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Abstract. In this paper we study different conditions whose presence is required for

A. the admissibility and stability of large shocks present in solutions of a strictly hyperbolic
n × n system of conservation laws in one space dimension

ut + f(u)x = 0,

B. the solvability and L1 well posedness of the Cauchy problem for the above equation, near
solutions containing large and stable, but noninteracting shock waves.

We compare the corresponding conditions of type A and B appearing in the literature; in par-
ticular, we show that the finiteness and stability conditions used in our most recent works generalize
and/or unify these conditions in appropriate ways.
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1. Introduction. Consider the Cauchy problem for an n × n system of conser-
vation laws in one space dimension:

ut + f(u)x = 0,(1.1)

u(0, ·) = ū.(1.2)

In the study of local existence and stability of solutions to (1.1), (1.2), due to the
finite speed of propagation one is led to consider the special case where the initial
data ū is a small perturbation of a Riemann data:

ū(x) =

{
u−, x < 0,

u+, x > 0.
(1.3)

In this case, several results in the literature have shown that existence and stability
of solutions can be obtained under a suitable linearized stability condition for the
solutions of (1.1), (1.2), (1.3). (For a general theory of conservation laws in one space
dimension, cf. [B], [D], [Sm].)

The main purpose of this paper is to compare the various assumptions of this
kind and to prove their equivalence. We shall restrict ourselves to the case where
the solution of (1.1), (1.2), (1.3) consists of m + 1 constant states, m ∈ {2, . . . , n},
separated by (possibly large) admissible shocks, say, in the characteristic families
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i1 < · · · < im. Calling these intermediate states u0
0 = u−, u1

0, u
2
0, . . . , um

0 = u+, and
Λq the speed of the iq shock, the linearized system has the form

vt + Df(uq
0) · vx = 0, x/t ∈ (Λq, Λq+1).(1.4)

Along shock lines we have the boundary equations obtained by linearizing the Rankine–
Hugoniot equations that yield the linear dependence of the strengths of the outgoing
waves on the components of the incoming wave vector interacting with the iq large
shock under consideration:

ǫout
k =

∑

s:1...n
incoming

W k,s
q · ǫin

s(1.5)

(see Figure 1.1).
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Fig. 1.1.

As we have mentioned, under some classical assumptions on the flux f in (1.1),
which are recalled below, a variety of results concerning the (global) existence and
uniqueness of admissible solutions to (1.1), (1.2) and their L1 stability have been
recently established [BC], [BM], [Le], [LT], [Scho], [W].

In all of these works, the conditions of two different natures are necessarily intro-
duced:

A. conditions yielding the admissibility and stability of each of the large shocks
in the reference solution of (1.1), (1.2), (1.3),

B. conditions guaranteeing the BV stability of the linearized system (1.4) [Scho],
[BM], [Le], [W]. In [Scho], it is proved that they imply the local existence
of solutions to the Cauchy problem, for data ū suitably close to (1.3), and
conditions providing the L1 stability of the system (1.4) [BM], [BC], [Le]. It
was proved that these in turn imply the L1 stability of the nonlinear system
(1.1), on a domain D of small BV perturbations of the data (1.3).

Our paper is organized as follows. In section 2 we focus on the conditions of type
A, in particular, the well-known Majda stability condition [M].

Section 3 discusses different conditions of type B. In [Le], [LT], the stability
conditions are formulated in terms of the existence of a suitable family of weights
wq

s > 0 such that the corresponding BV or L1 norm of any solution of the linearized
system (1.4) is nonincreasing in time. The main result of section 3 (Theorem 3.2)
will show that the Schochet BV stability assumptions [Scho] are equivalent to BV
stability assumptions in [Le]. Also, the L1 stability condition in [BM], [Le], will appear
to imply the mentioned BV stability (Theorem 3.1).
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In the last section we treat the case of systems of n = 2 equations, with the
presence of m = 2 large shocks and deal with the corresponding conditions introduced
in [BC], [W], [LT].

We end this section by recalling the setting of the Cauchy problem (1.1), (1.2)
(compare [Le]). In the n-dimensional state space m + 1 distinct states {uq

0}
m
q=0 are

fixed, with their corresponding open disjoint neighborhoods {Ωq}m
q=0 such that

• f : Ω −→ Rn is smooth and defined on Ω =
m⋃

q=0

Ωq ⊂ Rn.

• f is strictly hyperbolic in Ω, that is, at each point u ∈ Ω, the matrix Df(u)
has n real and simple eigenvalues λ1(u) < · · · < λn(u).

• Each characteristic field of (1.1) is either linearly degenerate or genuinely
nonlinear, that is, with a basis {rk(u)}n

k=1 of corresponding right eigenvectors
of Df(u), Df(u)rk(u) = λk(u)rk(u), each of the n directional derivatives
rk∇λk vanishes either identically or nowhere.

The solution to (1.1), (1.2) with the initial data

ū(x) =

{
u0

0, x < 0,

um
0 , x > 0

(1.6)

is given by m shocks (uq−1
0 , uq

0), q : 1 . . .m, belonging to respective characteristic
families iq and travelling with respective speeds Λq:

u(t, x) =





u0
0, x < Λ1t,

uq
0, Λqt < x < Λq+1t, q : 1 . . .m − 1,

um
0 , x > Λmt,

(1.7)

as in Figure 1.2.
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2. Stability of large shocks revisited. In this section we discuss the condi-
tions of type A. Since every shock (uq−1

0 , uq
0) has to be treated separately, it is not

restrictive to assume that m = 1 and simplify the notation u0
0 = u−, u1

0 = u+, Ω0 =
Ω−, Ω1 = Ωm = Ω+, i1 = i, Λ1 = Λ.

In this setting, for (1.7) to be a distributional solution of (1.1), (1.2), (1.3), the
Rankine–Hugoniot conditions must be satisfied:

f(u−) − f(u+) = Λ(u− − u+).(2.1)



STABILITY CONDITIONS 1097

Second, our i-shock is assumed to be compressive in the sense of Lax [L], that is,

λi(u
−) > Λ > λi(u

+).(2.2)

Finally, in order to treat the Cauchy problem (1.1), (1.2), with ū in (1.2) being a
perturbation of (1.3), one must guarantee the so-called stability of the shock (u−, u+).
This condition, introduced and justified in [LT], [Le], [BC] is the following:




There exists a smooth function Ψ : Ω− × Ω+ −→ Rn−1 such that
(i) Ψ(u0, u1) = 0 iff the states u0 and u1 can be connected by a

(large) shock of the ith characteristic family, with the speed
Λ(u0, u1). The Rankine–Hugoniot condition holds: f(u0) −
f(u1) = Λ(u0, u1)(u0 − u1). In particular, Ψ(u−, u+) = 0 and
Λ(u−, u+) = Λ.

(ii)

rank
∂Ψ

∂u0
(u−, u+) = rank

∂Ψ

∂u1
(u−, u+) = n − 1.

(iii) The n − 1 vectors

{ ∂Ψ

∂u0
(u−, u+) · rk(u−)

}i−1

k=1
∪
{ ∂Ψ

∂u1
(u−, u+) · rk(u+)

}n

k=i+1

are linearly independent.

(2.3)

Under these hypotheses one can see that if only the sets Ω−, Ω+ are small enough,
then any Riemann problem (u0, u1) ∈ Ω−×Ω+ for (1.1) has a unique self-similar solu-
tion composed of n shocks or rarefaction waves. The ith wave is a large i compressive
Lax shock, connecting some states in the domains Ω− and Ω+.

In [Scho], the stability of the large shock (u−, u+) satisfying (2.1), (2.2) is under-
stood in the classical sense of Majda:




The n vectors

r1(u
−), . . . , ri−1(u

−), u− − u+, ri+1(u
+), . . . , rn(u+)

are linearly independent.

(2.4)

Obviously for weak shocks (2.4) is always satisfied, and equivalent to (2.3)(iii).
The main result of this section discusses this same situation in the general case.

Theorem 2.1. Let (u−, u+) be a Rankine–Hugoniot shock such that its speed Λ
in (2.1) is not an eigenvalue of Df(u−) nor of Df(u+). Then the conditions (2.3)
and (2.4) are equivalent.

The proof of Theorem 2.1 relies on the construction of a particular function Ψ0,
whose zero level set consists of those pairs of states (u0, u1) ∈ Ω− × Ω+ that can be
connected by an admissible i-shock as in (2.3)(i).

We define Ψ0 as follows:

Ψ0(u
0, u1) =

{〈
f(u1) − f(u0), Vk(u1 − u0)

〉}n−1

k=1
,(2.5)
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where Vk are any smooth functions defined on a neighborhood of the vector u0 =
u+ − u− 6= 0 with values in Rn, and such that for every u the space

span{V1(u), . . . , Vn−1(u)}

is the orthogonal complement of the vector u.
Lemma 2.2. {Vk}

n−1
k=1 can be taken so that

Vk(u0) = −[DVk(u0)]
T · u0 ∀k : 1 . . . n − 1.(2.6)

Proof. By e1, . . . , en we denote the standard Euclidean base of Rn.
For u close to en define the vectors {Ṽk(u)}n−1

k=1 applying the Gramm–Schmidt
orthogonalization process to n linearly independent vectors u, e1, . . . , en−1. Namely,
set

Ṽ1(u) = e1 − 〈e1, u〉 ·
u
|u|2 ,

Ṽk(u) = ek −

[
〈ek, u〉 · u

|u|2 +

k−1∑

s=1

〈ek, Ṽs(u)〉 · Ṽs(u)

]
∀k : 2 . . . n − 1.

(2.7)

Note that

Ṽk(en) = en ∀k : 1 . . . n − 1(2.8)

and
• 〈Ṽk(u), u〉 = 0 ∀k : 1 . . . n − 1,

• {Ṽk}
n−1
k=1 are smooth functions of u.

Thus, span{Ṽ1(u), . . . , Ṽn−1(u)} always complements orthogonally the vector u.

Moreover, using (2.8) and the fact that Ṽk ∈ span(e1, . . . , ek, u), by the explicit
formulas (2.7) one proves inductively that

DṼk(en) = [dsl]s,l:1...n, dsl =

{
−1 for (s, l) = (n, k),

0 otherwise.
(2.9)

Now for u close to u0 define

Vk(u) = A−1 · Ṽk(Au),(2.10)

where A is an orthogonal transformation composed with an appropriate dilation such
that Au0 = en. Consequently

A−1 = |u0|
2AT .(2.11)

Obviously {Vk}
n−1
k=1 are smooth functions, and by the corresponding property of {Ṽk}

n−1
k=1

they span the orthogonal complement of its argument vector.
By (2.10), (2.11), (2.9), and (2.8) we get

[DVk(u0)]
T · u0 =AT · [DṼk(en)]T · (AT )−1 · u0 = A−1 · [DṼk(en)]T · Au0

= − A−1ek = −A−1 · Ṽk(Au0) = −Vk(u0),

which proves (2.6).
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Using the above lemma one finds a convenient formula for the derivatives of Ψ0:

∂Ψ0

∂u0
(u−, u+) = −V · [Df(u−) − ΛId],(2.12)

∂Ψ0

∂u1
(u−, u+) = V · [Df(u+) − ΛId],(2.13)

where V is the (n − 1) × n matrix, whose rows are the vectors V1(u0), . . . , Vn−1(u0).
Note that since rank V = n − 1, then Λ is neither an eigenvalue of Df(u−) nor
Df(u+), which in view of (2.12), (2.13) implies

rank
∂Ψ0

∂u0
(u−, u+) = rank

∂Ψ0

∂u1
(u−, u+) = n − 1.(2.14)

Proof of Theorem 2.1.
Step 1. By (2.12), (2.13) we get

∂Ψ0

∂u0
(u−, u+) · rk(u−) = −(λk(u−) − Λ) · V · rk(u−) ∀k : 1 . . . i − 1,

∂Ψ0

∂u1
(u−, u+) · rk(u+) = (λk(u+) − Λ) · V · rk(u+) ∀k : i + 1 . . . n.

Since Λ /∈ {λk(u−)}i−1
k=1 ∪ {λk(u+)}n

k=i+1 we see that the condition (2.3)(iii) for our

function Ψ0 is satisfied iff the vectors {V · rk(u−)}i−1
k=1∪{V · rk(u+)}n

k=i+1 are linearly
independent, which is in turn equivalent to Majda’s condition (2.4), as ker V =
span(u0). We have thus shown that (2.4) is equivalent to (2.3)(iii) for the function
Ψ0.

Recalling (2.14), one sees this way that (2.4) implies (2.3).
Step 2. Now we turn toward proving the converse implication. Let Ψ be any

function satisfying (2.3). In particular, by (2.3)(ii), rank DΨ(u−, u+) is maximal
and equal to n − 1. The same is true for DΨ0(u

−, u+), by (2.14), so

rank DΨ(u−, u+) = rank DΨ0(u
−, u+).(2.15)

Another important remark is that

ker DΨ(u−, u+) = ker DΨ0(u
−, u+).(2.16)

The spaces in (2.16) both coincide with the tangent space of the manifold (Ψ0)
−1(0)

at point (u−, u+).
The following simple fact of linear algebra will be used in what follows.
Lemma 2.3. Let A, B : Rn −→ Rs be two linear operators, s < n. Assume that

rank A = rank B = s and ker A = ker B. Then for any s vectors v1, . . . , vs ∈ Rn

it holds that the vectors {Avk}s
k=1 are linearly independent iff {Bvk}s

k=1 are linearly
independent.

In view of (2.15), (2.16), we can apply Lemma 2.2 to the linear operators

DΨ(u−, u+), DΨ0(u
−, u+) : R2n −→ Rn−1

and the following set of n − 1 test vectors in R2n:

{[rk(u−)T , 0 . . . 0]T }i−1
k=1 ∪ {[0 . . . 0, rk(u+)T ]T }n

k=i+1.
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By (2.3)(iii) we receive that the same condition is satisfied by our function Ψ0. This
in turn, is equivalent to (2.4), as shown in Step 1.

The proof of Theorem 2.1 shows that if the function Ψ as in (2.3) exists, then it
can be replaced by the function Ψ0, in this case necessarily enjoying the properties
(2.3)(i)–(2.3)(iii).

3. BV and L
1 stability conditions compared. In this and the next sections

we discuss different stability conditions of type B, used in [BC], [W], [Scho], and [Le].
Recall that these conditions guarantee the well posedness of the problem (1.1), (1.2)
and the existence of the Lipschitz continuous semigroup of solutions, whose domain
contains all the small L1 ∩ BV perturbations of the initial data ū in (1.6) (compare
[Le]).

We show the equivalence of the Schochet BV stability condition (called in [Scho]
the finiteness condition) with the BV stability condition used in [Le], as well as with
the Wang BV stability condition [W], and the equivalence of L1 stability condition
from [BM], [Le] with the one introduced in [BC] for 2 × 2 systems.

Also (see Remark 3.8), we position our work to some of the results found in [LY].
We start by recalling the mentioned conditions.

3.1. BV stability condition. There exist positive weights wq
1, . . . , wq

n (for ev-
ery q : 0 . . .m ) such that the following holds. Consider a small wave of a family
k ≤ iq, hitting from the right the large initial iq-shock (uq−1

0 , uq
0), as in Figure 3.1.

Then

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1(3.1)

at ǫin
1 = · · · = ǫin

k = · · · = ǫin
n = 0.

iq

ε
1
out

ε out
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iq
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u
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ε out
i  +1q

u
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0

Ω
q-1
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u
q

u
q-1
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iq

ε
n
out
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k

ε
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iq
ε out

i  +1q

a) b)

Fig. 3.1.

Symmetrically, in the case when a small k-wave with k ≥ iq hits the shock

(uq−1
0 , uq

0) from the left (compare Figure 3.2), there holds

iq−1∑

s=1

wq−1
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1(3.2)

at ǫin
1 = · · · = ǫin

k = · · · = ǫin
n = 0.
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Regarding wq
s as the weight given to an s-wave located in the region between the

q − 1 and the qth large shock, conditions (3.1), (3.2) simply say that every time a
small wave hits a large shock, the total weighted strength of the outgoing small waves
is smaller than the weighted strength of the incoming wave.

3.2. L
1 stability condition [Le], [BM]. There exist positive weights wq

1 , . . . , wq
n

(for every q : 0 . . .m ) such that in the setting of Figure 3.1

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣

+
n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣ < 1

(3.3)

at ǫin
1 = · · · = ǫin

k = · · · = ǫin
n = 0, while in the setting of Figure 3.2

iq−1∑

s=1

wq−1
s

wq−1
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣

+

n∑

s=iq+1

wq
s

wq−1
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣ < 1

(3.4)

at ǫin
1 = · · · = ǫin

k = · · · = ǫin
n = 0.

Note that since the weights {w0
i }

n
i=1 and {wm

i }n
i=1 appear only in one inequality

(3.1) or (3.2), then the corresponding BV stability estimates for the leftmost large
shock (u0

0, u
1
0) and the rightmost (um−1

0 , um
0 ) may take the following, simplified form:

n∑

s=i2

w1
s

w1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1(3.1a)

for all small waves of families k ≤ i1, hitting the first shock i1 from the right, and

im−1∑

s=1

wm−1
s

wm−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1(3.2a)

for all small waves of families k ≥ im, hitting the last shock im from the left.
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The analogous simplifications may be easily done for the L1 stability estimates
(3.3) and (3.4).

Also, for q 6∈ {1, m}, (3.1) and (3.2) can be rewritten as follows:

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1,(3.1a)

iq−1∑

s=1

wq−1
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < 1.(3.2a)

Analogously, the L1 stability condition (3.3) and (3.4) for q 6∈ {1, m} may be formu-
lated with the correspondingly changed summation ranges.

Theorem 3.1. The L1 stability condition (3.3), (3.4) implies the BV stability
condition (3.1), (3.2).

Proof. In view of the preceding remarks, assume that the L1 stability condition
(3.3a) and (3.4a) holds, with weights {wq

s}. For q : 1 . . . m − 1 and s : 1 . . . n define

w̃q
s =

∣∣λs(u
q
0) − Λq+1

∣∣ · wq
s .

We will show that the BV stability condition (3.1), (3.2) is satisfied for all q : 1 . . .m.

Indeed, to prove (3.1), compute

iq−1∑

s=1

w̃q−1
s

w̃q
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

w̃q
s

w̃q
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣

=

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ ·
|λs(u

q−1
0 ) − Λq|

|λk(uq
0) − Λq+1|

+

n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ ·
|λs(u

q
0) − Λq+1|

|λk(uq
0) − Λq+1|

< 1

by (3.3a) and the following easily received inequalities:

∣∣λk(uq
0) − Λq+1

∣∣ > |λk(uq
0) − Λq| ∀k ≤ iq,

∣∣λk(uq
0) − Λq+1

∣∣ < |λk(uq
0) − Λq| ∀k ≥ iq+1.

The estimate (3.2) is justified in a similar way.

3.3. The Schochet BV stability condition [Scho]. In connection with (3.1)
and (3.2), for every q : 1 . . .m define four nonnegative matrices, expressing the
strengths of outgoing waves in terms of the strengths of the incoming small waves,
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interacting with the large initial iq-shock:

• interaction from the right, waves outgoing to the right

M rr
q = [aq

sk], s : iq+1 . . . n, k : 1 . . . iq,

• interaction from the right, waves outgoing to the left

M rl
q = [aq

sk], s : 1 . . . iq−1, k : 1 . . . iq,

• interaction from the left, waves outgoing to the right

M lr
q = [aq

sk], s : iq+1 . . . n, k : iq . . . n,

• interaction from the left, waves outgoing to the left

M ll
q = [aq

sk], s : 1 . . . iq−1, k : iq . . . n.

(3.5)

In all of the above definitions

aq
sk =

∣∣∣∣
∂ǫout

s

∂ǫin
k

∣∣∣∣

at ǫin
1 = · · · = ǫin

k = · · · = ǫin
n = 0.

Note that in (3.5) the range of s (indexing the outgoing small waves) depends on
the neighboring large shock (of the family iq−1 or iq+1). Indeed, it is relevant to keep
track of only these newborn waves that in the future may possibly interact with large
shocks, thus changing the global wave pattern.

Keeping the above comment in mind, we also remark that the notation for the
matrices M rl

1 , M lr
1 , M ll

1 , M rr
m , M lr

m , M rl
m is ambiguous, however, in view of what we

have said, the precise form of these matrices is irrelevant in the following analysis.
Consider the first pair of large shocks (u0

0, u
1
0) and (u1

0, u
2
0) and a tuple γ =

[γk]k:i2...n of small waves travelling in the region between these shocks, and approach-
ing the second one. By interaction of γ with (u1

0, u
2
0), then, interaction of the newborn

“reflected” waves with (u0
0, u

1
0) and so on, further waves travelling in the region be-

tween the two large shocks are produced. Call

R1 = M rr
1 .(3.6)

The total strength of such waves, belonging to the characteristic families k ≥ i2, is
then seen to be

[
Id + R1M ll

2 +
(
R1M ll

2

)2
+ · · ·

]
|γ| =

(
Id − R1M ll

2

)−1
|γ|

.
= P 1−2|γ|

(where |γ| = [|γk|]k:i2...n), provided that the first finiteness requirement

all eigenvalues of R1 · M ll
2 are < 1 in absolute value(3.7)

is satisfied.
Now, view the pair of the first two large shocks as a single entity. The reflection

matrix R1−2, expressing the strengths of the outgoing small waves of families k ≥ i3,
exiting the region between the first and the second large waves to the right of the
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latter one, in terms of the incoming waves of the families k ≤ i2, possibly interacting
with the (i1 − i2) couple of large shocks from the right, has the form

R1−2 = M rr
2 + M lr

2 P 1−2R1M rl
2 .

The natural finiteness requirement for the triple (i1−i2−i3) of large shocks, analogous
to (3.7) is then

all eigenvalues of R1−2 · M ll
3 are < 1 in absolute value.

Proceeding in the same manner and viewing any fixed combination (i1−· · ·−iq) of
consecutive large shocks as a single entity, influencing its succeeding large wave iq+1,
we obtain the following (m − 1) assertions that constitute the announced Schochet
BV stability condition:

spRad(F 1−2) < 1,

spRad(F 1−2−3) < 1,

...

spRad(F 1−···−m) < 1

(3.8)

(spRad stands here for the spectral radius of the reference matrix). The finiteness
matrices F are defined inductively, together with the corresponding reflection and
production matrices R, P , by recalling (3.6) and setting

F 1−···−q .
= R1−···−(q−1) · M ll

q for q : 2 . . .m,(3.9)

P 1−···−q .
=
(
Id − F 1−···−q

)−1
for q : 2 . . .m,(3.10)

R1−···−q .
= M rr

q + M lr
q P 1−···−qR1−···−(q−1)M rl

q for q : 2 . . .m − 1.(3.11)

3.4. BV stability condition. The main theorem of this subsection is the fol-
lowing.

Theorem 3.2. The BV stability condition (3.1), (3.2) is equivalent to the Scho-
chet BV stability condition (3.8).

To prove Theorem 3.2, we need two abstract results on matrix theory.
Lemma 3.3. Let Q = [qsk]s,k:1...n be an n × n matrix with nonnegative entries:

qsk ≥ 0. The following conditions are equivalent:
(i) spRad(Q) < 1.
(ii) There exists a diagonal matrix W = diag(w1, . . . , wn) with positive diagonal

entries ws > 0 such that ‖ WQW−1 ‖1< 1.
Here the norm of an n × n matrix P = [psk]s,k:1...n is defined by

‖ P ‖1 = max
k:1...n

n∑

s=1

|psk|.

The above lemma, which came up independently in the investigations leading to
this paper, follows also from the results in [LY, Theorem 1 in Appendix 1]; thus for
brevity we omit its proof.

Lemma 3.4. Let A, B be two n × n matrices with nonnegative entries:

A = [ask]s,k:1...n, B = [bsk]s,k:1...n.
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Assume that there exist two sets of indices col, ver ⊂ {1 . . . n} with the properties

• col ∩ ver = ∅,
• ∀k 6∈ col ∀s : 1 . . . n, ask = bks = 0,
• ∀s 6∈ ver ∀k : 1 . . . n, ask = bks = 0.

Then the following two statements are equivalent:

(i) There exists W = diag(w1, . . . , wn) with all wk > 0 such that ‖ WAW−1 ‖1<
1 and ‖ WBW−1 ‖1< 1.

(ii) There exists W = diag(w1, . . . , wn) with all wk > 0 such that ‖ WABW−1 ‖1<
1.

The matrix norm ‖ · ‖1 is defined as in Lemma 3.3.

Proof. (i) ⇒ (ii). This implication is an obvious consequence of the fact that ‖ · ‖1

is a matrix norm.

(ii) ⇒ (i). Since WABW−1 = (WAW−1)(WBW−1), we may without loss of
generality assume that ‖ AB ‖1< 1 and prove the existence of a diagonal matrix W
satisfying (i). By (ii) we have

∑

s∈col

[
bsk ·

∑

r∈ver

ars

]
< 1 ∀k ∈ ver.

For a fixed ǫ > 0 define

wk =





∑

s∈ver

ask + ǫ for k ∈ col,

1 otherwise.

Then

∑

s∈ver

wsask =
∑

s∈ver

ask < wk ∀k ∈ col,

∑

s∈col

wsbsk =
∑

s∈col

(
∑

r∈ver

ars

)
bsk +

∑

s∈col

ǫbsk < 1 = wk ∀k ∈ ver,

provided that ǫ is small enough.

We have thus proved that ‖ WAW−1 ‖1< 1 and ‖ WBW−1 ‖1< 1.

For every matrix Mxy
q , x, y ∈ {l, r}, define the corresponding square n×n matrix

M̃xy
q by completing all the “missing” entries with zeros. For example, in view of (3.5)

M̃ rr
1 = [ãsk]s,k:1...n, ãsk =

{
ask for s : i2 . . . n, k : 1 . . . i1,

0 otherwise.

The next lemma shows some possible reformulations of our BV stability condition
(3.1), (3.2).

Lemma 3.5. The following conditions are equivalent to the BV stability condition
(3.1), (3.2) :
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(i) There exist m− 1 diagonal matrices {W q}m−1
q=1 with positive diagonal entries

such that

(3.12)

‖ W 1M̃ rr
1 (W 1)−1 ‖1< 1,

(3.13)

‖ W q−1M̃ ll
q (W q−1)−1 + W qM̃ lr

q (W q−1)−1 ‖1< 1

‖ W qM̃ rr
q (W q)−1 + W q−1M̃ rl

q (W q)−1 ‖1< 1
∀q : 2 . . .m − 1,

(3.14)

‖ Wm−1M̃ ll
m(Wm−1)−1 ‖1< 1.

(ii) Define two block square matrices of the dimension (m − 1) · n:

Oddm =




M̃ rr
1 0 . . . . . . 0

0 M̃ ll
3 M̃ rl

3 0
...

... M̃ lr
3 M̃ rr

3 0
... 0 0 M̃ ll

5

0 . . .
. . .




,

Evenm =




M̃ ll
2 M̃ rl

2 0 . . . 0

M̃ lr
2 M̃ rr

2 0 . . .

0 0 M̃ ll
4 M̃ rl

4
...

... M̃ lr
4 M̃ rr

4

0
. . .




.

Then

spRad(Oddm · Evenm) < 1.(3.15)

Proof. The condition (i) is obviously equivalent to (3.1), (3.2) if we define W q =
diag(wq

1 , . . . , wq
n) for all q : 1 . . .m − 1.

Note that (3.12), (3.13), (3.14) are equivalent to

‖ W · Oddm · W−1 ‖< 1, ‖ W · Evenm · W−1 ‖< 1,(3.16)

where W is the block diagonal matrix of the dimension (m − 1) · n given by

W = diag(W 1, . . . , Wm−1).

By Lemma 3.3 and Lemma 3.4, (3.16) is in turn equivalent to (3.15), which proves
(ii).
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Before we give the proof of Theorem 3.2, we need one more result of a technical
nature.

Lemma 3.6. Let A, B be two n × n matrices with nonnegative entries such that
‖ A + B ‖1< 1. Then ‖ B · (Id − A)

−1 ‖1< 1.
Proof. Note first that since ‖ A ‖1< 1, then the matrix Id − A is invertible and

its inverse

(Id − A)
−1

= Id + A + A2 + · · ·

has nonnegative entries. From the assumption it follows moreover that

n∑

i=1

[B]ik < 1 −
n∑

i=1

[A]ik =

n∑

i=1

[Id − A]ik,

for every k : 1 . . . n, and thus

n∑

i=1

[B · (Id − A)−1]ik =

n∑

s=1

(
n∑

i=1

[B]is

)
· [(Id − A)−1]sk

<

n∑

s=1

(
n∑

i=1

[Id − A]is

)
· [(Id − A)−1]sk

=
n∑

i=1

[(Id − A) · (Id − A)−1]ik = 1,

for every k : 1 . . . n, which proves our lemma.
Now we are ready to give the following proof.
Proof of Theorem 3.2.
Step 1. (3.1), (3.2) ⇒ (3.8). We use the equivalent form of the BV stability

condition (3.1), (3.2) given in Lemma 3.5(i).
We first show that

∀q : 1 . . .m − 1 ‖ W q · R̃1−···−q · (W q)−1 ‖1< 1.(3.17)

We proceed by induction on q. For q = 1, (3.17) is equivalent to (3.12) in view of
(3.6). For q : 2 . . .m − 1, by (3.11) we have

W q · R̃1−···−q · (W q)−1 = W qM̃ rr
q (W q)−1

+
[
W qM̃ lr

q P̃ 1−···−qR̃1−···−(q−1)(W q−1)−1
]

·
[
W q−1M̃ rl

q (W q)−1
]
.

The desired conclusion (3.17) will thus follow from the second inequality in (3.13)
provided that

‖ W qM̃ lr
q P̃ 1−···−qR̃1−···−(q−1)(W q−1)−1 ‖1< 1.(3.18)
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Note that

W qM̃ lr
q P̃ 1−···−qR̃1−···−(q−1)(W q−1)−1

= W qM̃ lr
q ·
(
Id − R̃1−···−(q−1)M̃ ll

q

)−1

· R̃1−···−(q−1)(W q−1)−1

=
[
W qM̃ lr

q (W q−1)−1
]

·
{
Id −

[
W q−1R̃1−···−(q−1)(W q−1)−1

]
·
[
W q−1M̃ ll

q (W q−1)−1
]}−1

·
[
W q−1R̃1−···−(q−1)(W q−1)−1

]
.

(3.19)

Setting

A = W q−1M̃ ll
q (W q−1)−1, B = W qM̃ lr

q (W q−1)−1

and combining Lemma 3.6 with the inductive assumption

‖ W q−1 · R̃1−···−(q−1) · (W q−1)−1 ‖1< 1,

we get (3.18) by (3.19) and thus complete the proof of (3.17).
We now prove inductively that the BV stability condition (3.1), (3.2) implies

(3.8). For m = 2, the conditions (3.12) and (3.14) are by Lemmas 3.3 and 3.4
equivalent to

all eigenvalues of M̃ rr
1 · M̃ ll

2 are < 1 in absolute value.(3.20)

However,

Spec M rr
1 M ll

2 ⊂ Spec M̃ rr
1 M̃ ll

2 ⊂
(
Spec M rr

1 M ll
2

)
∪ {0},

thus (3.20) is equivalent to

spRad(F 1−2) < 1,

which is in turn precisely the condition (3.8).
Note that we proved above even more than we need to at this point—we proved

the equivalence of (3.1), (3.2), and (3.8) in case m = 2 of only two large shocks
present.

Let now m > 2. Since (3.13) for q = m − 1 implies

‖ W q−2M̃ ll
q−1(W

q−1)−1 ‖1< 1,

by the inductive assumption we get

spRad(F 1−···−q) < 1 ∀q : 2 . . .m − 1.

However, by (3.14) and (3.17) for q = m − 1, in view of Lemma 3.4 and definition
(3.9)

‖ Wm−1F̃ 1−···−m(Wm−1)−1 ‖1< 1,
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which by Lemma 3.3 implies finally

spRad(F 1−···−m) < 1.

This finishes the proof of (3.1), (3.2) ⇒ (3.8).
Step 2. (3.8) ⇒ (3.1), (3.2). We use the equivalent form of the BV stability

condition (3.1), (3.2) given in Lemma 3.5(ii).
We proceed by induction on m. For m = 2 the assertion has already been estab-

lished in Step 1. Let m > 2 and fix λ ≥ 1. We will show that

det(Oddm · Evenm − λId) 6= 0,(3.21)

which by the property of nonnegative matrices mentioned in the proof of Lemma 3.3
will prove the theorem.

Assume first that m is an odd number. By known formulae on the determinant
of block matrices (see [G]) and a few easy computations one gets

det(Oddm · Evenm − λId)

= det(Oddm−1 · Evenm−1 − λId)

· det
(
M̃ ll

mM̃ rr
m−1 + M̃ ll

m · Am · (λId − Oddm−1 · Evenm−1)
−1

· Bm · M̃ rl
m−1 − λId

)
,

(3.22)

where Am is an n × ((m − 2) · n) block matrix of the form

Am =
[

0 . . . . . . 0 M̃ lr
m−1

]
,

and Bm is an ((m − 2) · n) × n block matrix

Bm =
[

0 . . . 0 M̃ rl
m−2 M̃ rr

m−2

]T
,

while Oddm−1 and Evenm−1 are defined analogously to Oddm and Evenm as in
Lemma 3.5(ii).

Note that the Schochet condition (3.8) implies (by the inductive assumption)

det (Oddm−1 · Evenm−1 − λId) 6= 0,(3.23)

spRad(F 1−···−m) < 1.(3.24)

By the definitions (3.9)–(3.11)

F 1−···−m = M ll
m ·
[
M rr

m−1 + M lr
m−1

(
Id − F 1−···−(m−1)

)−1
· R1−···−(m−2)M rl

m−1

]
.

Thus, in view of (3.23) and (3.24), the needed (3.21) will follow from (3.22) provided
that

Am · (Id − Oddm−1 · Evenm−1)
−1 · Bm

= M̃ lr
m−1 ·

(
Id − F̃ 1−···−(m−1)

)−1
· R̃1−···−(m−2).

(3.25)
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By the same kind of reasoning it is possible to prove that for m even, (3.21) is a
consequence of the formula

Cm · (Id − Oddm−1 · Evenm−1)
−1 · Dm

=
(
Id − F̃ 1−···−(m−1)

)−1
· R̃1−···−(m−2) · M̃ rl

m−1,
(3.26)

where Cm is an n × ((m − 2) · n) block matrix of the form

Cm =
[

0 . . . 0 M̃ lr
m−2 M̃ rr

m−2

]
,

and Dm is an ((m − 2) · n) × n block matrix

Dm =
[

0 . . . . . . 0 M̃ rl
m−1

]T
.

In the remaining part of the proof we will concentrate on showing that (3.25)
holds for every odd number m. The proof of (3.26) is entirely the same, so we leave
it to the careful reader.

We are going to prove (3.25) by induction on odd numbers m. For m = 3, the
left-hand side of (3.25) reduces to

M̃ lr
2 · (Id − M̃ rr

1 · M̃ ll
2 )−1 · M̃ rr

1 ,

which is precisely equal to M̃ lr
2 ·
(
Id − F̃ 1−2

)−1
· R̃1 by (3.6) and (3.9).

For m > 3 and odd, computing (Id − Oddm−1 · Evenm−1)
−1 in terms of the

matrices Oddm−3, Evenm−3, and the basic block-interaction matrices Mxy
q , we receive

the equivalent form of the left-hand side of the formula (3.25):

Am·(Id − Oddm−1 · Evenm−1)
−1 · Bm

=
[

0 M̃ lr
m−1

]

·

{
Id −




M̃ ll
m−2 M̃ rl

m−2

M̃ lr
m−2 M̃ rr

m−2


 ·




M̃ rr
m−3 0

0 M̃ ll
m−1




−

[
M̃ ll

m−2

M̃ lr
m−2

]
· Am−2 · (Id − Oddm−3 · Evenm−3)

−1

· Bm−2 ·
[

M̃ rl
m−3 0

]}−1

·

[
M̃ rl

m−2

M̃ rr
m−2

]
.

(3.27)
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Using the inductive assumption and the definition (3.11) we reformulate the right-
hand side of (3.27):

Am · (Id − Oddm−1 · Evenm−1)
−1 · Bm

=
[

0 M̃ lr
m−1

]

·

{
Id −

[
M̃ ll

m−2 M̃ rl
m−2

M̃ lr
m−2 M̃ rr

m−2

]
·

[
M̃ rr

m−3 0

0 M̃ ll
m−1

]

−

[
M̃ ll

m−2

M̃ lr
m−2

]
· M̃ lr

m−3 · (Id − F̃ 1−···−(m−3))−1

· R̃1−···−(m−4)
[

M̃ rl
m−3 0

]}−1

·

[
M̃ rl

m−2

M̃ rr
m−2

]

=
[

0 M̃ lr
m−1

]
·

{
Id −

[
M̃ ll

m−2 M̃ rl
m−2

M̃ lr
m−2 M̃ rr

m−2

]

·




M̃ rr
m−3+

M̃ lr
m−3(Id − F̃ 1−···−(m−3))−1·

·R̃1−···−(m−4)M̃ rl
m−3

0

0 M̃ ll
m−1




}−1

·

[
M̃ rl

m−2

M̃ rr
m−2

]

=
[

0 M̃ lr
m−1

]
·

{
Id −

[
M̃ ll

m−2 M̃ rl
m−2

M̃ lr
m−2 M̃ rr

m−2

]

·

[
R̃1−···−(m−3) 0

0 M̃ ll
m−1

]}−1

·

[
M̃ rl

m−2

M̃ rr
m−2

]
.

(3.28)

Calling

X = Id − M̃ ll
m−2R̃

1−···−(m−3),

Y = −M̃ rl
m−2M̃

ll
m−1,

Z = −M̃ lr
m−2R̃

1−···−(m−3),

W = Id − M̃ lr
m−2M̃

ll
m−1,

we rewrite the right-hand side of (3.28):

[
0 M̃ lr

m−1

]
·

[
X Y
Z W

]−1

·

[
M̃ rl

m−2

M̃ rr
m−2

]

= M̃ lr
m−1 ·

(
− (W − ZX−1Y )−1ZX−1 · M̃ rl

m−2

+ (W − ZX−1Y )−1 · M̃ rr
m−2

)

= M̃ lr
m−1 · (W − ZX−1Y )−1 ·

(
M̃ rr

m−2 − ZX−1 · M̃ rl
m−2

)

= M̃ lr
m−1 · (Id − R̃1−···−(m−2)M̃ ll

m−1)
−1 · R̃1−···−(m−2),

(3.29)
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because, by definitions (3.9)–(3.11)

W − ZX−1Y = Id − R̃1−···−(m−2)M̃ ll
m−1,

M̃ rr
m−2 − ZX−1 · M̃ rl

m−2 = R̃1−···−(m−2).

The equality (3.29) together with (3.28) prove (3.25). The proof of Step 2 and
thus also the proof of Theorem 3.2 is complete.

3.5. L
1 stability condition. In connection with (3.3) and (3.4), we define the

matrices N rr
q , N rl

q , N lr
q , and N ll

q (q : 1 . . .m), having the same dimensions as their
corresponding matrices Mxy

q in (3.5), and with their (nonnegative) entries given by

bsk = ask ·

∣∣∣∣
λs(u

q
0) − Λq

λk(uq
0) − Λq

∣∣∣∣ in N rr
q ,

bsk = ask ·

∣∣∣∣∣
λs(u

q−1
0 ) − Λq

λk(uq
0) − Λq

∣∣∣∣∣ in N rl
q ,

bsk = ask ·

∣∣∣∣∣
λs(u

q
0) − Λq

λk(uq−1
0 ) − Λq

∣∣∣∣∣ in N lr
q ,

bsk = ask ·

∣∣∣∣∣
λs(u

q−1
0 ) − Λq

λk(uq−1
0 ) − Λq

∣∣∣∣∣ in N ll
q .

Using the analysis of the previous subsection, we can now state the following.
Proposition 3.7. The L1 stability condition (3.3), (3.4) is equivalent to the

condition (3.8), where the matrices F 1−···−q are defined as in (3.9)–(3.11), with every
matrix Mxy

q replaced by the corresponding one Nxy
q . In particular, for m = 2, (3.8)

reduces to

the spectral radius of an n × n matrix

|S − Λ1Id| · M̃ rr
1 · |S − Λ1Id|−1 · |S − Λ2Id| · M̃ ll

2 · |S − Λ2Id|−1(3.30)

is smaller than 1,

where

|S − ΛId| = diag(|λ1(u
1
0) − Λ|, . . . , |λn(u1

0) − Λ|).

Remark 3.8. It has recently been brought to our attention that conditions similar
to our BV and L1 stability conditions, though expressed in the language of matrix
analysis, can be found in the book [LY].

The authors investigate the (short time) existence and regularity of classical so-
lutions to the so-called typical boundary value problems on fan-shaped domains for
quasi-linear hyperbolic systems with smooth coefficients. In particular, they show
the existence of a unique C1 solution to this problem, provided that the so-called
minimal characterizing number of the characterizing matrix for the typical boundary
value problem is smaller than 1 (Theorem 1.1 in Chapter 4). If the same holds for the
second characterizing matrix (see paragraph 4 in Chapter 7), then the corresponding
solution is C2 regular (Theorem 1.1 in Chapter 7).

These results can well be applied to the quasi-linear system (1.4) with the bound-
ary conditions (1.5) along the boundaries of the angular domains given by the large
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shocks in the solution of (1.1), (1.2), (1.3). The boundary conditions (1.5) appear
already in the solvable form (see Lemma 5.10 in Chapter 2), that is, some of the
components of u at the vertex x = 0, t = 0 (namely, the components corresponding to
the outgoing modes) are explicitly expressed as functions of the others (corresponding
to the incoming modes). It is not hard to notice that the characterizing matrix of
this problem is made up of the quantities { ∂

∂ǫin
k

ǫout
s } in such a way that its minimal

characterizing number is smaller than 1 iff our BV stability condition holds. In a
similar manner, the mentioned solvability condition for the second characterizing ma-

trix, containing the numbers { ∂
∂ǫin

k

(
ǫout

s ·(λout
s −Λq)

(λin
k

−Λq)

)
}, is equivalent to our L1 stability

condition.
The results in [LY] thus imply the local in time existence of the piecewise C1

(respectively, C2) solution to the problem (1.1), (1.2) with ū smooth except at the
point x = 0, where it induces the Riemann problem “close” to (u−, u+).

4. Systems of two equations. In the particular case n = m = 2, i1 = 1, i2 =
2, the matrices M rr

1 and M ll
2 reduce to single numbers, and the L1 stability condition

(3.30) appears in a simple form:

∣∣∣∣∣
∂ǫout

2

∂ǫin
1 |ǫin

1 = 0

∣∣∣∣∣ ·
∣∣∣∣∣

∂ǫout
1

∂ǫin
2 |ǫin

2 = 0

∣∣∣∣∣ ·
λ1(u

1
0) − Λ2

λ1(u1
0) − Λ1

·
λ2(u

1
0) − Λ1

λ2(u1
0) − Λ2

< 1.(4.1)

Similarily, the BV stability condition (3.1), (3.2) is equivalent to

∣∣∣∣∣
∂ǫout

2

∂ǫin
1 |ǫin

1 = 0

∣∣∣∣∣ ·
∣∣∣∣∣

∂ǫout
1

∂ǫin
2 |ǫin

2 = 0

∣∣∣∣∣ < 1.(4.2)

In both (4.1) and (4.2) the first derivative corresponds to the right interaction with
the large shock of the first family, while the second derivative corresponds to the left
interaction with the large shock of the second characteristic family.

In what follows we show that (4.1) and (4.2) are equivalent, respectively, to the
appropriate conditions providing stability results in [BC] and [W].

4.1. The Bressan–Colombo L
1 stability condition [BC]. In the setting of

[BC],

κ1 =
∂ǫout

2

∂ǫin
1 |ǫin

1 = 0
= −

〈
∂Ψ2(u0

0,u1
0)

∂u1 , r1(u
1
0)
〉

〈
∂Ψ2(u0

0,u1
0)

∂u1 , r2(u1
0)
〉

and

κ2 =
∂ǫout

1

∂ǫin
2 |ǫin

2 = 0
= −

〈
∂Ψ1(u1

0,u2
0)

∂u1 , r2(u
1
0)
〉

〈
∂Ψ1(u1

0,u2
0)

∂u1 , r1(u1
0)
〉 ,

where

Ψ1(u1, u2) = 〈l1(u
1, u2), u1 − u2〉,

Ψ2(u0, u1) = 〈l2(u
0, u1), u0 − u1〉,
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l1 and l2 being the left eigenvectors of the averaged flux gradient matrix between the
reference points u.

One sees that the Bressan–Colombo stability condition

∣∣∣∣κ1 ·
λ1(u

1
0) − Λ2

λ1(u1
0) − Λ1

∣∣∣∣ ·
∣∣∣∣κ2 ·

λ2(u
1
0) − Λ1

λ2(u1
0) − Λ2

∣∣∣∣ < 1

is precisely (4.1).

4.2. The Wang BV stability condition [W]. In [W], (1.1), (1.7) is assumed
to satisfy the following finiteness condition:

Let

(
Λ1Id − Df(u1

0)
)−1

(u1
0 − u0

0) = αr1(u
1
0) + βr2(u

1
0),

(
Df(u1

0) − Λ2Id
)−1

(u2
0 − u1

0) = γr1(u
1
0) + δr2(u

1
0).

(4.3)

Then

|βγ| < |αδ|.(4.4)

The above condition is a reduction of a multidimensional BV stability condition
(to be found in [Me]) to the case of one space dimension.

Theorem 4.1. Assume that both shocks in the reference solution (1.7) (recall that
m = 2) are Majda stable and Lax admissible. Then the condition (4.4) is equivalent
to the BV stability condition (4.2).

Proof. It is enough to show that in the context of (4.3), (4.4), (4.2), there hold

∣∣∣∣
β

α

∣∣∣∣ =
∣∣∣∣∣

∂ǫout
2

∂ǫin
1 |ǫin

1 = 0

∣∣∣∣∣ ,(4.5)

∣∣∣γ
δ

∣∣∣ =
∣∣∣∣∣

∂ǫout
1

∂ǫin
2 |ǫin

2 = 0

∣∣∣∣∣ .(4.6)

We focus on (4.5) and thus the case when the large shock (u0
0, u

1
0) is hit from the right

by a small wave of the first characteristic family and strength ǫin
1 . The proof of (4.6)

is entirely similar, so we omit it.
Let F : Ω0 × Ω1 × I −→ R be defined as follows (I is here a small neighborhood

of 0 ∈ R):

F (u−, u+, ǫ) = Ψ0(u
−, Φ̃2(u

+, ǫ)),

where Ψ0 is as in (2.5), (2.6) (its existence is implied by the proof of Theorem 2.1, in

view of the Majda stability of the first large shock). The functions Φ̃i : Ω1× I −→ Ω1

for i = 1, 2 are such that

Φ̃i(u
+, ǫ) = u− iff Φi(u

−, ǫ) = u+,

where Φi : Ω1 × I −→ Ω1 for a fixed u− coincides with the ith rarefaction curve in
the positive part of I, and for ǫ ∈ I negative follows the ith shock curve through the
argument point u (compare [L]). It is not hard to notice that ∂

∂ǫ
Φ̃i(u, 0) = −ri(u).
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The fundamental equation relating the strengths ǫin
1 and ǫout

2 in (4.5) has by (2.6)
the form

F (u0
0, Φ1(u

1
0, ǫ

in
1 ), ǫout

2 ) = 0.(4.7)

Differentiating (4.7) with respect to ǫin
1 at ǫin

1 = 0 and using (2.13), we receive

0 =
∂Φ0

∂u1
(u0

0, u
1
0) · r1(u

1
0) −

∂Φ0

∂u1
(u0

0, u
1
0) · r2(u

1
0) ·

∂ǫout
2

∂ǫin
1 |ǫin

1 = 0

= V1(u
1
0 − u0

0)
T ·
[
Df(u1

0) − Λ1Id
]
·

(
r1(u

1
0) − r2(u

1
0) ·

∂ǫout
2

∂ǫin
1 |ǫin

1 = 0

)
.

(4.8)

Since V1(u
1
0 − u0

0) is orthogonal to u1
0 − u0

0, (4.8) is equivalent to

[
Df(u1

0) − Λ1Id
]
·

(
r1(u

1
0) − r2(u

1
0) ·

∂ǫout
2

∂ǫin
1 |ǫin

1 = 0

)
= s · (u1

0 − u0
0),(4.9)

with some s 6= 0, as Λ1 is not an eigenvalue of Df(u1
0). The first formula in (4.3) is

equivalent to

[
Df(u1

0) − Λ1Id
]
·
(
−αr1(u

1
0) − βr2(u

1
0)
)

= (u1
0 − u0

0),

and thus by (4.9) we get (4.5).

Acknowledgment. We wish to thank an anonymous referee for bringing to our
attention the book [LY].

REFERENCES

[B] A. Bressan, Hyperbolic systems of conservation laws, Rev. Mat. Complut., 12 (1999), pp.
135–200.

[BC] A. Bressan and R.M. Colombo, Unique solutions of 2 × 2 conservation laws with large
data, Indiana Univ. Math. J., 44 (1995), pp. 677–725.

[BLY] A. Bressan, T.P. Liu, and T. Yang, L1 stability estimates for n × n conservation laws,
Arch. Rational Mech. Anal., 149 (1999), pp. 1–22.

[BM] A. Bressan and A. Marson, A variational calculus for discontinuous solutions of systems
of conservation laws, Comm. Partial Differential Equations, 20 (1995), pp. 1491–1552.

[D] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, New
York, 1999.
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