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1. Introduction

In this article we present a summary ot some recent results concerning the L' sta-
bility of non-linear large shock waves, that arise in the study of strictly hyperbolic
systems of conservation laws in one space dimension. For the detailed discussion
and the proofs we refer to papers [6] [7] [8] [9].

The system we consider has the following general form:
ur + f(u)y =0 (1.1)
with the flux function f satisfying:

e f:Q — R"is smooth, defined on some open set Q C R".

e (1.1) is strictly hyperbolic in 2, that is: at every point u €  the matrix
D f(u) has n real and simple eigenvalues A\ (u) < ... < Ay (u).

e Each characteristic field of (1.1) is either linearly degenerate or genuinely
nonlinear, that is: with a basis {ri(u)};_, of corresponding right eigen-
vectors of Df(u), Df(u)ri(u) = Ap(u)ri(u), each of the n directional
derivatives r; V) vanishes either identically or nowhere.

In this setting, it has been shown in [2] [3] that the Cauchy problem (1.1)

(1.2) with:

u(0,z) = u(x) (1.2)
is wellposed in L'(R,R"™), within the class of initial data @ € L' N BV (R,R")
having suitably small total variation. Namely, the entropy solutions of (1.1) (1.2)
constitute a semigroup which is Lipschitz continuous with respect to time and ini-
tial data. A major question which remains open is whether existence and unique-
ness of solutions also holds for arbitrarily large initial data. As a first step towards
this analysis we study the wellposedness of (1.1) (1.2) with the initial data @ being
a small perturbation of fixed Riemann data (ul,u}!). The solution of the latter
consists of M € {2...n} (large) waves of different characteristic families; the dis-
cussion we present below concerns a particular case when all these large waves are
shocks.
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More precisely, M + 1 distinct states {ug}éwzo are fixed and their respective
sufficiently small neighbourhoods ¢ are chosen, with 2 = Ué\io Q%. We assume
that the problem (1.1) (1.2) with

0
_ ug =<0
= 1.3
ue) {ué\/" >0 43
has an M-shock solution:
ud T < A't
u(t,z) = qul  Alt<z <At g:1...M -1 (1.4)

udl x> AMt,
in which the states ul are joined by M (large) shocks (ul™' ul), ¢ : 1...M,
travelling with respective speeds A? (see Figure 1.1).
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FiGURE 1.1

The following standard conditions on the nature of the large shocks are as-
sumed. For (1.4) to be a distributional solution of (1.1) (1.2) (1.3), we need that
for every shock ¢ : 1... M the Rankine-Hugoniot conditions are satisfied:

Fu§™h) = fluf) = A (ud™" = uf). (1.5)

Moreover, the shocks (ul ', ul) are said to belong to the corresponding i,-chara-

cteristic families (1 <14y <2 < ... < iy < n) and assumed to be compressive in
the sense of Lax [5]:
Xi, (Wl > AT > N (ud). (1.6)
Finally, we require that all large shocks are stable in the sense of Majda [11], that
is; for every ¢ : 1... M:
The n vectors
r(ud™) i () ud —ad T e (ud), e r(ud) (1.7)

are linearly independent.
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The following questions arise naturally:

A. Do we have the (global in time and space) existence of an 'admissible’
solution u to (1.1) (1.2) when % stays ’close’ to the Riemann data (1.3)7

B. In case the answer to A is positive, is the solution u stable under small
perturbations of its initial data?

Unlike in the case of small initial data, the assumptions introduced so far
are not sufficient to ensure the positive answer to any of the above questions.
The more, even the solvability of Riemann problems (u™,u") with u=,u™ € Q is
not just a simple consequence of the existence of the solution (1.4), but requires
an additional hypothesis. This and other stability conditions implying positive
answers to questions A and B will be introduced and discussed in the next section.

2. Stability conditions

Consider a small wave of a family k < i,, travelling with speed A", and hitting
from the right the large initial 4,-shock (ud ", ul), as in Figure 2.1. Condition (1.7)
guarantees that the Riemann problem (ul™', u,) can be uniquely solved; let My
be the (n — 1) x i, matrix expressing the strengths of the small outgoing waves
(travelling with respective speeds A\?%!) in terms of the strength incoming in the
considered interaction, while another matrix N encloses also the information on
the shift ratios after/before the interaction:

a b)
FI1GURE 2.1
660“t
Mqr = [agk]szl”'na s;éiqa agk = a si'n
1.4 €k lein=0
(2.1)

a )\out — A1
N™ = bqﬂ ) . bqﬂ — i 6out .8 .
Pl e BT e L\
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Analogously, we define the matrices Mé, Né, describing outgoing/incoming strengthsl
or strengths and shifts ratios in wave patterns when the interacting small wave
approaches from the left; in this case the index k changes from i, to n (see Figure
2.2).

b)

FIGURE 2.2

Define now the square M - (n — 1) dimensional matrix Wg:

0] M
Mj [0] My
W, = M [©] Mg

My, [6]
(here [O] stands for the (n—1)x (n—1) zero matrix), and another matrix W, in the
same manner as Wy, but with the submatrices M, replaced by the corresponding

N,. Finally, define the nonnegative matrices Wy := | Wq | and Wy := | Wo [,
that consists of the absolute values of the entries of the corresponding matrices.

Now we are ready to formulate our first set of stability conditions:

FINITENESS CONDITION : 1 & spec Wy, (

2.2)
BV StABILITY CONDITION : specRad Wy < 1, (2.3)
2.4

)

Above, ’spec’ stands for the spectrum and ’'specRad’ for the spectral radius of a
given matrix.

L' STABILITY CONDITION : specRad W4 < 1. (

Proposition 2.1. The condition (2.2) is weaker than (2.3), which is in turn implied
by (2.4).
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The conditions (2.3) and (2.4), easy to check for the concrete wave patterns,
are however less convenient when one needs to control the change in the total
variation or the L' norm of the profile of the solution u(t, ) across the interaction
time. We thus reformulate our conditions in the following way.

WEIGHTED BV STABILITY CONDITION

There exist positive weights w?,..., w? (for every ¢ : 0... M ) such that in the
setting of Figure 2.1 and Figure 2.2, respectively:

ig—1 a—1 n q
w w
Z 7;1% “lady| + Z w_2'|a3k‘ <1,
s=1 s=iq+1
) (2.5)
ig—1 w57 , n wg ,
qg—1 ’ |ask‘ + Z q—1 ’ |ask‘ <L
s=1 Wi s=ig+1 Wk

Remark. Regarding w? as the weight given to an s-wave located in the region
between the ¢ — 1 and the ¢-th large shock, conditions (2.5) simply say that, every
time a small wave hits a large shock, the total weighted strength of the outgoing
small waves is smaller than the weighted strength of the incoming wave.

WEIGHTED L' STABILITY CONDITION

In the setting of Figure 2.1 and Figure 2.2, respectively:

ig—1 1 n
wd wd
S ey o<
s=1 s=ig+1
. (2.6)
ig—1 wg_l . n wg .
qg—1 ’ |bsk‘ + Z q—1 ’ |bsk‘ <1
s=1 Wy s=iq+1 Wy,

Proposition 2.2. The conditions (2.3) and (2.5) are equivalent. The conditions
(2.4) and (2.6) are equivalent.

3. Examples

Before we present our main results concerning the wellposedness of the system
(1.1), we first examine the introduced stability conditions for two well known
hyperbolic conservative systems: the p-system and the full vy-law gas dynamics.

Proposition 3.1. For the p-system:
Ut — Vg :07 Ut+p(u)w :0:

where p > 0, p' <0, p” >0 and u > 0, the condition (2.4) (and thus also (2.3))
is satisfied for any initial shock pattern (1.4).
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Proposition 3.2. For the vy-gas-law Euler equations:

pi+ (pv)e =0, (pv)i + (pv° + P), =0,

-1 -1
(fYTpv2+P> + <72 pv3+'va> =0,
¢

T

there exist two critical adiabatic exponents vo > 1 > 1 such that the following
is true. For v > 7y the condition (2.4) is always satisfied, and for v > v the
condition (2.3) holds. On the other hand, for every v € (1,71) there indeed exist
Riemann problems for which (2.3) fails; similarly for every v € (y1,v2) there exist
a pattern (1.4) such that (2.4) fails (although (2.3) holds).

4. Main results

In this section we explain how the stability conditions (2.2) (2.3) (2.4) imply (in
different extents) the wellposedness of (1.1). Our first result concerns the solvability
of Riemann problems with initial states in 2.

Proposition 4.1. Let the Finiteness Condition (2.2) hold. With any Riemann data
(w™,ut), u= € QL ut € V,0< i< j < M, (1.1) has a unique self-similar
solution, attaining n + 1 states, consecutively connected by:

- weak waves of the corresponding families (if both left and right states of a
pair under consideration belong to the same set Q4,1 < q < j),
- j — 1 large shocks, joining the states belonging to different sets Q,

as in Figure 4.1.

(U, ui*l) ”

ol

FiGURE 4.1
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Now we turn to the main point of this article. Define the domain 550 by:

7550 =cl {u : R — R™; there exist points ' < 2> < ... <2 in R

ug r<az!
such that calling u(z) = ud 27 <z <2 ¢g:1...M -1 (4.1)
udl x> aM

we have: u —u € LY(R,R") and T.V.(u — &) < 60}

with the closure taken in L{ (R, R").

Our main results are the following:

Theorem A If the Stability Condition (2.5) is satisfied then there exists 6o > 0
such that for every u € Dy, (1.1) (1.2) has a solution (defined for all timest > 0).

Theorem B If the Stability Condition (2.6) is satisfied then there exist §g > 0,
L > 0, a closed domain Ds, C Llloc(R, R"™) containing Ds,, and a continuous

semigroup S : [0,00) x Ds, — Ds, such that:

(i) S(0,u) = u,
S(t+s,a) = S(t,S(s,u)) Vt,s>0Va € Ds,.
(i) || S(t,3) = S(5,0) 1< L+ (£ — 5|+ | 5= [l12) ¥,5 > 0 ¥, 0 € Dy,
(iii) FEach trajectory t — S(t,u) is a solution of (1.1) (1.2).

Towards the proof of Theorem A, one explicitely defines the Glimm poten-
tial, measuring the total strength of all small waves in the approximate wave
front tracking solutions of (1.1), and the possible amount of interaction between
themselves or with the large shocks. Thanks to the condition (2.5), this potential
is nonincreasing in time, and grants us the BV stability estimates yielding the
global existence of the solution, as in Theorem A.

To prove Theorem B, the Lyapunov functional, measuring the L' distance
between the profiles of the wave front tracking approximate solutions, is intro-
duced. Our functional is motivated by the similar one in [3]; the difference is that
it contains some extra terms accounting for the interactions and coupling of the
small waves against the large shocks. The key point in the analysis is to prove that
this functional ’almost’ decreases in time along any pair of approximate wave front
tracking solutions to (1.1) - this property allows us to conclude that the solutions
obtained in Theorem A constitute a Lipschitz continuous semigroup S.
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5. Relations to previous works

We now comment on the relation of the results in this article to other papers. In
[12], Schochet was the first to introduce a BV stability condition, giving positive
answer to question A. This condition is formulated inductively with respect to the
number of large shocks M and uses the language of matrix analysis, in the spirit
of our condition (2.3). As shown and accompanied by a more detailed discussion
in [7], the Schochet condition and our conditions (2.3) and (2.5) are equivalent. In
[7], one can also find the proofs of Propositions 2.1 and 2.2.

In [1], Bressan and Colombo consider the general Riemann problem for sys-
tems of two equations and assuming the corresponding ! stability condition,
answer question B positively. More recently, the paper [9] proves Theorems A and
B (for systems of n > 2 equations) in the presence of only two large shocks, of
characteristic families ¢ and j > i; indeed in the case M = 2, i; =i, iy = j, the
conditions (2.5) and (2.6) reduce to the corresponding conditions of [9].

Theorems A and B as stated in this article are proved in [6]. Substantial
differences between M = 2 and M > 2 occur in particular in the proof of Theorem
B. Namely, the straightforward generalization of the Lyapunov functional intro-
duced in [9] does not provide a functional decreasing along the wave front tracking
solutions, for M > 2. On the other hand, our new functional defined in [6], reduces
when M = 2 to a Lyapunov functional that can be seen as a simplification of the
one from [9].

The Stability Condition (2.6), which came up naturally in the investigations
leading to [6], was earlier introduced in [4] (formulae (3.42) and (3.43)), to guar-
antee the wellposedness of associated linearized variational systems.

Proposition 4.1 and the Finiteness Condition (2.2) are corollaries of the re-
sults in [8]. Recently it was brought to our attention that conditions similar to
(2.2) — (2.4) could be found in [10], where the authors address the existence of
smooth solutions to (1.1).

Proposition 3.1 follow from the discussion in [1], the existence of y; in Propo-
sition 3.2 is clear from [12] in view of our Proposition 2.2. The part of Proposition
3.2 concerning the critical exponent 2 appears here for the first time.
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