
On the L1 stability of multi-sho
k solutions tothe Riemann problemMarta Lewi
ka1. Introdu
tionIn this arti
le we present a summary ot some re
ent results 
on
erning the L1 sta-bility of non-linear large sho
k waves, that arise in the study of stri
tly hyperboli
systems of 
onservation laws in one spa
e dimension. For the detailed dis
ussionand the proofs we refer to papers [6℄ [7℄ [8℄ [9℄.The system we 
onsider has the following general form:ut + f(u)x = 0 (1.1)with the 
ux fun
tion f satisfying:� f : 
 �! Rn is smooth, de�ned on some open set 
 � Rn:� (1.1) is stri
tly hyperboli
 in 
; that is: at every point u 2 
 the matrixDf(u) has n real and simple eigenvalues �1(u) < : : : < �n(u).� Ea
h 
hara
teristi
 �eld of (1.1) is either linearly degenerate or genuinelynonlinear, that is: with a basis frk(u)gnk=1 of 
orresponding right eigen-ve
tors of Df(u), Df(u)rk(u) = �k(u)rk(u), ea
h of the n dire
tionalderivatives rkr�k vanishes either identi
ally or nowhere.In this setting, it has been shown in [2℄ [3℄ that the Cau
hy problem (1.1)(1.2) with: u(0; x) = �u(x) (1.2)is wellposed in L1(R;Rn), within the 
lass of initial data �u 2 L1 \ BV (R;Rn)having suitably small total variation. Namely, the entropy solutions of (1.1) (1.2)
onstitute a semigroup whi
h is Lips
hitz 
ontinuous with respe
t to time and ini-tial data. A major question whi
h remains open is whether existen
e and unique-ness of solutions also holds for arbitrarily large initial data. As a �rst step towardsthis analysis we study the wellposedness of (1.1) (1.2) with the initial data �u beinga small perturbation of �xed Riemann data (u00; uM0 ). The solution of the latter
onsists of M 2 f2 : : : ng (large) waves of di�erent 
hara
teristi
 families; the dis-
ussion we present below 
on
erns a parti
ular 
ase when all these large waves aresho
ks.1991 Mathemati
s Subje
t Classi�
ation. 35L65, 35L45.
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k solutions... 183More pre
isely, M + 1 distin
t states fuq0gMq=0 are �xed and their respe
tivesuÆ
iently small neighbourhoods 
q are 
hosen, with 
 = SMq=0 
q : We assumethat the problem (1.1) (1.2) with�u(x) = (u00 x < 0uM0 x > 0 (1.3)has an M -sho
k solution:u(t; x) =8><>:u00 x < �1tuq0 �qt < x < �q+1t; q : 1 : : :M � 1uM0 x > �M t; (1.4)in whi
h the states uq0 are joined by M (large) sho
ks (uq�10 ; uq0), q : 1 : : :M ,travelling with respe
tive speeds �q (see Figure 1.1).
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Figure 1.1The following standard 
onditions on the nature of the large sho
ks are as-sumed. For (1.4) to be a distributional solution of (1.1) (1.2) (1.3), we need thatfor every sho
k q : 1 : : :M the Rankine-Hugoniot 
onditions are satis�ed:f(uq�10 )� f(uq0) = �q(uq�10 � uq0): (1.5)Moreover, the sho
ks (uq�10 ; uq0) are said to belong to the 
orresponding iq-
hara-
teristi
 families (1 � i1 < i2 < : : : < iM � n) and assumed to be 
ompressive inthe sense of Lax [5℄: �iq (uq�10 ) > �q > �iq (uq0): (1.6)Finally, we require that all large sho
ks are stable in the sense of Majda [11℄, thatis; for every q : 1 : : :M :The n ve
torsr1(uq�10 ); : : : ; riq�1(uq�10 ); uq0 � uq�10 ; riq+1(uq0); : : : ; rn(uq0)are linearly independent. (1.7)



184 M. Lewi
kaThe following questions arise naturally:A. Do we have the (global in time and spa
e) existen
e of an 'admissible'solution u to (1.1) (1.2) when �u stays '
lose' to the Riemann data (1.3)?B. In 
ase the answer to A is positive, is the solution u stable under smallperturbations of its initial data?Unlike in the 
ase of small initial data, the assumptions introdu
ed so farare not suÆ
ient to ensure the positive answer to any of the above questions.The more, even the solvability of Riemann problems (u�; u+) with u�; u+ 2 
 isnot just a simple 
onsequen
e of the existen
e of the solution (1.4), but requiresan additional hypothesis. This and other stability 
onditions implying positiveanswers to questions A and B will be introdu
ed and dis
ussed in the next se
tion.2. Stability 
onditionsConsider a small wave of a family k � iq; travelling with speed �ink , and hittingfrom the right the large initial iq-sho
k (uq�10 ; uq0), as in Figure 2.1. Condition (1.7)guarantees that the Riemann problem (uq�10 ; uq) 
an be uniquely solved; let Mrqbe the (n � 1) � iq matrix expressing the strengths of the small outgoing waves(travelling with respe
tive speeds �outs ) in terms of the strength in
oming in the
onsidered intera
tion, while another matrix Nrq en
loses also the information onthe shift ratios after/before the intera
tion:
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k solutions... 185Analogously, we de�ne the matri
esM lq; N lq, des
ribing outgoing/in
oming strengthsor strengths and shifts ratios in wave patterns when the intera
ting small waveapproa
hes from the left; in this 
ase the index k 
hanges from iq to n (see Figure2.2).
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b)Figure 2.2De�ne now the square M � (n� 1) dimensional matrixW0:W0 = 2666664 [�℄ Mr1M l2 [�℄ Mr2M l3 [�℄ Mr3. . . . . .M lM [�℄
3777775(here [�℄ stands for the (n�1)�(n�1) zero matrix), and another matrix gW0, in thesame manner asW0, but with the submatri
es Mq repla
ed by the 
orrespondingNq. Finally, de�ne the nonnegative matri
es W1 := j W0 j and W2 := j gW0 j,that 
onsists of the absolute values of the entries of the 
orresponding matri
es.Now we are ready to formulate our �rst set of stability 
onditions:Finiteness Condition : 1 62 spe
W0; (2.2)BV Stability Condition : spe
RadW1 < 1; (2.3)L1 Stability Condition : spe
RadW2 < 1: (2.4)Above, 'spe
' stands for the spe
trum and 'spe
Rad' for the spe
tral radius of agiven matrix.Proposition 2.1. The 
ondition (2.2) is weaker than (2.3), whi
h is in turn impliedby (2.4).
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kaThe 
onditions (2.3) and (2.4), easy to 
he
k for the 
on
rete wave patterns,are however less 
onvenient when one needs to 
ontrol the 
hange in the totalvariation or the L1 norm of the pro�le of the solution u(t; �) a
ross the intera
tiontime. We thus reformulate our 
onditions in the following way.Weighted BV Stability ConditionThere exist positive weights wq1 ; : : : ; wqn (for every q : 0 : : :M ) su
h that in thesetting of Figure 2.1 and Figure 2.2, respe
tively:iq�1Xs=1 wq�1swqk � jaqskj+ nXs=iq+1 wqswqk � jaqskj < 1;iq�1Xs=1 wq�1swq�1k � jaqskj+ nXs=iq+1 wqswq�1k � jaqskj < 1: (2.5)Remark. Regarding wqs as the weight given to an s-wave lo
ated in the regionbetween the q�1 and the q-th large sho
k, 
onditions (2.5) simply say that, everytime a small wave hits a large sho
k, the total weighted strength of the outgoingsmall waves is smaller than the weighted strength of the in
oming wave.Weighted L1 Stability ConditionIn the setting of Figure 2.1 and Figure 2.2, respe
tively:iq�1Xs=1 wq�1swqk � jbqskj+ nXs=iq+1 wqswqk � jbqskj < 1;iq�1Xs=1 wq�1swq�1k � jbqskj+ nXs=iq+1 wqswq�1k � jbqskj < 1: (2.6)Proposition 2.2. The 
onditions (2.3) and (2.5) are equivalent. The 
onditions(2.4) and (2.6) are equivalent.3. ExamplesBefore we present our main results 
on
erning the wellposedness of the system(1.1), we �rst examine the introdu
ed stability 
onditions for two well knownhyperboli
 
onservative systems: the p-system and the full 
-law gas dynami
s.Proposition 3.1. For the p-system:ut � vx = 0; vt + p(u)x = 0;where p > 0; p0 < 0; p00 > 0 and u > 0, the 
ondition (2.4) (and thus also (2.3))is satis�ed for any initial sho
k pattern (1.4).
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k solutions... 187Proposition 3.2. For the 
-gas-law Euler equations:�t + (�v)x = 0; (�v)t + (�v2 + P )x = 0;�
 � 12 �v2 + P�t +�
 � 12 �v3 + 
Pv�x = 0;there exist two 
riti
al adiabati
 exponents 
2 > 
1 > 1 su
h that the followingis true. For 
 > 
2 the 
ondition (2.4) is always satis�ed, and for 
 > 
1 the
ondition (2.3) holds. On the other hand, for every 
 2 (1; 
1) there indeed existRiemann problems for whi
h (2.3) fails; similarly for every 
 2 (
1; 
2) there exista pattern (1.4) su
h that (2.4) fails (although (2.3) holds).4. Main resultsIn this se
tion we explain how the stability 
onditions (2.2) (2.3) (2.4) imply (indi�erent extents) the wellposedness of (1.1). Our �rst result 
on
erns the solvabilityof Riemann problems with initial states in 
.Proposition 4.1. Let the Finiteness Condition (2.2) hold. With any Riemann data(u�; u+); u� 2 
i; u+ 2 
j ; 0 � i � j � M , (1.1) has a unique self-similarsolution, attaining n+ 1 states, 
onse
utively 
onne
ted by:- weak waves of the 
orresponding families (if both left and right states of apair under 
onsideration belong to the same set 
q, i � q � j),- j � i large sho
ks, joining the states belonging to di�erent sets 
q,as in Figure 4.1.
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kaNow we turn to the main point of this arti
le. De�ne the domain eDÆ0 by:eDÆ0 = 
l (u : R �! Rn; there exist points x1 < x2 < : : : < xM in Rsu
h that 
alling eu(x) =8><>:u00 x < x1uq0 xq < x < xq+1; q : 1 : : :M � 1uM0 x > xM (4.1)we have: u� eu 2 L1(R;Rn) and T:V:(u� eu) � Æ0);with the 
losure taken in L1lo
(R;Rn).Our main results are the following:Theorem A If the Stability Condition (2.5) is satis�ed then there exists Æ0 > 0su
h that for every �u 2 eDÆ0 (1.1) (1.2) has a solution (de�ned for all times t � 0).Theorem B If the Stability Condition (2.6) is satis�ed then there exist Æ0 > 0;L > 0; a 
losed domain DÆ0 � L1lo
(R;Rn) 
ontaining eDÆ0 ; and a 
ontinuoussemigroup S : [0;1)�DÆ0 �! DÆ0 su
h that:(i) S(0; �u) = �u;S(t+ s; �u) = S(t; S(s; �u)) 8t; s � 0 8�u 2 DÆ0 :(ii) k S(t; �u)� S(s; �w) kL1� L � (jt� sj+ k �u� �w kL1) 8t; s � 0 8�u; �w 2 DÆ0 :(iii) Ea
h traje
tory t 7! S(t; �u) is a solution of (1.1) (1.2).Towards the proof of Theorem A, one expli
itely de�nes the Glimm poten-tial, measuring the total strength of all small waves in the approximate wavefront tra
king solutions of (1.1), and the possible amount of intera
tion betweenthemselves or with the large sho
ks. Thanks to the 
ondition (2.5), this potentialis nonin
reasing in time, and grants us the BV stability estimates yielding theglobal existen
e of the solution, as in Theorem A.To prove Theorem B, the Lyapunov fun
tional, measuring the L1 distan
ebetween the pro�les of the wave front tra
king approximate solutions, is intro-du
ed. Our fun
tional is motivated by the similar one in [3℄; the di�eren
e is thatit 
ontains some extra terms a

ounting for the intera
tions and 
oupling of thesmall waves against the large sho
ks. The key point in the analysis is to prove thatthis fun
tional 'almost' de
reases in time along any pair of approximate wave fronttra
king solutions to (1.1) - this property allows us to 
on
lude that the solutionsobtained in Theorem A 
onstitute a Lips
hitz 
ontinuous semigroup S.
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k solutions... 1895. Relations to previous worksWe now 
omment on the relation of the results in this arti
le to other papers. In[12℄, S
ho
het was the �rst to introdu
e a BV stability 
ondition, giving positiveanswer to question A. This 
ondition is formulated indu
tively with respe
t to thenumber of large sho
ks M and uses the language of matrix analysis, in the spiritof our 
ondition (2.3). As shown and a

ompanied by a more detailed dis
ussionin [7℄, the S
ho
het 
ondition and our 
onditions (2.3) and (2.5) are equivalent. In[7℄, one 
an also �nd the proofs of Propositions 2.1 and 2.2.In [1℄, Bressan and Colombo 
onsider the general Riemann problem for sys-tems of two equations and assuming the 
orresponding L1 stability 
ondition,answer question B positively. More re
ently, the paper [9℄ proves Theorems A andB (for systems of n � 2 equations) in the presen
e of only two large sho
ks, of
hara
teristi
 families i and j > i; indeed in the 
ase M = 2; i1 = i; i2 = j, the
onditions (2.5) and (2.6) redu
e to the 
orresponding 
onditions of [9℄.Theorems A and B as stated in this arti
le are proved in [6℄. Substantialdi�eren
es between M = 2 and M > 2 o

ur in parti
ular in the proof of TheoremB. Namely, the straightforward generalization of the Lyapunov fun
tional intro-du
ed in [9℄ does not provide a fun
tional de
reasing along the wave front tra
kingsolutions, forM > 2. On the other hand, our new fun
tional de�ned in [6℄, redu
eswhen M = 2 to a Lyapunov fun
tional that 
an be seen as a simpli�
ation of theone from [9℄.The Stability Condition (2.6), whi
h 
ame up naturally in the investigationsleading to [6℄, was earlier introdu
ed in [4℄ (formulae (3.42) and (3.43)), to guar-antee the wellposedness of asso
iated linearized variational systems.Proposition 4.1 and the Finiteness Condition (2.2) are 
orollaries of the re-sults in [8℄. Re
ently it was brought to our attention that 
onditions similar to(2.2) { (2.4) 
ould be found in [10℄, where the authors address the existen
e ofsmooth solutions to (1.1).Proposition 3.1 follow from the dis
ussion in [1℄, the existen
e of 
1 in Propo-sition 3.2 is 
lear from [12℄ in view of our Proposition 2.2. The part of Proposition3.2 
on
erning the 
riti
al exponent 
2 appears here for the �rst time.Referen
es[1℄ A. Bressan and R.M. Colombo Unique solutions of 2 � 2 
onservation laws withlarge data, Indiana U. Math. J. 44 (1995), 677-725.[2℄ A. Bressan, G. Crasta and B. Pi

oli Well posedness of the Cau
hy problem forn� n 
onservation laws, Memoirs AMS 146 (2000), No. 694.[3℄ A. Bressan, T.P. Liu, and T. Yang L1 Stability Estimates for n� n 
onservationlaws, Ar
h. Rational Me
h. Anal. 149 (1999), 1 - 22.[4℄ A. Bressan and A. Marson A variational 
al
ulus for dis
ontinuous solutions ofsystems of 
onservation laws, Comm. Partial Di�erential Equations 20 (1995),1491 - 1552.
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k waves, IndianaMath. Univ. J. 49 (2000), 1515{1537.[7℄ M. Lewi
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ting large sho
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 systems,Duke University 1985.[11℄ A. Majda The stability of multi-dimensional sho
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ho
het SuÆ
ient 
onditions for lo
al existen
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