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1. Introduction

Let M ⊂ Rk be a boundaryless smooth manifold. In our recent work [6] the
genericity of the following property has been proved. IfM is compact the perturbed
autonomous equation on M

(1) ẍπ = g(x) + f(t, x, ẋ)

has |χ(M)| geometrically independent T -periodic solutions for any ‘small’ pertur-
bation f that is T -periodic in t.

In this paper, that can be seen as a continuation of our research in [6], we want
to discuss the same property, relatively to the following equation (Theorem 4.3):

(2) ẍπ = h(x, ẋ) + f(t, x, ẋ),

where h : TM −→ Rk is Cr and tangent to M , and the perturbing function
f : R × TM −→ Rk is T -periodic in t (with T > 0 a fixed number), tangent to M
and satisfies the usual Carathéodory and admissibility conditions.

In particular, we shall prove that when M is compact, then the set of h such
that (2) admits at least |χ(M)| geometrically independent T -periodic solutions for
all functions f small enough, is open and dense in the set of all the Cr tangent
vector fields (Corollary 4.4).

The genericity result relative to (2) does not seem to be attainable directly with
the methods of [6]. In fact, we proceed in two steps: first, we obtain results in the
spirit of [6] but for first order equations in the noncompact case. Secondly, noticing
that every second order ODE on M is equivalent to a suitable first order equation
on the tangent bundle TM , we get a genericity result for second order equations
on (not necessarily compact) manifolds (Theorem 4.3) that reduces to the quoted
result when M is compact.

In the sequel, we use the same terminology of [6], and refer to [5, 8] for the
notions of differential topology.

2. Preliminaries and notation

Let N ⊂ Rl be a boundaryless, n-dimensional, smooth manifold. The general
form of the first order ODE on N studied here is the following:

(3) ẋ = ϕ(x) + γ(t, x),

where ϕ : N −→ Rl is Cr, tangent to N and admissible, i.e. such that ϕ−1(0) is
compact. The perturbation γ : R × N −→ Rl is assumed to have the following
properties:

(P1) (Carathéodory, T -periodicity in t)
1
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• for any p ∈ N , γ(·, p) : R −→ Rl is measurable and T -periodic,
• for a.a. t ∈ R, γ(t, ·) : N −→ Rl is continuous,

(P2) (tangency)
• for any p ∈ N for a.a. t ∈ R, γ(t, p) ∈ TpN ,

(P3) (admissibility)
• for any compact K ⊂ N there exists a function hK ∈ L1([0, T ],R)

such that for a.a. t ∈ [0, T ], for any p ∈ K,

|γ(t, p)| < hK(t).

By TM we mean the tangent bundle to the manifold M , that is the subset of
Rk × Rk given by

TM =
{
(p, v) ∈ Rk × Rk : p ∈M , v ∈ TpM

}
.

We will say that a continuous map ϕ : R × TM → Rk such that ϕ(t, q, v) ∈ TqM
for all (t, q, v) ∈ R × TM , tangent to M , though ϕ is not a tangent vector field on
M .

In what follows, the symbol C1
T (M) will denote the metric subspace of the Banach

space
(
C1

T (Rk), ‖·‖1

)
of all the T -periodic, C1 functions x : R −→M with the usual

C1 norm ‖·‖1. Analogously, by CT (TM) we mean the metric space of T -periodic,
continuous functions x : R −→ TM , with the metric inherited from the Banach
space CT (Rk × Rk).

As in [4], we tacitly assume some natural identifications; for example we identify a
point p ∈M with the constant function t 7→ p in C1

T (M), or a function x ∈ C1
T (M)

with (x, ẋ) ∈ CT (TM). Also, we regard each of the above spaces as the zero-
slices of the space obtained as the Cartesian product of [0,∞) and the space under
consideration. In this manner, M becomes a subset of [0,∞) × C1

T (M) and of
[0,∞) × CT (TM) as well, and so on. In the same spirit, by h|M : M −→ Rk we
understand the function given by h|M (p) = h(p, 0).

Recall that x is a solution of (2) if and only if ẋ is absolutely continuous, and
for a.a. t ∈ R

ẍπ(t) := ΠTx(t)M (ẍ(t)) = h(x(t), ẋ(t)) + f(t, x(t), ẋ(t)),

where, for a fixed subspace E ⊂ Rk, ΠE : Rk −→ E is the orthogonal projection
of Rk onto E. From now on, X will denote the subset of C1

T (M) of all the periodic
solutions of (2).

Equation (2) is equivalent to the following ODE on TM :

(4) ξ̇ = ĥ(ξ) + f̄(t, ξ),

where:

ĥ : TM −→ Rk × Rk ; ĥ(p, v) = (v, r(p, v) + h(p, v)),

f̄ : R × TM −→ Rk × Rk ; f̄(t, p, v) =
(
0, f(t, p, v)

)
,

and ξ(t) = (ξ1(t) , ξ2(t)), with ξ1(t) ∈M and ξ2(t) ∈ Tξ1(t)M .

The map r : TM −→ Rk assigns to a fixed (q, v) ∈ TM the unique vector in Rk

which makes
(
v, r(q, v)

)
tangent to TM at (q, v) (note also that r(q, v) ∈ TqM

⊥).

In this way ĥ (as well as f̄) is tangent to TM .
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Consider equation (3); we say that a point p ∈ ϕ−1(0) ⊂ N is T -resonant for ϕ
if (see e.g. [3])

• ϕ is C1 in a neighbourhood of p,
• the linearized equation on TpN (note that ϕ′(p) ∈ End(TpN))

ẋ = ϕ′(p)x

admits nontrivial (i.e. nonzero) T -periodic solutions.

Note that p is non-T -resonant for ϕ if and only if the spectrum spec
(
ϕ′(p)

)
of ϕ′(p)

contains no eigenvalues of the form 2πni
T

, n ∈ Z.

Following [6], we say that a point p ∈ (h|M )−1(0) ⊂M is second order T -resonant

for h, if (p, 0) ∈ TM is T -resonant for ĥ. In particular, if h is C1 in a neighbourhood
of (p, 0) in TM and D2h(p, 0) = 0, the second order T -resonancy is equivalent to

−

(
2nπ

T

)2

∈ spec (h|M )′(p) for some n ∈ Z.

As in [6], we denote by F(N) the topological vector space of all the functions
γ : R × N −→ Rl having the properties (P1) – (P3), endowed with the topology
given by the following fundamental system of neighbourhoods of 0:

{
UK,ε : K is a compact subset of N , ε > 0

}
,

where

UK,ε =
{
γ ∈ F(N) : for a.a. t ∈ [0, T ], for all p ∈ K, |γ(t, p)| < ε}.

Furthermore, by E(M) we denote the topological vector space of all the functions
f : R × TM −→ Rk with the properties as in Section 1, and with the topology
inherited from F(TM) ⊃ E(M).

3. Genericity of the multiplicity results for first order equations

In this section, that is devoted to first order ODE’s on (not necessarily compact)
boundaryless manifolds, we show that the set X

r,s
T (N) of the admissible vector fields

ϕ, tangent to N , and such that:

• deg(ϕ,N) = s,
• the equation (3) has at least s geometrically independent T -periodic solu-

tions for any γ in a suitably ‘small’ neighbourhood of 0 in F(N),

is open and dense (relative to the appropriate topology) in the space Xr,s(N) of all
the admissible tangent vector fields having degree equal to s.

Let us denote by Xr(N), r ≥ 0, the vector space of the Cr tangent vector fields
to N endowed with the fine (Whitney) topology [5].

For the purpose of future reference, we recall that, given ϕ ∈ Xr(N), the basis
of its open neighbourhoods consists of the sets

N r(ϕ,Φ,K, E) =
{
ψ ∈ Xr(N) : ‖ Dk(ϕψ−1

i )(p) −Dk(ψψ−1
i )(p) ‖< εi

for all p ∈ ψi(Ki), k : 0 . . . r, i ∈ Λ
}
,

where Φ = {ψi, Ui}i∈Λ is a locally finite set of charts on N , indexed by the index
set Λ, K = {Ki}i∈Λ is a family of compact subsets Ki ⊂ Ui and E = {εi}i∈Λ a
family of positive numbers.
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Let Xr
a(N) be the subset of Xr(N) made up of the Cr admissible vector fields.

Observe that Xr
a is open, whereas in general, it is not a vector space.

We will say that s ∈ N ∪ {0} is admissible if there exists ϕ ∈ Xr
a(N) such that

|deg (ϕ,N)| = s. Given an admissible s, we denote by Xr,s(N), the set of admissible
vector fields ϕ ∈ Xr

a(N) such that |deg (ϕ,N)| = s. Obviously Xr,n(N) is not a
vector space unless N is compact. In fact, as a consequence of the Poincaré-Hopf
theorem, when N is compact s = |χ(N)| is the only possible admissible number.

In the sequel, unless stated differently, s will always denote an admissible integer.

Proposition 3.1. The set Xr,s(N), r ≥ 0, is open in Xr(N).

Proof. Fix a vector field ϕ ∈ Xr,s(N). Take Φ = {Ψi, Ui}i∈Λ a locally finite set of
charts on N , and K = {Ki}i∈Λ a family of compact subsets Ki ⊂ Ui, such that for
some σ ∈ N

⋃

i∈Λ

Ki = N and ϕ−1(0) ⊂
σ⋃

i=1

Ki.

Take E = {εi}i∈Λ a family of positive numbers. One sees that if εi for i /∈ {1, . . . , σ}
are small enough, then

N r(ϕ,Φ,K, E) ⊂ Xr
a(N).

Similarily, εi, with i = 1, . . . , σ small, imply by the homotopy property:

N r(ϕ,Φ,K, E) ⊂ Xr,s(N).

�

Remark. Note that Proposition 3.1 is false if the Whitney topology is replaced by
the compact-open (in Cr) one.

Proposition 3.2. Given a vector field ϕ ∈ Xr,s(N), r ≥ 0, and an open neigh-
bourhood U of ϕ in Xr,s(N), there exists ψ ∈ U such that all the zeros of ψ are
nondegenerate. Consequently, by the additivity of the degree, #ψ−1(0) ≥ s.

Proof. We recall that by the Thom transversality theorem, in case r ≥ 1, the set of
the Cr tangent vector fields on N whose zeros are nondegenerate is dense in Xr(N)
[5, 9]. Since Xr,s(N) is open in Xr(N), U is open in Xr(N).

In case r = 0 it is enough to note that X1(N) is dense in X0(N) and use the
argument above. �

Lemma 3.3. Assume that ϕ ∈ Xr,s(N), r ≥ 1, has σ nondegenerate zeros p1, . . . ,
pσ. Then given a neighbourhood U of ϕ in Xr,s(N), there exists ψ ∈ U such that
p1, . . . , pσ are non-T -resonant zeros of ψ.

Proof. Take S = {2πni/T : n ∈ Z}. For i = 1, . . . , σ let δi > 0 be such that, for
every ρ ∈ (0, 1]

(5) spec (ϕ′(pi) + ρ δi IdTpi
N ) ∩ S = ∅.

For i = 1, . . . , σ, let {vi
1, . . . , v

i
l} be an orthonormal basis of Tpi

N and define a
smooth function wi : N −→ R by

wi(p) =
ηi(p) δi

2

n∑

k=1

〈p− pi , v
i
k〉

2,
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where ηi : M −→ [0, 1] is smooth with compact support and is equal to 1 in a
neighbourhood of pi. Note that supp wi ⊂ supp ηi and

(ϕ+ ρ gradwi)
′(pi) = ϕ′(pi) + ρ δi IdTpN .

Thus by (5), pi is non-T -resonant for ϕ+ ρ gradwi for every ρ ∈ (0, 1].
Without loss of generality, one can assume that supp ηi ∩ supp ηj = ∅ for i 6= j,

and i, j ∈ {1, . . . , σ}. Define

w =

σ∑

i=1

wi.

Taking ψ = ϕ + ρ gradw, for ρ ∈ (0, 1] small enough we get the assertion in view
of Proposition 3.1. �

Denote by X
r,s
T (N) the set consisting of those vector fields ϕ ∈ Xr,s(N) for which

there exists an open neighborhood of Uϕ of 0 in F(N) with the property that
equation (3) admits at least s geometrically distinct T -periodic solutions whenever
γ is taken in Uϕ. Our main result states that such vector fields are generic within
Xr,s(N).

Theorem 3.4. The set X
r,s
T (N), r ≥ 0, is open in Xr(N) and dense in Xr,s(N).

Proof. To prove the first assertion, take ϕ ∈ X
r,s
T (N) and let UK,ε ⊂ F(N) be

such that (3) admits at least s geometrically distinc T -periodic solutions whenever
γ ∈ UK,ε. By Proposition 3.1, take N r(ϕ,Φ,K, E) ⊂ Xr,s(N). Obviously, if
εi < ε/2 for all i ∈ Λ such that Ki ∩K 6= ∅ then also N r(ϕ,Φ,K, E) ⊂ X

r,s
T (N).

We now prove the density. Since X1(N) is dense in X0(N), without loss of
generality we can assume that r ≥ 1.

Fix ϕ ∈ X
r,s
T (N) and an open neighbourhood U of ϕ in Xr,s(N). By Proposition

3.2 and Lemma 3.3 there exists ψ ∈ U such that all its zeros p1, . . . , pσ (σ ≥ s)
are non-T -resonant. In the remaining part of the proof we show that necessarily
ψ ∈ X

r,s
T (N).

Indeed, the proof of Theorem 4.1 in [6] shows that for every pi, i = 1, . . . , σ, one
can find a sufficiently small compact neighbourhood Ci of pi in N such that (3)
with γ ∈ Ui (Ui a small neighbourhood of 0 in F(N)) has a T -periodic solution
whose image is contained in Ci. This finishes the proof. �

As we already remarked, in the case when N is compact the only possible ad-
missible integer is s = |χ(N)|. Indeed, in this case, Xr(N) = Xr,|χ(N)|(N), and the
fine topology coincides with the Cr uniform. Hence we have

Corollary 3.5. When N is compact, X
r,|χ(N)|
T (N), r ≥ 0, is open and dense in

Xr(N) (with the uniform Cr topology).

We stay with the case N compact and, as in [6], restrict our attention to a
particular class of first order systems (3) whose leading term ϕ is a gradient of
some Cr (r ≥ 1) function G : N −→ R, i.e.:

(6) ẋ = gradG(x) + γ(t, x).

Denote by Gr
T (N) the subspace of Cr(N,R) of all the Cr functions G having the

property that there exists an open set UG ⊂ F(N), containing 0, such that (6) has
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at least

b(N) =

n∑

i=1

bi(N)

geometrically distinct T -periodic solutions. Here bi(N) denotes the i-th Betti num-
ber of N .

In view of the proof of Lemma 3.3 and Theorem 5.5 in [6], one gets

Theorem 3.6. Gr
T (N) (r ≥ 1) is open and dense in Cr(N,R).

As remarked in [6], the above theorem gives a stronger result than when applying
Theorem 3.4 to equation (6). For instance, if N is the two-dimensional torus T2,
one has b(T2) = 4 whereas χ(T2) = 0.

4. Applications to second order equations

In this section we study the genericity of the multiplicity results for second order
ODE’s on (not necessarily compact) boundaryless differentiable manifolds. We
shall consider the second order analogouses, Y

r,s
T (M) and Yr,s(M), of the spaces

X
r,s
T and Xr,s defined in the previous section, and show that the former is open and

dense in the latter one.
This result will, in particular, yield the claimed generalization of the main result

of [6] (Corollary 4.4).

In what follows, we consider N = TM ⊂ Rl with l = 2k. We will say that
s ∈ N ∪ {0} is second order admissible if there exists a vector field h : TM → Rk

tangent to M such that
∣∣deg(h|M ,M)

∣∣ = s. As in the previous section we observe
that in the case when M is compact the only possible second order admissible
integer is |χ(M)|.

Define the set:

Yr(M) =
{
ĥ | h : TM −→ Rk, h ∈ Cr and tangent to M

}
.

For s second order admissible, let Yr,s(M) = Yr(M) ∩ Xr,s(TM). In other words,

Yr,s(M) =
{
ĥ | h : TM −→ Rk, h ∈ Cr, tangent to M and h|M ∈ Xr,s(M)

}

by Lemma 3.2 in [4]. Since Yr(M) and Yr,s(M) are contained in Xr(TM), they
naturally inherit the topology from Xr(TM).

Proposition 4.1. Let ϕ ∈ Yr,s(M), r ≥ 1, and let U ⊂ Yr,s(M) be an open set
containing ϕ. Then there exists ψ ∈ U such that all zeros of ψ are nondegenerate
and #ψ−1(0) ≥ s.

Proof. Following the convention introduced above, we can write ϕ = ĥ0, where
h0 : TM −→ Rk is Cr, tangent to M and such that h0|M ∈ Xr,s(M). Without loss
of generality we may assume that U = N r(ϕ,Φ,K, E) ∩ Yr,s(M), for some Φ, K

and E. Define Φ̃ = {ψ̃i, Ũi}i∈Λ, K̃ = {K̃i}i∈Λ, and Ẽ = {ε̃i}i∈Λ where Ũi = Ui ∩

M, ψ̃i = ψi|eUi
, K̃i = Ki∩M, and ε̃i = εi/2. Let Ũ = N r(h0|M , Φ̃, K̃, Ẽ)∩Xr,s(M).

By Proposition 3.2, there exists h1 ∈ Ũ such that all its zeros are nondegenerate
and #h−1

1 (0) ≥ s.
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Let σ : TM −→ [0, 1] be a smooth function such that σ|M = 1. If the support
of σ is a small enough neighbourhood of M , then one has that the function h :
TM −→ Rk,

h(p, v) = σ(p, v) h1(p) + (1 − σ(p, v)) h0(p, v)

satisfies
ĥ ∈ N r(ĥ0,Φ,K, E).

It is easy to check that h is Cr, tangent to M and h|M = h1 ∈ Xr,s(M).

Let ψ = ĥ. Then ψ ∈ U and

ψ−1(0) = h−1
1 (0).

Thus #ψ−1(0) ≥ s. Take p ∈ ψ−1(0). Since

T(p,0)TM = TpM × TpM,

the linear operator ψ′(p, 0) : T(p,0)TM −→ T(p,0)TM is represented by the block
matrix: (

0 I
D1h(p, 0) D2h(p, 0)

)
=

(
0 I

D1h1(p, 0) D2h(p, 0)

)

where I is the identity on TpM . Therefore

detψ′(p, 0) = (−1)m det h′1(p),

wherem is the dimension of M . Consequently, all zeros of ψ are nondegenerate. �

We now establish a technical lemma that, in the framework of second order
differential equations, plays the same role as Lemma 3.3 in the previous section.

Lemma 4.2. Assume that ϕ ∈ Yr,s(M), r ≥ 1, has σ nondegenerate zeros
z1, . . . , zσ. Then, given a neighbourhood U of ϕ in Yr,s(M), there exists ψ ∈ U
such that z1, . . . , zσ are second order non-T -resonant zeros of ψ.

Proof. Since ϕ is in Yr,s(M), we have ϕ = ĥ0 for some h0 : TM −→ Rk of Cr

class, tangent to M and such that h0|M ∈ Xr,s(M) and with the property that the
points p1, . . . , pσ, defined by (pi, 0) = zi, i = 1, . . . , σ are nondegenerate zeros of
h0|M .

Exactly as in the proof of Proposition 4.1, but using Lemma 3.3 instead of

Proposition 3.2 we get a vector field ψ = ĥ ∈ U with p1, . . . , pσ being (first order)
non-T -resonant zeros of h|M . Thus z1, . . . , zσ are second order non-T -resonant zeros
of ψ and the result follows. �

Analogously to the space X
r,s
T (N) introduced in Section 3, we define the space

Y
r,s
T (M) ⊂ Yr,s(M), containing the second order fields ĥ made out of those h for

which the equation (2) admits at least s geometrically distinct solutions whenever
f belongs to an appropriate open neighbourhood of 0 in E(M).

We are now ready to state the second order analogue of Theorem 3.4:

Theorem 4.3. The set Y
r,s
T (M), r ≥ 0, is open and dense in Yr,s(M).

Proof. The proof is done exactly as the proof of Theorem 3.4, in view of Proposition
4.1 and Lemma 4.2. �

The following corollary is the desired generalization of Theorem 5.1 in [6], where
the function g in (2) was assumed to depend only on the position p (and not on
the speed v).
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Corollary 4.4. When M is compact, Y
r,|χ(M)|
T (M), r ≥ 0, is open and dense in

Yr(M).

The techniques used above allow us also to treat a slightly different problem
(compare Remark 5.1 in [6]). When M is compact and h is the sum of a given
vector field with only nondegenerate zeros and a friction term, we show that (2)
has at least |χ(M)| geometrically independent T -periodic solutions for almost every
friction coefficient and every small enough perturbation f .

More precisely, assume M compact and let ζ : TM −→ Rk be tangent to M .
Let µ be a real number. Consider the equation (2) with h(p, v) = ζ(p, v) − µv.

Proposition 4.5. Let M and h be as above, then the following equation:

ẍπ = ζ(x, ẋ) − µẋ+ f(t, x, ẋ),

has, for any but at most denumerably many values of µ, at least |χ(M)| geomet-
rically distinct T -periodic solutions for any f in a suitable neighbourhood of 0 in
E(M).

Proof. Since ζ has only nondegenerate zeros, #ζ−1
|M (0) ≥ |χ(M)|. Therefore, defin-

ing hµ(p, v) = ζ(p, v) − µv, one has #(hµ)−1
|M (0) ≥ |χ(M)| for any µ ∈ R.

Recall that (compare [6]) a point (p, 0) ∈ (hµ)−1
|M (0) is non-T -resonant if and

only if

det

(
D1ζ(p, 0) +

2πni

T
D2ζ(p, 0) − µI +

(
2πn

T

)2

I

)
6= 0,

for any n ∈ Z; here I denotes the identity on TpM . Thus, arguing as in Theorem
4.3 above, the assertion follows. �
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