
On the L1 stability of multi-shok solutions tothe Riemann problemMarta Lewika1. IntrodutionIn this artile we present a summary ot some reent results onerning the L1 sta-bility of non-linear large shok waves, that arise in the study of stritly hyperbolisystems of onservation laws in one spae dimension. For the detailed disussionand the proofs we refer to papers [6℄ [7℄ [8℄ [9℄.The system we onsider has the following general form:ut + f(u)x = 0 (1.1)with the ux funtion f satisfying:� f : 
 �! Rn is smooth, de�ned on some open set 
 � Rn:� (1.1) is stritly hyperboli in 
; that is: at every point u 2 
 the matrixDf(u) has n real and simple eigenvalues �1(u) < : : : < �n(u).� Eah harateristi �eld of (1.1) is either linearly degenerate or genuinelynonlinear, that is: with a basis frk(u)gnk=1 of orresponding right eigen-vetors of Df(u), Df(u)rk(u) = �k(u)rk(u), eah of the n diretionalderivatives rkr�k vanishes either identially or nowhere.In this setting, it has been shown in [2℄ [3℄ that the Cauhy problem (1.1)(1.2) with: u(0; x) = �u(x) (1.2)is wellposed in L1(R;Rn), within the lass of initial data �u 2 L1 \ BV (R;Rn)having suitably small total variation. Namely, the entropy solutions of (1.1) (1.2)onstitute a semigroup whih is Lipshitz ontinuous with respet to time and ini-tial data. A major question whih remains open is whether existene and unique-ness of solutions also holds for arbitrarily large initial data. As a �rst step towardsthis analysis we study the wellposedness of (1.1) (1.2) with the initial data �u beinga small perturbation of �xed Riemann data (u00; uM0 ). The solution of the latteronsists of M 2 f2 : : : ng (large) waves of di�erent harateristi families; the dis-ussion we present below onerns a partiular ase when all these large waves areshoks.1991 Mathematis Subjet Classi�ation. 35L65, 35L45.



Multi-shok solutions... 183More preisely, M + 1 distint states fuq0gMq=0 are �xed and their respetivesuÆiently small neighbourhoods 
q are hosen, with 
 = SMq=0 
q : We assumethat the problem (1.1) (1.2) with�u(x) = (u00 x < 0uM0 x > 0 (1.3)has an M -shok solution:u(t; x) =8><>:u00 x < �1tuq0 �qt < x < �q+1t; q : 1 : : :M � 1uM0 x > �M t; (1.4)in whih the states uq0 are joined by M (large) shoks (uq�10 ; uq0), q : 1 : : :M ,travelling with respetive speeds �q (see Figure 1.1).
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Figure 1.1The following standard onditions on the nature of the large shoks are as-sumed. For (1.4) to be a distributional solution of (1.1) (1.2) (1.3), we need thatfor every shok q : 1 : : :M the Rankine-Hugoniot onditions are satis�ed:f(uq�10 )� f(uq0) = �q(uq�10 � uq0): (1.5)Moreover, the shoks (uq�10 ; uq0) are said to belong to the orresponding iq-hara-teristi families (1 � i1 < i2 < : : : < iM � n) and assumed to be ompressive inthe sense of Lax [5℄: �iq (uq�10 ) > �q > �iq (uq0): (1.6)Finally, we require that all large shoks are stable in the sense of Majda [11℄, thatis; for every q : 1 : : :M :The n vetorsr1(uq�10 ); : : : ; riq�1(uq�10 ); uq0 � uq�10 ; riq+1(uq0); : : : ; rn(uq0)are linearly independent. (1.7)



184 M. LewikaThe following questions arise naturally:A. Do we have the (global in time and spae) existene of an 'admissible'solution u to (1.1) (1.2) when �u stays 'lose' to the Riemann data (1.3)?B. In ase the answer to A is positive, is the solution u stable under smallperturbations of its initial data?Unlike in the ase of small initial data, the assumptions introdued so farare not suÆient to ensure the positive answer to any of the above questions.The more, even the solvability of Riemann problems (u�; u+) with u�; u+ 2 
 isnot just a simple onsequene of the existene of the solution (1.4), but requiresan additional hypothesis. This and other stability onditions implying positiveanswers to questions A and B will be introdued and disussed in the next setion.2. Stability onditionsConsider a small wave of a family k � iq; travelling with speed �ink , and hittingfrom the right the large initial iq-shok (uq�10 ; uq0), as in Figure 2.1. Condition (1.7)guarantees that the Riemann problem (uq�10 ; uq) an be uniquely solved; let Mrqbe the (n � 1) � iq matrix expressing the strengths of the small outgoing waves(travelling with respetive speeds �outs ) in terms of the strength inoming in theonsidered interation, while another matrix Nrq enloses also the information onthe shift ratios after/before the interation:
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Multi-shok solutions... 185Analogously, we de�ne the matriesM lq; N lq, desribing outgoing/inoming strengthsor strengths and shifts ratios in wave patterns when the interating small waveapproahes from the left; in this ase the index k hanges from iq to n (see Figure2.2).
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b)Figure 2.2De�ne now the square M � (n� 1) dimensional matrixW0:W0 = 2666664 [�℄ Mr1M l2 [�℄ Mr2M l3 [�℄ Mr3. . . . . .M lM [�℄
3777775(here [�℄ stands for the (n�1)�(n�1) zero matrix), and another matrix gW0, in thesame manner asW0, but with the submatries Mq replaed by the orrespondingNq. Finally, de�ne the nonnegative matries W1 := j W0 j and W2 := j gW0 j,that onsists of the absolute values of the entries of the orresponding matries.Now we are ready to formulate our �rst set of stability onditions:Finiteness Condition : 1 62 speW0; (2.2)BV Stability Condition : speRadW1 < 1; (2.3)L1 Stability Condition : speRadW2 < 1: (2.4)Above, 'spe' stands for the spetrum and 'speRad' for the spetral radius of agiven matrix.Proposition 2.1. The ondition (2.2) is weaker than (2.3), whih is in turn impliedby (2.4).



186 M. LewikaThe onditions (2.3) and (2.4), easy to hek for the onrete wave patterns,are however less onvenient when one needs to ontrol the hange in the totalvariation or the L1 norm of the pro�le of the solution u(t; �) aross the interationtime. We thus reformulate our onditions in the following way.Weighted BV Stability ConditionThere exist positive weights wq1 ; : : : ; wqn (for every q : 0 : : :M ) suh that in thesetting of Figure 2.1 and Figure 2.2, respetively:iq�1Xs=1 wq�1swqk � jaqskj+ nXs=iq+1 wqswqk � jaqskj < 1;iq�1Xs=1 wq�1swq�1k � jaqskj+ nXs=iq+1 wqswq�1k � jaqskj < 1: (2.5)Remark. Regarding wqs as the weight given to an s-wave loated in the regionbetween the q�1 and the q-th large shok, onditions (2.5) simply say that, everytime a small wave hits a large shok, the total weighted strength of the outgoingsmall waves is smaller than the weighted strength of the inoming wave.Weighted L1 Stability ConditionIn the setting of Figure 2.1 and Figure 2.2, respetively:iq�1Xs=1 wq�1swqk � jbqskj+ nXs=iq+1 wqswqk � jbqskj < 1;iq�1Xs=1 wq�1swq�1k � jbqskj+ nXs=iq+1 wqswq�1k � jbqskj < 1: (2.6)Proposition 2.2. The onditions (2.3) and (2.5) are equivalent. The onditions(2.4) and (2.6) are equivalent.3. ExamplesBefore we present our main results onerning the wellposedness of the system(1.1), we �rst examine the introdued stability onditions for two well knownhyperboli onservative systems: the p-system and the full -law gas dynamis.Proposition 3.1. For the p-system:ut � vx = 0; vt + p(u)x = 0;where p > 0; p0 < 0; p00 > 0 and u > 0, the ondition (2.4) (and thus also (2.3))is satis�ed for any initial shok pattern (1.4).



Multi-shok solutions... 187Proposition 3.2. For the -gas-law Euler equations:�t + (�v)x = 0; (�v)t + (�v2 + P )x = 0;� � 12 �v2 + P�t +� � 12 �v3 + Pv�x = 0;there exist two ritial adiabati exponents 2 > 1 > 1 suh that the followingis true. For  > 2 the ondition (2.4) is always satis�ed, and for  > 1 theondition (2.3) holds. On the other hand, for every  2 (1; 1) there indeed existRiemann problems for whih (2.3) fails; similarly for every  2 (1; 2) there exista pattern (1.4) suh that (2.4) fails (although (2.3) holds).4. Main resultsIn this setion we explain how the stability onditions (2.2) (2.3) (2.4) imply (indi�erent extents) the wellposedness of (1.1). Our �rst result onerns the solvabilityof Riemann problems with initial states in 
.Proposition 4.1. Let the Finiteness Condition (2.2) hold. With any Riemann data(u�; u+); u� 2 
i; u+ 2 
j ; 0 � i � j � M , (1.1) has a unique self-similarsolution, attaining n+ 1 states, onseutively onneted by:- weak waves of the orresponding families (if both left and right states of apair under onsideration belong to the same set 
q, i � q � j),- j � i large shoks, joining the states belonging to di�erent sets 
q,as in Figure 4.1.
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188 M. LewikaNow we turn to the main point of this artile. De�ne the domain eDÆ0 by:eDÆ0 = l (u : R �! Rn; there exist points x1 < x2 < : : : < xM in Rsuh that alling eu(x) =8><>:u00 x < x1uq0 xq < x < xq+1; q : 1 : : :M � 1uM0 x > xM (4.1)we have: u� eu 2 L1(R;Rn) and T:V:(u� eu) � Æ0);with the losure taken in L1lo(R;Rn).Our main results are the following:Theorem A If the Stability Condition (2.5) is satis�ed then there exists Æ0 > 0suh that for every �u 2 eDÆ0 (1.1) (1.2) has a solution (de�ned for all times t � 0).Theorem B If the Stability Condition (2.6) is satis�ed then there exist Æ0 > 0;L > 0; a losed domain DÆ0 � L1lo(R;Rn) ontaining eDÆ0 ; and a ontinuoussemigroup S : [0;1)�DÆ0 �! DÆ0 suh that:(i) S(0; �u) = �u;S(t+ s; �u) = S(t; S(s; �u)) 8t; s � 0 8�u 2 DÆ0 :(ii) k S(t; �u)� S(s; �w) kL1� L � (jt� sj+ k �u� �w kL1) 8t; s � 0 8�u; �w 2 DÆ0 :(iii) Eah trajetory t 7! S(t; �u) is a solution of (1.1) (1.2).Towards the proof of Theorem A, one expliitely de�nes the Glimm poten-tial, measuring the total strength of all small waves in the approximate wavefront traking solutions of (1.1), and the possible amount of interation betweenthemselves or with the large shoks. Thanks to the ondition (2.5), this potentialis noninreasing in time, and grants us the BV stability estimates yielding theglobal existene of the solution, as in Theorem A.To prove Theorem B, the Lyapunov funtional, measuring the L1 distanebetween the pro�les of the wave front traking approximate solutions, is intro-dued. Our funtional is motivated by the similar one in [3℄; the di�erene is thatit ontains some extra terms aounting for the interations and oupling of thesmall waves against the large shoks. The key point in the analysis is to prove thatthis funtional 'almost' dereases in time along any pair of approximate wave fronttraking solutions to (1.1) - this property allows us to onlude that the solutionsobtained in Theorem A onstitute a Lipshitz ontinuous semigroup S.



Multi-shok solutions... 1895. Relations to previous worksWe now omment on the relation of the results in this artile to other papers. In[12℄, Shohet was the �rst to introdue a BV stability ondition, giving positiveanswer to question A. This ondition is formulated indutively with respet to thenumber of large shoks M and uses the language of matrix analysis, in the spiritof our ondition (2.3). As shown and aompanied by a more detailed disussionin [7℄, the Shohet ondition and our onditions (2.3) and (2.5) are equivalent. In[7℄, one an also �nd the proofs of Propositions 2.1 and 2.2.In [1℄, Bressan and Colombo onsider the general Riemann problem for sys-tems of two equations and assuming the orresponding L1 stability ondition,answer question B positively. More reently, the paper [9℄ proves Theorems A andB (for systems of n � 2 equations) in the presene of only two large shoks, ofharateristi families i and j > i; indeed in the ase M = 2; i1 = i; i2 = j, theonditions (2.5) and (2.6) redue to the orresponding onditions of [9℄.Theorems A and B as stated in this artile are proved in [6℄. Substantialdi�erenes between M = 2 and M > 2 our in partiular in the proof of TheoremB. Namely, the straightforward generalization of the Lyapunov funtional intro-dued in [9℄ does not provide a funtional dereasing along the wave front trakingsolutions, forM > 2. On the other hand, our new funtional de�ned in [6℄, redueswhen M = 2 to a Lyapunov funtional that an be seen as a simpli�ation of theone from [9℄.The Stability Condition (2.6), whih ame up naturally in the investigationsleading to [6℄, was earlier introdued in [4℄ (formulae (3.42) and (3.43)), to guar-antee the wellposedness of assoiated linearized variational systems.Proposition 4.1 and the Finiteness Condition (2.2) are orollaries of the re-sults in [8℄. Reently it was brought to our attention that onditions similar to(2.2) { (2.4) ould be found in [10℄, where the authors address the existene ofsmooth solutions to (1.1).Proposition 3.1 follow from the disussion in [1℄, the existene of 1 in Propo-sition 3.2 is lear from [12℄ in view of our Proposition 2.2. The part of Proposition3.2 onerning the ritial exponent 2 appears here for the �rst time.Referenes[1℄ A. Bressan and R.M. Colombo Unique solutions of 2 � 2 onservation laws withlarge data, Indiana U. Math. J. 44 (1995), 677-725.[2℄ A. Bressan, G. Crasta and B. Pioli Well posedness of the Cauhy problem forn� n onservation laws, Memoirs AMS 146 (2000), No. 694.[3℄ A. Bressan, T.P. Liu, and T. Yang L1 Stability Estimates for n� n onservationlaws, Arh. Rational Meh. Anal. 149 (1999), 1 - 22.[4℄ A. Bressan and A. Marson A variational alulus for disontinuous solutions ofsystems of onservation laws, Comm. Partial Di�erential Equations 20 (1995),1491 - 1552.
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