ-liminf inequality) For any sequence xn → x in X, one has F (x) ≤ lim infn→∞ Fn(xn).
(ii) (the Γ-limsup inequality) For any x ∈ X, there exits a sequence xn (called a recovery

sequence) converging to x ∈ X, such that lim supn→∞ Fn(xn) ≤ F (x).

It is straightforward that limn→∞ Fn(xn) = F (x) for any recovery sequence xn → x.
When X is only a topological space, the definition of Γ-convergence involves, naturally, systems

of neighborhoods rather than sequences. However, when the functionals Fn are equi-coercive and
X is a reflexive Banach space equipped with weak topology, one can still use (i) and (ii) above
(for weakly converging sequences), as an equivalent version of this definition.

A fundamental consequence of the above definition is the following. If xn is a sequence of
approximate minimizers of Fn in X:

lim
n→∞

{

Fn(xn) − inf
X

Fn

}

= 0,

and if xn → x, then x is a minimizer of F . In turn, any recovery sequence associated to a minimizer
of F is an approximate minimizing sequence for Fn. The convergence of (a subsequence of) xn is
usually independently established through a compactness argument.

2.3. A glance at previously known results. Let S be a 2d surface embedded in R
3, which is

compact, connected, oriented, of class C1,1 and whose boundary ∂S is the union of finitely many
(possibly none) Lipschitz curves. By ~n we denote the unit normal vector to S, and π : Sh0 → S
is the usual orthogonal projection of the tubular neighborhood onto S.

Consider a family {Sh}h>0 of thin shells of thickness h around S:

Sh = {z = x + t~n(x); x ∈ S, −h/2 < t < h/2}, 0 < h < h0,

The elastic energy per unit thickness of a deformation u ∈ W 1,2(Sh, R3) is given by:

(2.4) Eh(u) =
1

h

�
Sh

W (∇u),

On above the properties where the stored-energy density W : R
3×3 −→ [0,∞] is assumed to satisfy

(2.2) and to be C2 regular in some open neighborhood of SO(3).
In presence of applied forces fh ∈ L2(Sh, R3), the (scaled) total energy reads:

(2.5) Jh(u) = Eh(u) −
1

h

�
Sh

fhu.

It can be shown that if the forces fh scale like hα, then the elastic energy Eh(uh) at (approximate)
minimizers uh of Jh scale like hβ, where β = α if 0 ≤ α ≤ 2 and β = 2α − 2 if α > 2. The main
part of the analysis consists therefore of identifying the Γ-limit Iβ of the energies h−βEh(·, Sh)
as h → 0, for a given scaling β ≥ 0. No a priori assumptions are made on the form of the
deformations uh in this context.

In the case when S is a subset of R
2 (i.e. a plate), such Γ-convergence was first established for

β = 0 [12], and later [8, 9] for all β ≥ 2. This last scaling regime corresponds to a rigid behavior
of the elastic material, since the limiting admissible deformations are isometric immersions (if
β = 2) or infinitesimal isometries (if β > 2) of the mid-plate S. One particular case is β = 4,
where the derived limiting theory turns out to be the von Kármán theory [11]. A totally clamped
plate exhibits a very rigid behavior already for β > 0 [5]. In case 0 < β < 5/3, the Γ-convergence
was recently obtained in [4], while the regime 5/3 ≤ β < 2 remains open and is conjectured to be
relevant for crumpling of elastic sheets [27].
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Much less is known in the general case when S is a surface of arbitrary geometry. The first
result in [13] relates to scaling β = 0 and models membrane shells: the limit I0 depends only on
the stretching and shearing produced by the deformation on S. Another study [7] analyzed the
case β = 2, corresponding to a flexural shell model [2], or a geometrically nonlinear purely bending
theory, where the only admissible deformations are isometric immersions, that is those preserving
the metric on S (see section 2). The energy I2 depends then on the change of curvature produced
by the deformation.

All the above mentioned theories should be put in contrast with a large body of literature,
devoted to derivations starting from 3d linear elasticity (see [2] and references therein). In the
present setting one allows for large deformations, i.e. not necessarily close to a rigid motion. The
basic assumption of the linear elasticity is not taken for granted in our context.

3. The Kirchhoff theory for shells: β = 2 and arbitrary S

The limiting theory for β = 2 is precisely described in the following result:

Theorem 3.1. [7] (a) Compactness and the Γ-liminf inequality. Let uh ∈ W 1,2(Sh, R3) be a
sequence of deformations such that Eh(uh)/h2 is uniformly bounded. Then there exists a sequence
ch ∈ R

3 such that the rescaled deformations:

yh(x + t~n) = uh(x + th/h0~n) − ch : Sh0 −→ R
3,

converge (up to a subsequence) in W 1,2 to y ◦ π, where y ∈ W 2,2(S, R3) and it satisfies:

(3.1) (∇y)T∇y = Id a.e. in S.

Moreover:

I2(y) =

�
S
Q2(x,Π(y) − Π) ≤ lim inf

h→0

1

h2
Eh(uh).

(b) The recovery sequence and the Γ-limsup inequality. Given any isometric immersion
y ∈ W 2,2(S, R3) satisfying (3.1), there exists a sequence uh ∈ W 1,2(Sh, R3) such that the rescaled
deformations yh(x + t~n) = uh(x + th/h0~n) converge to y ◦ π in W 1,2 and:

I2(y) ≥ lim sup
h→0

1

h2
Eh(uh).

In the definition of the limit functional I2, the quadratic forms Q2(x, ·) are defined as follows:

(3.2) Q2(x, Ftan) = min{Q3(F̃ ); (F̃ − F )tan = 0}, Q3(F ) = D2W (Id)(F,F ).

The form Q3 is defined for all F ∈ R
3×3, while Q2(x, ·), for a given x ∈ S is defined on tangential

minors Ftan of such matrices. Recall that the tangent space to SO(3) at Id is so(3). As a
consequence, both forms depend only on the symmetric parts of their arguments and are positive
definite on the space of symmetric matrices [8].

The functional I2(y) measures the total change of curvature (bending) induced by the defor-
mation y of the mid-surface S. In the form of the integrand Π denotes the shape operator on S,
while Π(y) is the pull back of the shape operator of the surface y(S) under y. For any orthonormal
tangent frame τ, η ∈ TxS there holds:

η · Πτ = η · ∂τ~n and η · Π(y)τ = η · ∂τ
~N,

where ~N : S → R
3 is the unit normal to y(S): ~N(x) = ∂τy × ∂ηy.
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4. The von-Kármán theory for shells: β = 4 and arbitrary S

For the range of scalings β > 2 a rigidity argument [8, 9, 15] shows that the admissible de-
formations u are only those which are close to a rigid motion R and whose first order term in
the expansion of u − R with respect to h is given by RV . The displacement field V is an ele-
ment of the class V1 of infinitesimal isometries on S [26]. The space V1 consists of vector fields
V ∈ W 2,2(S, R3) for whom there exists a matrix field A ∈ W 1,2(S, R3×3) so that:

(4.1) ∂τV (x) = A(x)τ and A(x)T = −A(x) a.e. x ∈ S ∀τ ∈ TxS.

In other terms, V is a (first order) infinitesimal isometry if the change of metric induced by the
deformation id + ǫV is at most of order ǫ2.

τ

nRh

S

x τ

Nh

xh

n

hu      id + hV

u   (S)h

+ hAτ

Figure 4.1. The mid-surface S and its deformation.

For β = 4 the Γ-limit turns out to be the generalization of the von Kármán functional [9] to
shells, and it consists of two terms:

I4(V,Btan) =
1

2

�
S
Q2

(

x,Btan −
1

2
(A2)tan

)

+
1

24

�
S
Q2 (x, (∇(A~n) − AΠ)tan) .

The quadratic form Q2 is defined as in (3.2) and A is as in (4.1). The second term above measures
bending, that is the first order change in the second fundamental form of S, produced by V . The
first term measures stretching, that is the second order change in the metric of S. It involves a
symmetric matrix field Btan belonging to the finite strain space:

B = clL2

{

sym∇w; w ∈ W 1,2(S, R3)
}

.

The space B emerges as well in the context of linear elasticity and ill-inhibited surfaces [25, 10].

Theorem 4.1. [15] (a) Let uh ∈ W 1,2(Sh, R3) be a sequence of deformations whose scaled energies
Eh(uh)/h4 are uniformly bounded. Then there exist a sequence Qh ∈ SO(3) and ch ∈ R

3 such
that for the normalized rescaled deformations:

(4.2) yh(x + t~n) = Qhuh(x + h/h0t~n) − ch : Sh0 −→ R
3

the following holds.

(i) yh converge in W 1,2(Sh0) to π.
(ii) The scaled average displacements:

V h(x) =
1

h

 h0/2

−h0/2
yh(x + t~n) − x dt

converge (up to a subsequence) in W 1,2(S) to some V ∈ V1.
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(iii) The scaled strains 1
h sym∇V h converge weakly in L2 to a symmetric matrix field Btan ∈ B.

(iv) I4(V,Btan) ≤ lim infh→0 1/h4Eh(uh).

(b) For every V ∈ V1 and Btan ∈ B there exists a sequence of deformations uh ∈ W 1,2(Sh, R3)
such that:

(i) the rescaled deformations yh(x + t~n) = uh(x + th/h0~n) converge in W 1,2(Sh0) to π.
(ii) the scaled average displacements V h given above converge in W 1,2(S) to V .
(iii) the scaled linearized strains 1

h sym∇V h converge weakly in L2 to Btan.

(iv) I4(V,Btan) ≥ lim suph→0 1/h4Eh(uh).

The special case of this theorem for plates, that is when S ⊂ R
2, was already proved in [9]. It

can be shown that for a flat surface, the infinitesimal isometries coincide essentially with the out-
of-plane displacements. Also, the space B becomes then the set of all linearized strains associated
with the in-plane displacements in S, so the functional I4 can be written directly in terms of an
out-of-plane and an in-plane displacement. The Euler-Lagrange equations derived from this limit
functional lead to the von-Kármán equations [11].

5. The linear theory for shells: β > 4 and arbitrary S; β = 4 and approximately

robust S

It was shown in [15] that for a certain class of surfaces, referred to as approximately robust
surfaces, the limiting theory for β = 4 reduces to the purely linear bending functional:

(5.1) Ilin(V ) =
1

24

�
S
Q2 (x, (∇(A~n) − AΠ)tan) dx ∀V ∈ V1,

This class of surfaces is given by the property that any first order infinitesimal isometry V ∈ V1

can be modified to be arbitrarily close to a W 1,2 second order isometry:

Ṽ2 = {V ∈ V1; (A2)tan ∈ B} = V1.

Convex surfaces, surfaces of revolution and developable surfaces belong to this class [15].
In [15], it was also proved that the Γ-limit of Eh/hβ for the scaling regime β > 4 is also

given by the functional (5.1). This corresponds to the linear pure bending theory derived in
[2] from linearized elasticity. The important qualitative difference between this theory and the
limiting theory for β = 4 and an approximately robust surface is in the type of convergences one
establishes for a sequence uh satisfying Eh(uh) ≤ Chβ. Indeed, if β > 4, the best one can prove
is the convergence in W 1,2, up to a subsequence, of the rescaled displacement fields:

V h(x) =
1

hβ/2−1

 h0/2

−h0/2
yh(x + t~n) − x dt

to an element V ∈ V1. Note the finer rescaling parameter hβ/2−1 with respect to (4.1).

6. Intermediate theories for plates and convex shells: β ∈ (2, 4)

In paper [17] we focused on the range of scalings 2 < β < 4, looking hence for an intermediate
theory between those corresponding to β = 2 and β ≥ 4. On one hand, modulo a rigid motion,
the deformation of the mid-surface must look like id + ǫV , up to its first order of expansion.
On the other hand, the closer β is to 2, the closer the mid-surface deformation must be to
an exact isometry of S. To overcome this apparent disparity between first order infinitesimal
isometries and exact isometries in this context, one is immediately drawn to consider higher order
infinitesimal isometries which lay somewhat between these two categories. This will be the subject
of discussion in section 7. Another angle of approach, which turns out to be useful in special cases,
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is to study conditions under which, given V ∈ V1, one can construct an exact isometry of the form
id+ ǫV + ǫ2wǫ, with equibounded corrections wǫ. This is what we refer to as a matching property.

If S ⊂ R
2 represents a plate, the above issues have been answered in [9]. In this case:

(i) The limit displacement V must necessarily belong to the space of second order infinitesimal

isometries: Ṽ2 = {V ∈ V1; (A2)tan ∈ B}, where the matrix field A is as in (4.1).

(ii) Any Lipschitz second order isometry V ∈ Ṽ2 satisfies the matching property.

Combining these two facts with the density of Lipschitz second order infinitesimal isometries in Ṽ2

for a plate [22], one concludes through the Γ-convergence arguments that the limiting plate theory

is given by the functional (5.1) over Ṽ2. Note that, for a plate, V ∈ Ṽ2 means that there exists an
in-plane displacement w ∈ W 1,2(S, R2) such that the change of metric due to id + ǫV + ǫ2w is of

order ǫ3. Also, in this case, an equivalent analytic characterization for V = (V 1, V 2, V 3) ∈ Ṽ2 is
given by (V 1, V 2) = (−ωy, ωx) + (b1, b2) and: det∇2V 3 = 0.

Towards analyzing more general surfaces S, we derived a matching property and the corre-
sponding density of isometries, for elliptic surfaces. We say that S is elliptic if its shape operator
Π is strictly positive (or strictly negative) definite up to the boundary:

(6.1) ∀x ∈ S̄ ∀τ ∈ TxS
1

C
|τ |2 ≤

(

Π(x)τ
)

· τ ≤ C|τ |2.

The novelty here is the fact that for an elliptic surface, all sufficiently smooth infinitesimal isome-
tries satisfy the matching property:

Theorem 6.1. [17] Let S be elliptic as in (6.1), homeomorphic to a disk and let for some α > 0,
S and ∂S be of class C3,α. Given V ∈ V1 ∩ C2,α(S̄), there exists a sequence wǫ : S̄ −→ R

3,
equibounded in C2,α(S̄), and such that for all small ǫ > 0 the map uǫ = id + ǫV + h2wǫ is an
(exact) isometry.

We apply this result to construct the recovery sequence in the Γ-limsup inequality. Clearly,
Theorem 6.1 is not sufficient for this purpose as the elements of V1 are only W 2,2 regular. In most
Γ-convergence results, a key step is to prove density of suitably regular mappings in the space
of mappings admissible for the limit problem. Results in this direction, for Sobolev spaces of
isometries and infinitesimal isometries, have been shown and applied in the context of derivation
of plate theories. The interested reader can refer to [24, 22] for statements of these density
theorems and their applications in [9, 3].

In general, even though V1 is a linear space, and assuming S to be C∞, the usual mollification
techniques do not guarantee that elements of V1 can be approximated by smooth infinitesimal
isometries. An interesting example, discovered by Cohn-Vossen [26], is a closed smooth surface of
non-negative curvature for which C∞∩V1 consists only of trivial fields V : S −→ R

3 with constant
gradient, whereas C2 ∩ V1 contains non-trivial infinitesimal isometries. Therefore C∞ ∩ V1 is not
dense in V1 for this surface. We however have:

Theorem 6.2. [17] Assume that S is elliptic, homeomorphic to a disk, of class Cm+2,α up to the
boundary and that ∂S is Cm+1,α, for some α ∈ (0, 1) and an integer m > 0. Then, for every
V ∈ V1 there exists a sequence Vn ∈ V1 ∩ Cm,α(S̄, R3) such that:

lim
n→∞

‖Vn − V ‖W 2,2(S) = 0.

Ultimately, and as a consequence of Theorems 6.1 and 6.2, the main result of [17] states that
for elliptic surfaces of sufficient regularity, the Γ-limit of the nonlinear elastic energy (2.4) for the
scaling regime 2 < β < 4 (and hence for all β > 2) is still given by the functional (5.1) over the
linear space V1:
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Theorem 6.3. [17] Let S be as in Theorem 6.1 and let 2 < β < 4.
(a) Assume that for a sequence of deformations uh ∈ W 1,2(Sh, R3) their scaled energies Eh(uh)/hβ

are uniformly bounded. Then there exist a sequence Qh ∈ SO(3) and ch ∈ R
3 such that for the

normalized rescaled deformations in (4.2) the following holds.

(i) yh converge in W 1,2(Sh0) to π.
(ii) The scaled average displacements:

V h(x) =
1

hβ/2−1

 h0/2

−h0/2
yh(x + t~n) − x dt

converge (up to a subsequence) in W 1,2(S) to some V ∈ V1.
(iii) Ilin(V ) ≤ lim infh→0 1/hβEh(uh).

(b) For every V ∈ V1 there exists a sequence of deformations uh ∈ W 1,2(Sh, R3) such that:

(i) the rescaled deformations yh(x + t~n) = uh(x + th/h0~n) converge in W 1,2(Sh0) to π.
(ii) the scaled average displacements V h given above converge in W 1,2(S) to V .
(iii) Ilin(V ) ≥ lim suph→0 1/hβEh(uh).

One can actually prove that for 2 < β < 4 and surface S of arbitrary geometry, the part (a) or
Theorem 6.3 remains valid, and moreover 1/hβ/2−1 sym ∇V h converge (up to a subsequence) in
L2(S) to 1/2(A2)tan, where A is related to V by (4.1). The novelty with respect to the equivalent

result for β = 4 in the first part of Theorem 4.1 is the constraint V ∈ Ṽ2. If S is an elliptic
surface of sufficient regularity, the set B coincides with the whole space L2

sym(S, R2×2) [15], hence
the constraint is automatically satisfied for all V ∈ V1. In the general case where S is an arbitrary
surface, a characterization of this constraint and the exact form of B may be complicated.

The case of the scaling range 2 < β < 4 is still open for general shells. The following section
is dedicated to the presentation of a conjecture on this problem, stating that other constraints,
similar to the inclusion V ∈ Ṽ2, should be present for values of β closer to 2. Heuristically, the
closer β is to 2, we expect V to be an infinitesimal isometry of higher order.

7. A conjecture on the infinite hierarchy of shell models

If the deformations uh of Sh satisfy a simplified version of Kirchhoff-Love assumption:

uh(x + t~n) = uh(x) + t ~Nh(x),

vector ~Nh being the unit normal to the image surface uh(S), then formal calculations show that :

(7.1) Eh(uh) ≈

�
S
|δgS |

2 + h2

�
S
|δΠS |

2.

Here by δgS and δΠS we denote, respectively, the change in the metric (first fundamental form)
and in the shape operator (second fundamental form), between the surface uh(S) and the reference
mid-surface S. For a more rigorous treatment of this observation see e.g. [4]. The two terms in
(7.1) correspond to the stretching and bending energies, and the factor h2 in the bending term
points to the fact that a shell undergoes bending more easily than stretching. For a plate, the
latter energy is known in the literature as the Föppl-von Kármán functional.

Another useful observation is that for minimizers uh, the energy should be distributed equi-
partedly between the stretching and bending terms. When Eh(uh) ≈ h2, then equating the order
of both terms in (7.1) we obtain in the limit of h → 0:�

S
|δgS |

2 ≈ 0 and
1

h2
Eh(uh) ≈

�
S
|δΠS |

2.
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This indeed corresponds to the Kirchhoff model, as in Theorem 3.1 [7], where the limiting energy
I2 is given by the bending term (measuring the change in the second fundamental form) under
the constraint of zero stretching: δgS = 0. As we have seen, the limiting deformation u must be
an isometry (∇u)T∇u = Id and hence preserve the metric.

To discuss higher energy scalings, assume that:

(7.2) Eh(uh) ≈ hβ , β > 2.

Then, as mentioned before, by the rigidity estimate [8], the restrictions of uh to S have, modulo
appropriate rigid motions, the following expansions:

uh
|S = id +

∞
∑

i=1

ǫiwi.

Thus, δΠ is of the order ǫ and after equating the order of the bending term in (7.1) by (7.2), we
arrive at: h2ǫ2 = hβ , that is:

(7.3) ǫ = hβ/2−1.

On the other hand, the stretching term has the form: δgS = (∇uh)∇uh − Id =
∑∞

i=1 ǫiAi, with:

Ai =
∑

j+k=i

sym
(

(∇wj)
T∇wk

)

,

indicating the i-th order change of metric. Taking into account (7.2), this yields: ǫ2i
�
S |Ai|

2 ≈ hβ,

and so in view of (7.3): ‖Ai‖
2
L2 ≈ hβ−i(β−2). A first consequence is that A1 must vanish in the

limit as h → 0, that is the limiting deformation is a first order infinitesimal isometry. For i > 1,
we observe that ‖Ai‖

2
L2 ≈ h(i−1)(βi−β), where:

βi = 2 +
2

i − 1
.

We conclude that if β < βN , then ‖Ai‖L2 ≈ 0 for i ≤ N , and if β = βN , then ‖AN‖L2 = O(1). The
study of the asymptotic behavior of the energy 1/hβEh leads us hence to the following conjecture.

Conjecture 7.1. The limiting theory of thin shells with midsurface S, under the elastic energy
scaling β > 2 as in (7.2) is given by the following functional Iβ below, defined on the space VN of
N -th order infinitesimal isometries, where:

β ∈ [βN+1, βN ).

The space VN is identified with the space of N -tuples (V1, . . . , VN ) of displacements Vi : S −→ R
3

(having appropriate regularity), such that the deformations of S:

uǫ = id +

N
∑

i=1

ǫiVi

preserve its metric up to order ǫN . We have:

(i) When β = βN+1 then Iβ =
�
S Q2 (x, δN+1gS) +

�
S Q2 (x, δ1ΠS), where δN+1gS is the

change of metric on S of the order ǫN+1, generated by the family of deformations uǫ and
δ1ΠS is the corresponding first order change in the second fundamental form.

(ii) When β ∈ (βN+1, βN ) then Iβ =
�
S Q2 (x, δ1ΠS).
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(iii) The constraint of N -th order infinitesimal isometry VN may be relaxed to that of VM ,
M < N , if S has the following matching property. For every (V1, . . . VM ) ∈ VM there exist
sequences of corrections V ǫ

M+1, . . . V
ǫ
N , uniformly bounded in ǫ, such that:

ũǫ = id +

M
∑

i=1

ǫiVi +

N
∑

i=M+1

ǫiV ǫ
i

preserve the metric on S up to order ǫN .

This conjecture is consistent with the so far established results in [15] for N = 1 (i.e. β ≥ β2 = 4)
and arbitrary surfaces. Note that in the case of approximately robust surfaces, any element of V1

can be matched with an element of V2, and hence the term
�
S |δ2gS |

2 in the limit energy can be
dropped. The second order infinitesimal isometry constraint V2 is established for all surfaces when
2 < β < 4. In the particular case of plates, any second order isometry in a dense subset of V2,
can be matched with an exact isometry [9]. As a consequence, the theory reduces to minimizing
the bending energy under the second order infinitesimal isometry constraint. A similar matching
property for elliptic surfaces, this time for elements of V1, is given in [17] (see Theorems 6.1 and
6.2). As a consequence, for elliptic surfaces, the limiting theory for the whole range β > 2 reduces
to the linear bending.

The case 2 < β < 4 remains open for all other types of surfaces. The main difficulty lies in
obtaining the appropriate convergences and the limiting nonlinear constraints:

∑

j+k=i

sym
(

(∇Vj)
T∇Vk

)

= 0, 1 ≤ i ≤ N,

for the elements of VN when β < βN . The above nonlinearity, implies a rapid loss of Sobolev
regularity of Vi as i increases. Moreover, applying methods of [17] to surfaces changing type leads
in this context to working with mixed-type PDEs.
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[25] É. Sanchez-Palencia, Statique et dynamique des coques minces. II. Cas de flexion pure inhibeé. Approximation
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